
© Algebra and Discrete Mathematics RESEARCH ARTICLE
Volume 40 (2025). Number 2, pp. 158–182
DOI:10.12958/adm2408

Coxeter spectral classification of non-negative
posets of Dynkin type Em
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Abstract. We give a complete description of connected
non-negative Dynkin type DynI = Em posets and prove that the
number of such posets is finite. Moreover, by means of com-
puter assisted analysis, we give a complete Coxeter classification
of this class and prove that the pair (DynI = Em, speccI), where
speccI ⊆ C denotes the Coxeter spectrum of I, determines I
uniquely, up to the strong Gram Z-congruence.

Introduction

This work is devoted to the Coxeter spectral study of finite posets, in-
spired by their applications in the representation theory of posets, finite
groups, classical orders, finite-dimensional algebras over a field K, and
cluster K-algebras; see [1, 3, 18,21,25,26,28,29] and Section 1.

By a finite poset I of size n we mean a pair I = (V, ≤I), where V :=
{1, . . . , n} and ≤I is a reflexive, antisymmetric, and transitive binary
relation. Every poset I is uniquely determined by its incidence matrix

CI = [cij ] ∈ Mn(Z), where cij = 1 if i ≤I j and cij = 0 otherwise, (1)

i.e., a square binary matrix that encodes the relation ≤I . A poset I
is defined to be non-negative of rank m if its symmetric Gram matrix
GI := 1

2(CI + Ctr
I ) ∈ Mn(R) is positive semi-definite of rank m; see [29].
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Our overall aim is to describe all connected non-negative posets (up to
poset isomorphism) and study the interplay between their combinatorial
and algebraic properties. For a discussion of the origins and applications
of this study, the reader is referred to [10, Section 6.1], [14, 21, 29] and
Section 1.

Following [29], we associate with a poset I the Coxeter matrix CoxI :=
−CI · (C−1

I )tr ∈ Mn(Z) and its complex spectrum speccI ⊆ C, called
the Coxeter spectrum of I. We call two posets I1 and I2 strongly Gram
Z-congruent (denoted by I1 ≈Z I2) if their incidence matrices CI1 and
CI2 are Z-congruent, i.e.,

CI2 = BtrCI1B for some B ∈ Gln(Z) := {A ∈ Mn(Z); det A = ±1},

see [26]. It is easy to check that this relation preserves definiteness, rank,
and the Coxeter spectrum. The main results of this manuscript give a
partial solution to the following variants of the problems formulated in
[15,23,26,28].

Problem 1. Give a complete description (up to poset isomorphism) of
connected non-negative posets I.

Problem 2. When does the Coxeter spectrum speccI ⊆ C of a finite
poset I determines the incidence matrix CI ∈ Mn(Z) uniquely, up to the
strong Gram Z-congruence?

Every non-negative connected poset I, up to Z-congruence of the
symmetric Gram matrix GI , is determined by a unique simply-laced
Dynkin diagram DynI ∈ {Am,Dm,E6,E7,E8}, called the Dynkin type of
I (see Definition 3 for details). The present work is a significant step
toward the complete classification of all connected non-negative posets.
It complements the results of [13], where posets of Dynkin type DynI =
Am are described (see Theorem 3 for more details). In this paper, we
focus on the Dynkin type DynI ∈ {E6,E7,E8}.

One of our main results is the following theorem, which provides a
partial solution to Problem 1 and [13, Conjecture 6.1].

Theorem 1. There is only a finite number of connected non-negative
posets I of Dynkin types DynI ∈ {E6,E7,E8}, up to poset isomorphism.

Furthermore, by employing computational tools, we give a full de-
scription of these posets in Theorem 4 and perform Coxeter spectral
analysis of them, see Theorem 5. In particular, we give a partial solution
to Problem 2.
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Theorem 2. If I and J are non-negative connected posets of Dynkin
type DynI = DynJ ∈ {E6,E7,E8}, then I ≈Z J ⇔ speccI = speccJ .

In particular, our results can be viewed as a generalization of those
presented in the recent work of Bondarenko and Styopochkina [6], as we
explain in the next section.

1. Motivation and known results

Integer quadratic forms have proved to be a powerful tool in the repre-
sentation theory of algebras. In certain situations, there is a strong rela-
tionship between the properties of representations of various objects and
the properties of quadratic forms associated with them. In particular, P.
Gabriel introduced in 1972 [8] an integer quadratic form qQ : Z|Q0| → Z
of a finite directed graph (quiver) Q = (Q0, Q1), called the quadratic Tits
form of Q. This form is given by

qQ(x) :=
∑

i∈Q0

x2
i −

∑
i→j∈Q1

xixj , (2)

where i runs through the set of vertices and i → j runs through the set of
arrows. It is well known (see [1, Corollary 4.6]) that for a connected Q,
the form qQ is positive definite (i.e., qQ(v) > 0 for all 0 ̸= v ∈ Z|Q0|)
if and only if Q (i.e., Q viewed as a non-oriented graph) is one of the
Dynkin diagrams An, Dn, E6, E7 or E8 (see Table 1.1). On the other
hand, Gabriel asserts in [8] that this is the case if and only if KQ is a
representation–finite connected hereditary algebra.

In the study of finite posets T = (T, ⪯), combinatorial structures
similar to quivers, Drozd introduced in 1974 [7] the quadratic Tits form
q∗

T : ZT ∪{∗} → Z given by the formula:

q∗
T (x) := x2

∗ +
∑
i∈T

x2
i +

∑
i≺j

xixj − x∗
∑
i∈T

xi, (3)

where ∗ ̸∈ T . Drozd showed that a poset T is representation-finite (in
the sense of Nazarova-Roiter [20]) if and only if its quadratic Tits form
is weakly positive, i.e., q∗

T (v) > 0 for all 0 ̸= v ∈ NT ∪{∗}.
Other quadratic forms associated with posets are also considered in

the literature; see [23]. In particular, in 1993 Simson [22] introduced the
following quadratic form q̂I : ZI → Z:

q̂I(x) :=
∑
i∈I

x2
i +

∑
i≺j

j∈I\max I

xixj −
∑

p∈max I

xp

∑
i≺p

xi

 . (4)



M. Gąsiorek 161

It is shown in [22] that the category prin(KI) of finitely generated prin-
jective right KI-modules is of finite representation type if and only if the
quadratic form (4) is weakly positive.

