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On monoids of monotone partial
transformations of a finite chain whose domains
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ABSTRACT. In this note, we consider the monoid PIM,, of
all partial monotone transformations on a chain with n elements
whose domains and ranges are intervals and its submonoid IM,,
constituted by the full transformations. For both of these monoids,
our aim is to determine their cardinalities and ranks and define
them by means of presentations. We also calculate the number of
nilpotent elements of PIM,,.

Introduction

We begin by defining the monoids that are the focus of this paper. For
a positive integer n, let £, be a chain with n elements, say Q, = {1 <
2 < .-+ < n}. It is usual to denote by PT,, the monoid of all partial
transformations on 2,, (under composition) and by T, the submonoid
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2 ON MONOIDS OF MONOTONE PARTIAL TRANSFORMATIONS

of PT,, of all full transformations on {2,. Notice that, we compose the
transformations from left to right.

A transformation o € PT,, is called order-preserving [order-reversing]
if, for all z,y € Dom(«), z < y implies za < ya [xa = yal, and is called
monotone if « is order-preserving or order-reversing. Clearly, the pro-
duct of two order-preserving transformations or two order-reversing tran-
sformations is an order-preserving transformation and the product of an
order-preserving transformation by an order-reversing transformation, or
vice-versa, is an order-reversing transformation. Moreover, the product
of two monotone transformations is monotone. We denote by P0O,, [0,]
the submonoid of PT,, [T,] of all order-preserving partial [full] transfor-
mations and by PM,, [M,,] the submonoid of PT,, [T,] of all monotone
partial [full] transformations.

A subset I of 2, is called an interval of Q, if for all x,y,z € Q,,
r<y<zandx,z €l imply y € I. We denote by PJO,, the submonoid
of PO, of all order-preserving partial transformations whose domain and
image sets are both intervals of {2, and by JO,, the submonoid O,, of all
order-preserving transformations whose image sets are intervals of €),,.
Next, let us denote by PIM,, the subset of PM,, consisting of all monotone
partial transformations whose domain and image sets are both intervals
of Q,,. It is easy to show that PIM,, is a submonoid of PM,,. Moreover,
let IM,, be the submonoid of PIM,, of all monotone full transformations
whose image sets are intervals of €,,, i.e. IM,, = PM,, N T,,.

Recall that the rank of a finite monoid M, rank(M ), is the minimum
size of a generating set for M, i.e. rank(M)=min{|X| | X C M, (X)=M}.
For a comprehensive background on semigroups and monoids, readers are
referred to the textbook by Howie [14].

It is well-known that T, and PT,, have ranks 3 and 4, respectively.
In [12], Gomes and Howie showed that the ranks of the monoids O,, and
PO,, are n and 2n — 1, respectively. In [8], Fernandes et al. showed that
the ranks of PM,, and M,, are n+1 and [5] + 1, respectively, where [x]
denotes the least integer greater than or equal to a real number z.

In 1962, Aizenshtat [1] gave a monoid presentation for O,, with 2n—2
generators and n? relations. In the same year, Popova [18] gave a monoid
presentation for P0O,, with 3n — 2 generators and %(7n2 —n —4) relations
(see also [4]). In 2005, Fernandes et. al. [7] provided a monoid presentati-
on for PM,, with [2] + n generators and 1(7n? + 2n + 3(1 — (=1)"))
relations and a monoid presentation for M,, with n generators and %(n2 +
n + 2) relations. A significant amount of research (e.g. [3, 10, 11, 13,
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15, 17, 21, 22]) has extensively examined topics closely aligned with the
focus of the present work.

In [9], Fernandes and Paulista considered the monoid JO,. They
showed that JO,, coincides with the monoid of all weak endomorphisms
of a directed path with n vertices. They also showed that the rank of
JO,, is n — 1. Building upon this work, Fernandes [5] gave a monoid
presentation for JO,, with n— 1 generators and %(3n? — Tn+4) relations.
After then, in [2], Ayik et al. showed that the rank of PJO,, is n + 1
and gave a monoid presentation for PJO, with 4n — 4 generators and
5n2 + 3n — 10 relations.