We note that, from the combinatorial point of view, the case of posets
is more complex than that of quivers. In contrast to quivers, the classes
of posets with weakly positive and with positive Tits form q∗

T (x) (3) do
not coincide. The former case has been described by Kleiner as follows:
the form q∗

T (x) is weakly positive if and only if T does not contain any
of the five critical subposets, see [19, Theorem 1]. The latter class,
i.e., posets with Tits form positive (analogs of the Dynkin diagrams),
is described up to the minimax equivalence by Bondarenko-Stepochkina
in [4] (see also [2, Sections 1–3]) and by Gąsiorek-Simson in [14] (up to
isomorphism). Since the quadratic form q∗

T (x) coincides with q̂T ⊔{∗}(x),
where T ⊔ {∗} is a poset with exactly one maximal element ∗, the one-
peak posets I = T ⊔ {∗} described in [14] are in direct correspondence
with the posets T given in [2, 4].

The non-negative case is also strikingly different for quivers and
posets (we recall that a quadratic form q : Zn → Z is called non-negative
iff q(v) ≥ 0 for all v ∈ Zn). It is well known that the form qQ(x) is non-
negative if and only if Q is a Dynkin or Euclidean diagram (see [1, Propo-
sition 4.5]). It follows that the kernel Ker qQ := {v ∈ Zn; qQ(v) = 0}
of a non-negative connected quiver that is not positive is an infinite
cyclic subgroup of Zn (such a quadratic form is called principal); see
[1, Lemma 4.2]. This is not the case for posets, as the rank of the free
group Ker q∗

T of a poset with a non-negative quadratic Tits form q∗
T (x)

can be arbitrarily large; see Proposition 5.
It is a natural problem to search for a description of posets T with

the form q∗
T (x) non-negative, that are not positive. Such a description

is given in [9, 15] and, independently in [5, 6], for principal posets (these
are direct analogs of Euclidean diagrams).

For the general case, only partial results are known. In particular, in
[17, 18] non-negative posets of size n ≤ 16 and rank n − 2 are computed
and analysed. For posets of arbitrary size, the following theorem is given
in [13] (we recall from [21] that the Hasse quiver H(I) of I is the transitive
reduction of the acyclic quiver D(I) = (V, AI), with i → j ∈ AI iff i <I j;
see Definition 1).
Theorem 3. Assume that I is a connected poset of size n.

(a) I is non-negative of Dynkin type DynI = An if and only if H(I) is
a path graph.
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(b) I is non-negative with DynI = An−1 if and only if H(I) is a cycle
graph and H(I) has at least two sinks (i.e., maximal elements).

(c) If I is non-negative of Dynkin type DynI = Am, then m∈{n, n−1}.

This class is further analysed in [12], where the following is shown.

Corollary 1. If I and J are non-negative connected posets of Dynkin
type Am, then I ≈Z J if and only if speccI = speccJ .

The main aim of this work is to prove similar results for Dynkin type
DynI ∈ {E6,E7,E8} non-negative connected posets.

Remark 1. The reader is referred to [10, Section 6] for a discussion of
the origins and applications of the Coxeter-type study of finite posets.

2. Preliminaries

Throughout, we mainly use the terminology and notation introduced
in [14, 18, 21, 26, 29]. In particular, by N ⊆ Z ⊆ R we denote the set
of non-negative integers, the ring of integers, and the real number field,
respectively. We use a row notation for vectors v = [v1, . . . , vn] and write
vtr to denote column vectors. By e1, . . . , en we denote the standard
Z-basis of Zn. We say that two square integer matrices X ∈ Mn(Z) and
Y ∈ Mn(Z) are Z-congruent (denoted by X ∼Z Y ) if there exists such a
matrix B ∈ Gln(Z) := {A ∈ Mn(Z); det A = ±1}, that Btr · X · B = Y .

All graphs considered in the paper are finite and simple. In particular,
by a bigraph we mean a signed graph G = (VG, EG, sgnG) consisting of
a finite set of vertices VG, a finite set of edges EG and a sign function
sgnG : EG → {−1, 1}. By an edge, we mean a pair of vertices and we
denote them graphically as follows:

• positive edges E+
G := {e ∈ EG; sgn(e) = +1} by dotted lines u v;

• negative edges E−
G := {e ∈ EG; sgn(e) = −1} by full lines u v.

By a graph we mean a bigraph with negative edges only, and by a quiver
(digraph, directed graph) we mean a graph D, whose edges e ∈ ED have a
designated source s(e) ∈ VD and a target t(e) ∈ VD (such oriented edges
are called arrows). By the underlying graph D of a quiver D we mean a
graph obtained from D by forgetting the orientation of its arrows.
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We note that every bigraph ∆ = (V, E, σ) is uniquely determined by
the upper-triangular non-symmetric Gram matrix

Ǧ∆ = [d∆
ij ], where d∆

ij :=


|E+(i, j)| − |E−(i, j)| if i < j,

1 if i = j,

0 if i > j,

(5)

and the symmetric Gram matrix G∆ := 1
2(Ǧ∆ + Ǧtr

∆) ∈ Mn(Q). A
bigraph ∆ is defined to be non-negative of rank m if its symmetric Gram
matrix G∆ ∈ Mn(Q) is positive semi-definite of rank m. Two bigraphs
∆1 and ∆2 are said to be strongly (weakly) Gram Z-congruent ∆1 ≈Z ∆2
(∆1 ∼Z ∆2) if and only if Ǧ∆1 ∼Z Ǧ∆2 (G∆1 ∼Z G∆2).