The present paper continues in the spirit of the research program
outlined above. We give presentations for the monoid PIM,,, in terms of
4n — 3 generators and 5n? + 5n — 10 relations, and for the monoid IM,,,
in terms of 2n — 1 generators and %(31@2 + n) relations. Moreover, we
determine the cardinalities and ranks of these two monoids. In addition,
we also characterize and count the nilpotent elements of PIM,,.

We would like to acknowledge the use of computational tools, namely
GAP [20].

1. Combinatorial and algebraic properties

In this section, we collect some combinatorial and algebraic properties of
the monoids PIM,, and IM,,. It is worth recalling that the cardinalities of
the monoids PJO,, and JO,, have been calculated as (n+3)2" —n?—3n—2
in [2, Theorem 3] and (n + 1)2"2 in [9, Theorem 2.6] (see also [5]),
respectively.

Let PIM], ={a € PIM,, |« is order-reversing} and IM], = PIM, NT,,.
Consider the permutation of order two

1 2 .. n
h_<n n—1 - 1)'
Observe that, for each av € PIM], [a € IM] ], it is clear that ah € PIO,
[ah € JO,] and Dom(«) = Dom(ah). Our first result follows.

Theorem 1. For n > 1, |PIM,| = (n + 3)2"! — w and
1TM,| = (n+1)2" ! —n.

Proof. Let us define a mapping ¢ : PIM; — PIO,, by a¢ = ah, for all
a € PIM). Clearly, ¢ is a bijection, whence |PIM] | = |PJO,,|. Moreover,
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since PIM] N PIO,, consists only of constant mappings and there exist

w non-empty intervals of €2, by including the empty transformation

0p, we get |PIM] N PIO, | = % + 1. Hence, from [2, Theorem 3] it
follows that

PIM,,| = 2PIO,| — O g — (4 g)gn+l _ nlidnl+ins10
On the other hand, since ¢ is also a bijection from IM;, into JO,, and
|IM;, N TO,| = n, from [9, Theorem 2.6] it follows that |IM,,| = 2|0, | —
n=m+1)2"1—n. O

Let S be a semigroup with zero 0. An element s € S is called nilpotent
if there exists a positive integer k such that s* = 0. Let us denote by
N(S) the set of all nilpotent elements of S. Observe that, N(S) might
not be a subsemigroup of S.

Obviously, 0,, € PIM,, and so PIM,, is a semigroup with zero 0,. In
order to find the cardinality of N (PIM,,), we begin by providing a charac-
terization of the nilpotent elements of PIM,, which belong to PIM .

Lemma 1. Let o € PIM],. Then, « is nilpotent if and only if Im(a) N
Dom(a) = 0.

Proof. First, suppose that Im(a) N Dom(a) # 0. Take i € Im(a) N
Dom(a) and let k& € Q,, be such that kae = i. If i < k, then [i,k] C
Dom(«a) and i = ka < ia, whence [i, k]a = [i,ia] and so ia < k, which
implies that i € Dom(a) N Im(cr). Similarly, if k£ < ¢, we can show that
i € Dom(a)NIm(a). It follows by iteration that ia™ € Dom(a)NIm(a),
for all m € N. Hence, Im(a) N Dom(a) # 0 implies o™ # 0, for all
m € N, i.e. « is not nilpotent.

Conversely, if Im(a) N Dom(a) = (), then Dom(a?) = 0, i.e. a® = 0,,
and so « is nilpotent, as required. O

Now, remember we proved in [2, Proposition 4] that |N(PJO,)| =
27+2 _ n? — 3n — 3. Therefore, we can now establish our next result.

Proposition 1. Forn > 1,

n—2n—r+1j-—1
IN@ING)| =272 —n® =30 =342 3 3. X (= k) (o).
r=2 )= =
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Proof. Let a € PIM; be a non-null nilpotent element of PIM,,. Then,
Dom(a) =[j,j+r—1],forsome 1 <r<n—-land 1 <j<n—r+1,
and it is not difficult to see that there are

7j—1 n—j—r+1

YU-RGI)+ X (—i-r—k+2)(D)

k=1 k=1
possibilities for transformations a with such domain. Since |Im(«a)| =1
implies a € N(PJO,,), we conclude that