Definition 1. The Hasse quiver of a poset I = (V, ≤I) is a simple
directed graph H(I) = (V, A) with the set of arrows defined as follows:
x → y ∈ A iff x <I y and there is no such z ∈ V, that x <I z <I y.

We call a poset I connected if the graph H(I) := H(I) is connected.
Given a set of vertices {s1, . . . , st} ⊆ I, we denote by I(s1,...,st) the induced
subposet I(s1,...,st) := I \ {s1, . . . , st}.

Following [14,26,29], we associate with a poset I = ({1, . . . , n}, ⪯):

• the symmetric Gram matrix GI := 1
2(CI + Ctr

I ) ∈ Mn(1
2Z); (6)

• the (incidence) bilinear form bI : Zn × Zn → Z,

bI(x, y) :=
∑
i⪯j

xiyj = x · CI · ytr; (7)

• the (incidence) unit quadratic form qI : Zn → Z defined by the
formula

qI(x) := bI(x, x) =
∑

i∈{1,...,n}
x2

i +
∑
i ≺ j

xixj = x · GI · xtr; (8)

• the kernel Ker qI := {v ∈ Zn; qI(v) = 0} ⊆ Zn; (9)

• the set of roots RI := {v ∈ Zn; qI(v) = 1} ⊆ Zn; (10)

• the Coxeter matrix CoxI := −CI · (C−1
I )tr ∈ Mn(Z); (11)

• the Coxeter polynomial coxI(t) := det(tE − CoxI) ∈ Z[t]; (12)

• the Coxeter spectrum speccI := {λ ∈ C; coxI(λ) = 0} ⊆ C. (13)
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It is known that a poset I is non-negative of rank m if and only if the
quadratic form qI(x) is positive semi-definite (i.e., qI(v) ≥ 0 for every
v ∈ Zn) and its kernel Ker qI ⊆ Zn is a free abelian subgroup of rank
crkI := n − m, see [26]. By setting G∆I

:= GI we associate the bigraph
∆I with an arbitrary finite poset I (we note that ∆I has positive edges
only).

Definition 2. Two posets I and J are said to be strongly (weakly) Gram
Z-congruent and denoted by I ≈Z J (I ∼Z J) if their incidence matrices
(symmetric Gram matrices) are Z-congruent.

We call a non-negative poset I positive if crkI = 0, principal if
crkI = 1, and indefinite if its symmetric Gram matrix GI is not posi-
tive/negative semidefinite.

Proposition 1. Let I = ({1, . . . , n}, ⪯) be a finite poset.

(a) The incidence quadratic form qI : Z|I| → Z (8) is non-negative of
rank m if and only if the quadratic form q̂I : Z|I| → Z (4) is non-
negative of rank m.

(b) The Tits quadratic form q∗
T : Z|T |+1 → Z (3) of a poset T is non-

negative if and only if the incidence quadratic form qT ∗: Z|T ∗| →Z (8)
of a one-peak poset T ∗ is non-negative, where T ∗ := T ⊔ {∗} is the
enlargement of T by a unique maximal element ∗ ̸∈ T .

Proof. (a) Without loss of generality, we may assume that the set of
maximal elements of I has the form max I = {k, k + 1, . . . , n}. Since
q̂I = qI ◦ t̂, where the homomorphism t̂ : Zn → Zn is defined as

[x1, . . . , xn] t̂7−→ [x1, . . . , xk−1, −xk, . . . , −xn],

the thesis follows. Similarly in the case (b), since q∗
T = qT ∗ ◦ t−

∗ with

Z|T |+1 ∋ [x1, . . . , x|T |, x∗] t−
∗7−→ [x1, . . . , x|T |, −x∗] ∈ Z|T |+1.

The kernel Ker qI ⊆ Zn (9) of a non-negative poset I is a free abelian
subgroup of rank crkI , that admits a (k1, . . . , kcrkI

)-special Z-basis in the
following sense.

Proposition 2. Assume that I = ({1, . . . , n}, ⪯) is a connected non-
negative poset of corank crkI = r ≥ 1.
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(a) There exist integers 1 ≤ k1 < . . . < kr ≤ n such that the rank
r ≥ 1 group Ker qI ⊆ Zn admits a (k1, . . . , kr)-special Z-basis
h(k1), . . . , h(kr), i.e., a basis satisfying h

(ki)
ki

= 1 and h
(ki)
kj

= 0 for
1 ≤ i, j ≤ r and i ̸= j.

(b) For every {s1, . . . , st} ⊆ {k1, . . . , kr} the subposet I(s1,...,st) is con-
nected and non-negative of corank r − t ≥ 0.

(c) The poset I(k1,...,kr) is positive and connected.

Proof. Since, without loss of generality, one may assume that CI = Ǧ∆I

(i.e., assume that the vertices of the digraph H(I) are topologically or-
dered), apply [27, Proposition 5.1] and [30, Theorem 2.1].

Following [10,29], we associate with a connected non-negative poset I
its Dynkin type DynI ∈ {Am,Dm,E6,E7,E8}.

An : 1 2 n−1 n

(n≥1);

Dn : 1

2

3 n−1 n

(n≥4); E6 : 1 2 3

4

5 6

E7 : 1 2 3

4

5 6 7 E8 : 1 2 3

4

5 6 7 8

Table 1.1: Simply laced Dynkin diagrams

Definition 3. Assume that I is a connected non-negative poset of corank
r ≥ 0. The Dynkin type DynI is defined to be the unique simply laced
Dynkin diagram of Table 1.1 viewed as a bigraph

DynI ∈ {Am,Dm,E6,E7,E8}

such that m = n − r and ∆̌I ∼Z DynI , where

• ∆̌I := ∆I if r = 0 (i.e., I is positive);

• ∆̌I := ∆I(k1,...,kr) ⊆ ∆I if r > 0 (see Proposition 2(c)).

We note that the bigraph DynI can be efficiently calculated algorithmi-
cally, by means of an inflation algorithm (see [31, Algorithm 4.2]).

Proposition 3. Assume that I and J are finite partially ordered sets,
and ∆ is a bigraph.
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(a) I ≃ J ⇒ J ≈Z I (isomorphism implies strong Gram Z-congruence);

(b) I ≈Z J ⇒ speccI = speccJ , coxI(t) = coxJ(t);

(c) I ≈Z J ⇒ I ∼Z J ;

(d) If a poset I is non-negative of corank r and I ∼Z J (I ∼Z ∆), then
the poset J (bigraph ∆) is non-negative of corank r.

Proof. The thesis follows from the definitions and direct calculations. In
particular, it is straightforward to verify that Bσ · CJ · Btr

σ = CI , where
σ is a permutation defining the I ≃ J isomorphism and Bσ ∈ Gln(Z) is
a matrix obtained from the identity matrix E by σ permutation of its
rows. Further details can be found in [12, Fact 2.14], [26, Lemma 2.1],
and [29, Lemma 3].

3. Main results

We start by showing that under certain circumstances (i.e., when qI(x)
determines I uniquely), every connected non-negative corank crkI > 0
poset I can be constructed from a positive poset J ⊆ I. The follo-
wing lemma is a generalization of [17, Theorem 3.4] (see also [30, Theo-
rem 2.1]).

Lemma 1. Let I be a connected non-negative poset of size n and corank
crkI = r > 0 with a (k1, . . . , kr)-special Z-basis h(k1), . . . , h(kr) of Ker qI ,
and let I ′ := I(k1,...,kr) = I \ {k1, . . . , kr}.

(a) The vectors

u(k1) := h(k1) − ek1 , . . . , u(kr) := h(kr) − ekr (14)

are roots of I and the vectors ǔ(ki) := u(ki)|{1,...,n}\{k1,...,kr} ∈ Zn−r

are roots of the positive connected poset I ′.

(b) The incidence quadratic form (8) of I is given by

qI(x) = qI′(x̌) +
r∑

i=1
x2

ki
−

r∑
i=1

2bI′(x̌, ǔ(ki))xki

+
r−1∑
i=1

r∑
j=i+1

2bI′(ǔ(kj), ǔ(ki))xki
xkj

,

(15)

where x̌ := x|{1,...,n}\{k1,...,kr}.
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Proof. Throughout, by v̌ := v|{1,...,n}\{k1,...,kr} ∈ Zn−r we denote the
restriction of a vector v = [v1, . . . , vn] ∈ Zn to coordinates {1, . . . , n} \
{k1, . . . , kr} and by v ∈ Zn the vector v := v −

r∑
i=1

vki
eki

.

(a) It follows from [24, Theorem 3.2(a)] that for every 1 ≤ i ≤ r we
have

qI(u(ki)) = qI(h(ki) − eki
) = qI(−eki

) = 1.

Moreover, by the definition of the vector u(ki) and properties of a
(k1, . . . , kr)-special Z-basis we have qI′(ǔ(ki)) = qI(u(ki)) = 1, where the
poset I ′ := I(k1,...,kr) is positive and connected, see Proposition 2.

(b) By Definition (8) we know that qI(v + w) = qI(v) + qI(w) +
2bI(v, w) for any v, w ∈ Zn and it follows that

qI(v) = qI(v +
r∑

i=1
vki

eki
) = qI(v) + qI(

r∑
i=1

vki
eki

) + 2bI(v,
r∑

i=1
vki

eki
)

= qI′(v̌) +
r∑

i=1
v2

ki
+

r−1∑
i=1

r∑
j=i+1

2bI(eki
, ekj

)vki
vkj

(16)

+
r∑

i=1
vki

2bI(v, eki
).

We recall from [24, Proposition 2.8(b)] that bI(−, h) = 0 for any
h ∈ Ker qI . Hence

0 = bI(v, h) = bI(v, h) +
r∑

i=1
hki

bI(v, eki
)

and it follows that
r∑

i=1
hki

bI(v, eki
) = −bI(v, h). Moreover, for a fixed

s ∈ {k1, . . . , kr} and w = [w1, . . . , wn] with wk1 = · · · = wkr = 0 we have

bI(w, es) = −bI(w, h
(s)) = −bI(w, u(s)) = −bI′(w̌, ǔ(s)),

and for every s, t ∈ {k1, . . . , kr}, s ̸= t, we have

bI(et, es) = −bI(h(t) − u(t), h
(s)) = bqI (u(t), u(s)) = bI′(ǔ(s), ǔ(t)).

Applying those equalities to (16) we conclude that

qI(v) = qI′(v̌) +
r∑

i=1
v2

ki
−

r∑
i=1

2bI′(v̌, ǔ(ki))vki
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+
r−1∑
i=1

r∑
j=i+1

2bI′(ǔ(kj), ǔ(ki))vki
vkj

,

and the proof is finished.

Now we prove one of the main results of the paper.

Proof of Theorem 1. Let I = ({1, . . . , n}, ⪯) be a Dynkin type DynI ∈
{E6,E7,E8} connected non-negative poset I of corank crkI = r > 0
and let h(k1), . . . , h(kr) be a (k1, . . . , kr)-special Z-basis of Ker qI . By
Definition 3 and Lemma 1 we have

qI(x) = qI′(x̌) +
r∑

i=1
x2

ki
−

r∑
i=1

2bI′(x̌, u(ki))xki

+
r−1∑
i=1

r∑
j=i+1

2bI′(u(ki), u(kj))xki
xkj

, (17)

where

• v̌ := v|{1,...,n}\{k1,...,kr} ∈ Zn−r;

• I ′ is a connected positive poset of Dynkin type DynI = En−r;

• for every 1 ≤ i ≤ r we have ǔ(ki) ∈ RI′ ,where u(ki) = h(ki) − eki
.