N(PIM) \ N(PIO,.)
n—2n—r+1 [j—1 1 n—j—r+1 1
= > X [Z(j—k)(Z:l)Jr Y (n—j-r—k+2)(;7)
r=2 j=1 |k=2 =2
n—2n—r+1j—1

=23 > (= R)(GI)-
r=2 j=1 k=2
Therefore, we obtain
|IN(PIM,,)| = |[N(PIO,)| + |N(PIM) \ N(PIO,)|
n—2n—r+1j-1
= 272 _n? —3n-3+2% SG-k(G),
r=2 j=1 k=2
as claimed. O

n | |IM,] | [PIM,| | |N(PIM,)|

1 1 2 1

2 4 9 3

3 13 37 11

4 36 123 35

5 91 352 95

6 | 218 913 231

7 | 505 2219 521

8 | 1144 5163 1117

9 | 2551 | 11662 2315

10 | 5622 | 25809 4693

11 | 12277 | 56305 9395

12 | 26612 | 121579 18523
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Notice that, for n > 2, it is easy to verify that N(PIM,) is not a
semigroup.

Next, we will determine the ranks of the monoids JM,, and PIM,,.
First, we consider the monoid JM,,. Forn >3 and 1 <i<n—1, let

(1 i il
i = 1 - 4 i |
and
y_ (1 i il o
2 - i+l i+l e om )T
It is shown in [9, Proposition 3.3] that {a1,...,an—2,b,—1} is a generating

set of JO, with minimum size. Notice that, JM; = T7 and it is routine
matter to check that My = ((12),(1%)). Hence, clearly, IM; has rank
0 and JMs has rank 2. Let us consider n > 3 and define

o — 1 - m—t—1 n—4i n—i+1 n—i+2 -+ n
\n-1 - 1+ 1 { i t—1 e 1)

for 1 <1 < |5, where || denotes the greatest integer less than or equal
to a real number z.

Lemma 2. Let n > 3. Then, {cl,...,cL%J,h} is a generating set of
IM,.

Proof. Since a = (ah)h and ah € JO,, for all a € IM], we conclude
that IM,, is generated by JO,, U {h}. On the other hand, it is a routine

matter to check that
bn-1=c1h, a;=he; and ap_;=cicr, for1<i<|[g].

Hence, IM,, = (a1,...,apn—2,bp—1,h) C <cl,...,cL%J,h>, and so the set
{c1,..., clay, h} generates IM,,, as required. O

In order to prove that {ci,...,c|n|, h} is a generating set of IM,, with
minimum size, let D, = {a € IM,, | [Im(a)| =7}, for r € {n —1,n}, and
let 7; be the equivalence on €2, defined by the partition {{1},...,{i—1},
{i,i+1},{i+2},...,{n}}, for 1 < i < n—1. It is clear that D, =
{1n,h} = (h), where 1,, denotes the identity transformation on €,. On
the other hand, it is easy to check that D, _1 = {a;, hai,a;h, ha;h | 1 <
i <n—1} and, for 1 <i < n—1, we have Ker(a;) = Ker(ha;h) = m; and
Ker(ha;) = Ker(a;h) = mp—;.
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Theorem 2. Letn > 3. Then, rank(IM,,) = |5 + 1.

Proof. Let U be any generating set of JIM,,. It is clear that h € U
and U N Dy, # 0, since (h) = D,. Let 1 < i < |5]. Then, there
exist a1,...,a4 € U such that a; = a1---a4. If £t = 1, then a; € U
and Ker(a;) = ;. Suppose that t > 2. Since h? = 1,, we can also
suppose that a3 # h or ag # h. If ay # h, then a3 € D,_1 and
Ker(ay) C Ker(a;) = m;, whence Ker(a;) = m;. On the other hand,
if a1 = h, then as # h and ha; = ag--- a4, whence as € D,,_1 and
Ker(ag) C Ker(ha;) = m,—i, and so Ker(ag) = m,—;. Therefore, clearly,
U contains at least | 5 | distinct elements of D,,_1, whence |U| > [ 5] +1,
and so, by Lemma 2, we get rank(IM,,) = | 5| + 1, as required. O

Now, we consider the monoid PIM,,. Notice that, PIM; = PT;
and so PIM; has rank 1. On the other hand, it is easy to check that
{(1),(12),(32)} is a generating set of PIMy with minimum size and
so PIMs has rank 3. For n > 3 and 1 < i < n — 1, define the following
elements of PIM,,:

(1 (i1l - om
6i_<1 z> and f2+1_<i+1 n>

Recall that, we have shown that {ai,...,an—2,bp—1,€n_1, fo} is a mini-
mal generating set of PJO,, (see [2, Theorem 11}).