Without loss of generality, we may assume that the elements of I
are topologically sorted (i.e., i ⪯ j ⇒ i < j), that is, the incidence
matrix CI ∈ Mn(Z) (1) is upper triangular. It follows that I is uniquely
determined by its incidence quadratic form qI : Zn → Z (8). Therefore,
up to isomorphism, the poset I is determined by

• positive connected poset I ′ ⊆ I of Dynkin type DynI = En−r;

• list of pairs (ki, ui), where 1 ≤ k1 < k2 < · · · < kr ≤ n are r
different integer indices and ui ∈ RI′ are roots of I ′, i.e., qI′(ui) = 1;

that is, I = I ′(k1, . . . , kr; u1, . . . , ur).
The assumption that qI(x) (17) is an incidence quadratic form of a

poset implies that the roots u1, . . . , ur are pairwise different. Otherwise,
we would have

{0, 1} ∋ 2bI′(ui, uj) = 2bI′(ui, ui) = 2qI′(ui) = 2.
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Since the set RI′ is finite (see [25, Proposition 4.1]), we conclude that
there is a finite number of posets of the form I ′(k1, . . . , kr; u1, . . . , ur) for
any fixed positive connected poset I ′. To finish the proof we note that
the assumption DynI′ ∈ {E6,E7,E8} yields 6 ≤ |I ′| = |DynI′ | ≤ 8 and
the number of posets of fixed size is finite.

Although the proof of Theorem 1 yields a bound on the number of
non-negative connected posets I of Dynkin type DynI ∈ {E6,E7,E8},
this estimate is far from optimal. We know that there exist, up to
isomorphism, exactly 43, 197, and 548 positive connected posets I ′ of
Dynkin type E6,E7 and E8, respectively (see [10, Table 2.15]) and every
such poset has exactly 72, 126, and 240 roots (since |RI′ | = |RDynI′ |, it
follows from [1]). Therefore:

• crkI ≤ 240;

• the total number of all, up to isomorphism, aforementioned posets
I is less than

#I ≤ 43
72∑

r=1

(
72
r

)
P (6 + r, r) + 197

126∑
r=1

(
126
r

)
P (7 + r, r)

+ 548
240∑
r=1

(
240
r

)
P (8 + r, r) < 1.858 × 10486,

where P (n, k) := n!
(n−k)! .

One can obtain a better estimation by a more detailed examination of
the formula (15). By Pos>0

D := {I; DynI = D and crkI > 0} we denote
a set of all, up to isomorphism, connected non-negative posets of Dynkin
type D, that are not positive.
Corollary 2. For the sets Pos>0

En
, where n ∈ {6, 7, 8}, the maximum

corank and cardinality are bounded as follows.

• max({crkI ; I ∈ Pos>0
E6

}) ≤ 10 and |Pos>0
E6

| < 4.93 × 1012;

• max({crkI ; I ∈ Pos>0
E7

}) ≤ 20 and |Pos>0
E7

| < 1.926 × 1027;

• max({crkI ; I ∈ Pos>0
E8

}) ≤ 28 and |Pos>0
E8

| < 8.472 × 1040.

Proof. The proof is computational. By Lemma 1 we know that, up to
isomorphism, every connected non-negative poset I of corank crkI = r
and Dynkin type DynI = En−r has a form

I := I ′(u1, . . . , ur; i1, . . . , ir), (18)
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where I ′ is a positive connected poset with DynI′ = En−r ∈ {E6,E7,E8},
u1, . . . , ur ∈ RI′ , and 1 ≤ i1 < · · · < ir ≤ n. To estimate the maximal
corank and the number of such posets I, it suffices to estimate the number
of posets of the form (18) and the maximal possible value of r. Since

qI(x) = qI′(x̌)+
r∑

i=1
x2

ki
−

r∑
i=1

2bI′(x̌, ui)xki
+

r−1∑
i=1

r∑
j=i+1

2bI′(uj , ui)xki
xkj

by (15), and, on the other hand, qI(x) is an incidence quadratic form
(8), it follows that

ĜI′ · utr
i ∈ {0, −1}n−r and uj · ĜI′ · utr

i ∈ {0, 1}, (19)

where ĜI′ := CI′ + Ctr
I′ (see Definition (7)). Now, our aim is to estimate

the maximal size and the number of sets {u1, . . . , ur} ∈ 2RI′ that agree
with (19).

We proceed as follows: given a topologically sorted poset I ′ we com-
pute its set of roots RI′ ⊆ Z|I′| and we construct the graph GR

I′ = (V, E),
where V = {u ∈ RI′ ; ĜI′ ·utr ∈ {0, −1}|I′|} and there is an edge between
vertices u and v if u · ĜI′ · vtr ∈ {0, 1}. It follows that every set of vec-
tors {u1, . . . , ur} ⊆ RI′ that satisfies the conditions (19) corresponds to
a clique in the graph GR

I′ . It follows that there are at most

#{I; I = I ′(u1, . . . , ur; i1, . . . , ir)} ≤
|V |∑
r=1

|clique(GR
I′ , r)| · P (|I ′| + r, r)

posets of the shape (18), where we denote by clique(G, k) the set of size k
cliques in the graph G. By considering all, up to isomorphism, positive
connected posets of Dynkin type E6, E7, and E8 we obtain the estimates.
Moreover, by computing max({ω(GR

I′ ); I ′ ∈ Pos0
Em

}) for m ∈ {6, 7, 8},
where Pos0

D := {I; DynI = D and crkI = 0} and ω(G) denotes the
clique number of a graph G (i.e., the number of vertices in a maximum
clique in G), we get the bound on the corank.

Although the estimates of Corollary 2 are much better than the ones
discussed earlier, they show that it is problematic to use the construc-
tion I 7→ I(u1, . . . , ur; i1, . . . , ir) to compute all connected non-negative
posets of Dynkin type En. This follows from the fact that for any posi-
tive connected I with DynI = En there exists many admissible sets
{u1, . . . , ur} ∈ 2RI and every such a set yields P (n + r, r) possible quad-
ratic forms. Therefore, we use a different strategy and, in particular,
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show that the estimates of Corollary 2 are off by orders of magnitude
from the real values.

crkI = r\n 6 7 8 9 10 11 # all
crkI = 0 43 197 548 − − − 788
crkI = 1 − 84 470 2102 − − 2656
crkI = 2 − − 40 244 1566 − 1850
crkI = 3 − − − − 2 31 33
# all 43 281 1058 2346 1568 31 5327

Table 1.2: Number of connected non-negative posets I of
Dynkin type En−r and corank crkI = r

Theorem 4. If I is a finite connected non-negative poset of Dynkin
type E6, E7 or E8, then crkI ≤ 3. Moreover, the precise number of non-
negative connected posets (up to isomorphism) with crkI = r and DynI =
En−r is detailed in Table 1.2. In particular, we have the following:

• max({crkI ; I ∈ Pos>0
E6

}) = 2 and |Pos>0
E6

| = 124;

• max({crkI ; I ∈ Pos>0
E7

}) = 3 and |Pos>0
E7

| = 716;

• max({crkI ; I ∈ Pos>0
E8

}) = 3 and |Pos>0
E8

| = 3699.

Proof. The first part of the proof is a computational one. By employing
a slightly modified version of [15, Algorithm 3.1], where we do not limit
calculations to principal posets only, we compute all (up to isomorphism)
connected non-negative posets I with |I| ≤ 12, encoded in the form
of upper-triangular incidence matrices. There are exactly 40047 such
posets. For every I we calculate its

• corank (equal |I| − rank GI);

• (kI
1, . . . , kI

r )-special Z-basis h
(kI

1)
I , . . . , h

(kI
r )

I of Ker qI (by implemen-
ting procedure described in the proof of [27, Proposition 5.1]), and

• Dynkin type DynI ∈ {Am,Dm,E6,E7,E8} (by applying [31, Algo-
rithm 4.2] to the bigraph ∆I(k1,...,kr)).

Next, we select Dynkin type DynI ∈ {E6,E7,E8} posets only. It follows
that there are exactly 167, 913, and 4247 such posets, respectively. In
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particular, there is no such poset I with |I| = 12 (nor with crkI = 4).
Comprehensive summary of computations is given in Table 1.2.

To finish the proof we need to show that there are no other Dynkin
type DynI = E|I|−crkI

connected non-negative posets. Assume, to the
contrary, that J is such a connected non-negative poset and |J | = n > 12.
By Proposition 2(a) there exists an (s1, . . . , sr)-special Z-basis h

(s1)
J , . . . ,

h
(sr)
J of Ker qJ and DynJ(s1,...,sr) = En−r = Em, where m ∈ {6, 7, 8} (see

Definition 3). Consider the subposet J ′ := J (s1,...,st), where t := 12−m. It
is easy to check that vectors ȟ

(s1)
J , . . . , ȟ

(st)
J , where x̌ := x|{1,...,n}\{st+1,...,sr},

constitute a (s1, . . . , st)-special Z-basis of Ker qJ ′ . By construction, we
have |J ′| = 12 and ∆

J(s1,...,sr) = ∆
J ′(s1,...,st) . It follows that DynJ ′ =

DynJ = Em and we get the contradiction that finishes the proof.

We recall that there is a strong connection between non-negative
posets in the sense of the Tits quadratic form (3) and the incidence
quadratic form (8). In particular, one associates with an arbitrary (not
necessarily connected) finite poset T its unique one-peak enlargement
T ∗ := T ⊔ {∗} by adding to T a single maximal element ∗ /∈ T . It is
straightforward to verify that the form q∗

T (x) (3) is non-negative of corank
crk∗

T = r if and only if the form qT ∗(x) (8) is non-negative of corank
crkT ∗ = r, see Proposition 1(b). Here, by corank crk∗

T ≥ 0, we mean the
rank of the free abelian group Ker q∗

T := {v ∈ Zn+1; q∗
T (v) = 0} ⊆ Zn+1.

Consequently, Theorem 4 has the following interpretation in terms of the
Tits quadratic form.

Corollary 3. Let T be a finite poset with q∗
T (x) (3) form non-negative.

If DynT ∗ ∈ {E6,E7,E8}, then crk∗
T ≤ 2. Moreover, the precise number

of non-negative connected posets (up to isomorphism) with crk∗
T = r and

DynT ∗ = En−r is given in Table 1.3.

crkI = r\n 6 7 8 9 10 11 # all
crkI = 0 16 56 121 − − − 193
crkI = 1 − 31 132 422 − − 585
crkI = 2 − − 18 79 329 − 426
# all 16 87 271 501 329 − 1204

Table 1.3: Number of posets T with q∗
T (x) form non-negative

with DynT ∗ = En−r and corank crk∗
T = r



M. Gąsiorek 173

Proof. The corollary follows by the results of Theorem 4, where one has
to consider one-peak posets I = T ∗ only. As an example, we give in
Table 1.4 a full list of all, up to isomorphism, posets T with crk∗

T = 2
and DynT ∗ = E6.

Table 1.4: Posets T with crk∗
T = 2 and DynT ∗ = E6.

Details of the proof are left to the reader. In particular, we note that
every poset I with the incidence quadratic form qI(x) (8) non-negative,
DynI ∈ {E6,E7,E8} and crkI = 3 has at least two maximal elements,
hence is not of the form T ∗.

Now we give a detailed Coxeter spectral analysis of connected non-
negative posets I of Dynkin type DynI ∈ {E6,E7,E8}.

Theorem 5. Assume that I is a finite connected non-negative poset of
Dynkin type DynI ∈ {E6,E7,E8} and n := |I|.

(a) If n = 6, then I is positive (i.e. crkI = 0), coxI(t)= t6+t5−t3+t+1
and, up to isomorphism, I is one of 43 posets presented in [16].