Lemma 3. Let n > 3. Then, {ci,.. .,CL%J,en,l,h} is a generating set
of PIM,,.

Proof. Let a € PIM;. Then, o = (ah)h and ah € PJO,. This al-
lows us to conclude that PIM,, is generated by PJIO, U {h} and so
{a1,...,an—2,bp—1,€n—1, fo,h} also generates PIM,,. Since the trans-
formations ai,...,an_2,b,_1 belong to <cl,...,cL%J,h>, by Lemma 2,
and fQ == henflh, it follows that (.PjMn == <CL1, ey, p—9, bnfl, €n—1, h> -
<cl,...,cL%J,en_1,h) and so {cl,...,cL%J,en_l,h} generates PIM,,, as

required. O
Theorem 3. Let n > 3. Then, rank(PIM,) = | 5] + 2.

Proof. Let V be any generating set of PIM,,. Clearly, as for IM,,, we
must have h € V. Let 1 <14 < |[§]. Then, there exist ay,...,ay € V
such that a; = aq - -- 4. Since Dom(a;) = Dom(a;) = €, and, if t > 2,
Dom(ay) = Dom(ha;) = €,, the same reasoning as in the proof of
Theorem 2 allows us to deduce that V' also contains at least |4 | distinct
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elements of D,,_1. On the other hand, V must contain at least a non-full
transformation, whence |V| > |5 ]| + 2, and so, by Lemma 3, we have
rank(PIM,,) = | 5] + 2, as stated. O

2. Presentations

We begin this section by recalling some notions on presentations. For a
set A, let A* denote the free monoid on A consisting of all finite words
over A. The empty word is denoted by 1. A monoid presentation is
an ordered pair (A | R), where A is an alphabet and R is a subset of
A* x A*. Each element (u,v) of R is called a (defining) relation, and
it is usually written by v = v. A monoid M is said to be defined by a
presentation (A | R) if M is isomorphic to A*/ ~g, where ~p denotes
the congruence on A* generated by R, i.e. ~g is the smallest congruence
on A* containing R. Let X be a generating set of a monoid M and let
¢ : A — M be an injective mapping such that A¢p = X. If p: A* > M
is the (unique) homomorphism that extends ¢ to A*, then we say that X
satisfy a relation u = v of A* if up = vp. Usually, if there is no danger of
ambiguity, we represent the set of generators of M and the alphabet by
the same symbol, as well as their elements, thus considering the mapping
¢ : A — M such that = — z, for all z € A. For more details, see [16]
or [19].

Next, we describe the process established in [6] to obtain a presenta-
tion for a finite monoid T' given a presentation for a certain submonoid
of T'. This method will be applied to obtain presentations for JM,, and
PIM,,.

Let T be a (finite) monoid with identity 1, let M be a submonoid of
T and let y be an element of T such that y? = 1. Let us suppose that T
is generated by M and y. Let X = {x1,..., 2%} (k € N) be a generating
set of M and (X | R) a presentation for M. Suppose there exists a set
of canonical forms W for (X | R), i.e. a transversal for the congruence
~pr of X*, two subsets U and V of W and a word ug € X* such that
W =UUV and uy is a factor of each word in U. Let Y = X U{y} (notice
that Y generates T') and suppose there exist words vg,v1,...,v € X*
such that the following relations over the alphabet Y are satisfied by the
generating set Y of T

(Ny) yz; = vy, for all 1 <i < k;

(N2) uoy = vo.
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Observe that the relation (over the alphabet Y)
(No) y? =1
is also satisfied (by the generating set Y of T'), by hypothesis. Let
R=RUNoUN;UNy and W=WU{wy|weV}CY™
Then, we have the following result.

Theorem 4 ([6, Theorem 2.4]). Under the previous conditions, if W
contains the empty word, then W is a set of canonical forms for the
presentation (Y | R). Moreover, if |[W| < |T|, then the monoid T is
defined by the presentation (Y | R).

Throughout this section we consider n > 2.

Let A = {a1,...,ap—1} and B = {by,...,by—1}. Then, AUB is a
set of generators of JO,,. Let us consider a presentation (AU B | R)
for JO,, on these generators; for instance, the presentation established
by Fernandes in [5, Theorem 4.8]. Let ¢ : (AU B)* — JO, be the
surjective homomorphism extending the mapping AU B — JO,,, a; — a;
and b; — b;, for 1 < i < n—1. Let W be a set of canonical forms for

(AUB | R) and let
V={weW| |Im(wy)| > 2}.

Take ug = a?*l. Then, ugp = (17 %) and so, clearly, (uvow)p = wep, for
all we W\ V. Let

U={upw|weW\V}

Hence, U UV is also a set of canonical forms for (AU B | R) and wy is a
factor of each word in U. Notice that V must contain the empty word.

Let C = AU BU{h}. Then, C is a generating set of IM,,. Let us
consider the following relations over the alphabet C"

(No) h? = 1;
(Nl) hai = bn_ih, for 1 < 7 g n — 1;

(No) a}th=b""1.
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It is a routine matter to check that all relations from Ny U N; U Ny are
satisfied by the generating set C' of IM,,. Let

R=RUNyUN;UNy; and W=UUVU{wh|weV}CC"

Notice that, clearly, |W| = 2|W|—|U| = 2|J0,,| —n = |IM,|. Observe
also that, for 1 <¢ < n — 1, we have

hbz ~ Ng h(blh)h ~ Ny h(han,l)h ~ No anﬂ-h, (1)

whence hb; ~x a,—;h and so, by Theorem 4 and [5, Theorem 4.8], we
are able to immediately conclude the following.

Theorem 5. The monoid IM,, is defined by the presentation (C'| R) on
2n — 1 generators and 3(3n? +n) relations.

Next, in a similar way, we will get a presentation for PJO,,.

Let E = {e1,...,en—1} and F = {fo,..., fn}. Then, AUBUEUF
is a set of generators of PJO,. For instance, consider the presentation
(AUBUEUF | R') for PJO,, on these generators established by Ayik et
al. in [2, Theorem 31]. Let ¢ : (AUBUEUF)* — PJO,, be the surjective
homomorphism that extends the mapping AUBUEUF — PJO,,, a; — aj;,
bi — b;, e; — e; and fiy1 — fir1, for 1 <i<n—1. Let W be a set of
canonical forms for (AUBUEUF | R') and let

V' ={we W' | |Im(wy)| > 2}.

Notice that V' must also contain the empty word. For 1 < i < n,
0<j<n—iand1<k<n,letw ;i€ W be such that

P it
wivﬂ'»’fw_<k I A )

Let also wg € W' be such that wgy = 0,,. Observe that
WAV ={w; j, |1<i<n0<j<n—1i,1<k<n}U{w}

Since w; jx¥ = (wij1uowior)y, for 1 <i < n, 0 < j < n—1and
1 <k <n, and (upwo)yp = worp, with

U ={w;jiuowior | 1 <i<n,0<j<n—14,1<k<n}U{uwo},
we get that U'UV” is also a set of canonical forms for (AUBUEUF | R')
and ug is a factor of each word in U’.

Now, let D = AUBUE U F U {h}. Then, D is a generating set of
PIM,,. Consider the following relations over the alphabet D:
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(N7) he; = fn—it1h, for 1 <i<n—1.

We can routinely prove that all relations from N are satisfied by the
generating set D of PIM,, and so, by a previous observation, all relations
from Ny U N1 U N{ U Ny are satisfied by the generating set D of PIM,,.
Let

R=RUNyUN,UN|UN; and W =U'UV'U{wh|weV'} C D*.

Since [W| = 2[W’| — |U’| = 2|PJO,| — LE2%° _ 1 — |PIM,| and, in a
similar way to (1), we get hf; ~p en—it1h, for 2 < i < n, then we have all
the conditions guaranteed to, in view of Theorem 4 and [2, Theorem 31],
conclude that:

Theorem 6. The monoid PIM,, is defined by the presentation (D | R)
on 4n — 3 generators and 5n® + 5n — 10 relations.
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