(b) If n = 7, then one of three possibilities hold:

• I is positive (i.e. crkI = 0), coxI(t) = t7+t6−t4−t3+t+1 and,
up to isomorphism, I is one of 197 posets described in [11];

• I is principal (i.e. crkI = 1), coxI(t) = t7+t6−2t4−2t3+t+1
and, up to isomorphism, I is one of 83 posets described in [11];
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• I is principal, coxI(t) = t7−t5−t2+1 and, up to isomorphism,
I has the following shape.

H(I) :

(c) If n = 8, then one of seven possibilities hold:

crkI coxI # I

0 t8 + t7 − t5 − t4 − t3 + t + 1 548

1 t8 + t7 − t5 − 2t4 − t3 + t + 1 463
t8 − t6 − t2 + 1 1
t8 − 2t6 + 2t4 − 2t2 + 1 4
t8 − t5 − t3 + 1 2

2 t8 + t7 + t6 − 2t5 − 2t4 − 2t3 + t2 + t + 1 39
t8 − t6 − t2 + 1 1

In particular, if I is a poset with coxI(t) = t8 − t6 − t2 + 1, then I
is isomorphic to J or J ′, where crkJ = 1, crkJ ′ = 2 and

H(J) : H(J ′) : .

(d) If n = 9, then one of nine possibilities hold:

crkI coxI # I

1 t9 + t8 − t6 − t5 − t4 − t3 + t + 1 2078
t9 − 2t7 − t6 + 2t5 + 2t4 − t3 − 2t2 + 1 11
t9 − t7 − t2 + 1 1
t9 − t7 − t6 + t5 + t4 − t3 − t2 + 1 9
t9 − t5 − t4 + 1 3

2 t9 + t8 − 2t5 − 2t4 + t + 1 236
t9 − 2t7 + t5 + t4 − 2t2 + 1 5
t9 − 3t7 − t6 + 3t5 + 3t4 − t3 − 3t2 + 1 1
t9 − t6 − t3 + 1 2
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In particular, if I is a poset with coxI(t) = t9 − t7 − t2 + 1, then I
has the following shape.

H(I) :

(e) If n = 10, then one of seven possibilities hold:

crkI coxI # I

2 t10 + t9 − t7 − t6 − t4 − t3 + t + 1 1485
t10 − 2t8 − t7 + t6 + 2t5 + t4 − t3 − 2t2 + 1 27
t10 − 2t8 − 2t7 + t6 + 4t5 + t4 − 2t3 − 2t2 + 1 7
t10 − t8 − t2 + 1 16
t10 − t8 − 2t7 + t6 + 2t5 + t4 − 2t3 − t2 + 1 27
t10 − 2t5 + 1 4

3 t10 − 3t8 + 2t6 + 2t4 − 3t2 + 1 2

In particular, if I is a poset with

coxI(t) = t10 − 3t8 + 2t6 + 2t4 − 3t2 + 1,

then crkI = 3 and I is isomorphic to one of the following posets.

H(J) : H(J ′) :

(f) If n = 11, then crkI = 3,

• coxI(t) = t11 − 2t9 − t8 + 2t6 + 2t5 − t3 − 2t2 + 1 and I is, up
to isomorphism, one of 20 posets described in [11];

• coxI(t) = t11 − t9 − 3t8 + 3t6 + 3t5 − 3t3 − t2 + 1 and I is, up
to isomorphism, one of 11 posets described in [11].

Proof. The proof is a computational one. Using standard Computer
Algebra System (e.g. SageMath or Maple) tools we divide the list of
connected non-negative posets I of Dynkin type DynI ∈ {E6,E7,E8}
(obtained in the proof of Theorem 4) up to the Coxeter polynomial. In
particular, there are exactly 19 671 such posets and they split into 29
classes, as described by the theorem (the list is available in [11]).
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As discussed earlier, posets with the Tits quadratic form non-negative
are closely related to the ones with the incidence quadratic form (8) non-
negative, see Proposition 1(b). On the other hand, these two classes are
strikingly different on the level of Coxeter spectral analysis. In particular,
when DynT ∗ ∈ {E6,E7,E8}, there is only one Coxeter class for a given
corank crk∗

T .

Corollary 4. Let T be a finite poset with q∗
T (x) (3) form non-negative. If

DynT ∗ ∈ {E6,E7,E8}, then the corank crk∗
T ≥ 0 determines the Coxeter

polynomial coxT ∗(t) uniquely. Moreover, there exist exactly 9 Coxeter
classes of such posets, as detailed in Table 1.8.

Proof. The proof is a computational one: it suffices to use the arguments
given in the proof of Theorem 5 and Corollary 3. Details are left to the
reader.

n crkT ∗ coxT ∗(t) # I

5 0 t6 + t5 − t3 + t + 1 16
6 0 t7 + t6 − t4 − t3 + t + 1 56

1 t7 + t6 − 2t4 − 2t3 + t + 1 31
7 0 t8 + t7 − t5 − t4 − t3 + t + 1 121

1 t8 + t7 − t5 − 2t4 − t3 + t + 1 132
2 t8 + t7 + t6 − 2t5 − 2t4 − 2t3 + t2 + t + 1 18

8 1 t9 + t8 − t6 − t5 − t4 − t3 + t + 1 422
2 t9 + t8 − 2t5 − 2t4 + t + 1 79

9 2 t10 + t9 − t7 − t6 − t4 − t3 + t + 1 329

Table 1.8: Number of all non-negative posets T , up to the
corank crk∗

T and Coxeter polynomial coxT ∗(t)

Proof of Theorem 2. Our aim is to show that

I ≈Z J ⇔ speccI(t) = speccJ(t)

given non-negative connected posets I and J of Dynkin type DynI =
DynJ ∈ {E6,E7,E8}. Since the equivalence

(crkI , speccI) = (crkJ , speccJ) ⇔ (crkI , coxI) = (crkJ , coxJ)
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is obvious, it suffices to show that I ≈Z J ⇔ (crkI , coxI) = (crkJ , coxJ).
The implication "⇒" is a consequence of the fact that the strong

Gram Z-congruence of matrices implies the equality of ranks and Coxeter
polynomials, see Proposition 3.

The proof of the implication "⇐" is a computational one. First, using
procedures described in the proofs of Lemma 5 and Theorem 4, we gene-
rate the list nnegE of all, up to isomorphism, non-negative connected
posets I of Dynkin type DynI ∈ {E6,E7,E8}, encoded in the form of
incidence matrices. This list is finite (see Theorem 1) and consists of
exactly 5327 elements (see Theorem 4). Next, we divide nnegE into
sublists, up to the corank and Coxeter polynomial, i.e., we calculate the
sublist

nnegEm,r
cpol := {CI ∈ nnegE; |I| = m, crkI = r and coxI = cpol}.

There are exactly 29 such sublists and 24 of them contain more than one
poset. Now, for each of the 24 lists nnegEm,r

cpol with |nnegEm,r
cpol| > 1:

• we select a single matrix CI ∈ nnegEm,r
cpol ⊆ Mm(Z);

• for every remaining matrices CJ ∈ nnegEm,r
cpol\{CI}, using the pro-

cedure described in [10, Section 5], we calculate such a Z-invertible
matrix BJI ∈ Mm(Z) that Btr

JI · CJ · BJI = CI .

The list of all calculated matrices is given in [11].

Conclusion and future work

In the present work, we give a complete description of connected non-
negative posets I of Dynkin type DynI = Em, and we show that there
is only a finite number of such posets. In particular, we prove [13, Con-
jecture 6.1] and show that crkI ≤ 3, i.e., all such posets have a corank
bounded by 3. This makes the case of DynI = Em posets similar to the
DynI = Am case, where the corank is less than or equal to one, see [13].
This result has a direct application to the Dynkin type recognition prob-
lem.

Proposition 4. The Dynkin type DynI ∈ {Am,Dm,E6,E7,E8} of a con-
nected non-negative poset I of size n := |I| and corank crkI = r can
be computed with the following time complexity, depending on the data
structure used to encode the poset.
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(a) O(n3), using the incidence matrix CI ∈ M|I|(Z) (1).

(b) O(n2), using the adjacency matrix AdH(I) ∈ M|I|(Z) of its Hasse
quiver H(I) (see Definition 1).

(c) O(n), using the adjacency list of its Hasse digraph H(I).

(d) O(1), using the adjacency list of its Hasse digraph H(I), sorted by
degrees of vertices.

Proof. Since we are interested in asymptotic complexity, without loss of
generality we may assume that |I| ≥ 12. Hence, in view of Theorem 4, we
get that DynI ∈ {Am,Dm}. Moreover, it follows from [13, Theorem 4.4]
(see also Theorem 3) that exactly one of the following two situations
holds:

• H(I) is a path or a cycle graph, and then DynI = Am;

• DynI = Dm,

where m := n − crkI . Summing up, in order to distinguish between
Dynkin types Am and Dm it suffices to check if all vertices of the Hasse
quiver H(I) have degree at most 2. The time complexity of this operation
depends on the data structure used for poset encoding and is as follows.

(b) In the adjacency matrix case, computing the degree of a vertex
requires O(n) operations and, in the pessimistic case, we have to
check all n vertices, thus we have n · O(n) = O(n2) complexity.

(c) In the pessimistic case one has to check degrees of all n vertices,
each of which has at most two arrows, thus we have n·O(2) = O(n).

(d) Since the vertices are sorted by their degrees, one only has to check
whether the vertex v ∈ I of the largest degree satisfies deg(v) < 3,
which is an O(1) operation.

To finish the proof, we note that in case (a) it suffices to transform the
incidence matrix CI into the adjacency matrix AdH(I), which can be done
in O(n3), and proceed as in (b).

The case of non-negative connected posets I of the Dynkin type Dm

is more complex, as there is no restriction on the poset corank.
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Proposition 5. Let k ≥ 3 be a natural number. The garland Gk, defined
by the Hasse digraph

H(Gk) =

1

2

3

4

5

6

2k−3

2k−2

2k−1

2k

,

is non-negative of Dynkin type DynGk
= Dk+1 and corank crkGk

= k − 1.

Proof. It is straightforward to verify that

qGk
(x) =

(
x1 + 1

2

2k∑
i=3

xi

)2

+
(

x2 + 1
2

2k∑
i=3

xi

)2

+ 1
2

k∑
i=2

(x2i−1 − x2i)2,

hence the garland poset Gk is non-negative. Moreover, integer vectors
h3, h5, . . . , h2k−1 ∈ Z2k, where hi := ei + ei+1 − e1 − e2 form such a basis
of the free abelian group Ker qGk

⊆ Z2k, that hi
i = 1 and hi

j = 0 for
i, j ∈ {3, 5, . . . , 2k − 1} and i ̸= j. Since G(3,5,...,2k−1)

k = 0D∗
k+1 ⋄ A0 is

positive of Dynkin type Dk+1 (see [14, Theorem 5.2]), the thesis follows
from Definition 3.

We do not know a general description of type DynI = Dm non-
negative connected posets, but the experimental results (see [10, 18])
suggest that their number grows exponentially.

Conjecture 1. Let n ≥ 4 be an integer. Up to poset isomorphism, there
exist exactly:

Nneg(n,Dn) =
{

5, n = 4,

(n + 5)2n−4 − 1, n > 4,

positive posets I of the Dynkin type DynI = Dn.

Moreover, the experimental results suggest that the number of Coxe-
ter types depends on the corank in the following way.

Conjecture 2. The number of Coxeter types of DynI = Dm non-negative
connected posets of size n = |I| equals

|CTypescrkI
I |=


1, if crkI = 0,

max(0, n−2 crkI −2), if crkI = 2k + 1,

max(0, n−2 crkI −1 − (crkI mod 2)), if crkI = 4k

max(0, n−2 crkI −1 − (n mod 2)), otherwise.
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Nevertheless, this description does not give any insights into the
structure of Dm type non-negative connected posets.

Open problem 1. Give a structural description of non-negative con-
nected posets of Dynkin type DynI = Dm.
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