On algebras that are sums of two subalgebras Marek Kępczyk

Communicated by A. Petravchuk

ABSTRACT. We study an associative algebra A over an arbitrary field K that is a sum of two subalgebras B and C (i.e. A = B + C). Let \mathcal{M} be the class of algebras such that $B, C \in \mathcal{M}$ implies $A \in \mathcal{M}$. We prove, under some natural additional assumptions on \mathcal{M} , that if B and C have ideals of finite codimension from \mathcal{M} , then A has an ideal of finite codimension from \mathcal{M} , too. In particular we show that if B and C have left T-nilpotent ideals (or nil PI ideals) of finite codimension, then A has a left T-nilpotent ideal (or nil PI ideal) of finite codimension.

Introduction

Let R be an associative ring, and let R_1 and R_2 be its subrings such that $R = R_1 + R_2$, i.e., for every $r \in R$ there exist $r_1 \in R_1$ and $r_2 \in R_2$ such that $r = r_1 + r_2$. The question whether, for a given class of rings \mathcal{M} , if $R_1, R_2 \in \mathcal{M}$, then $R \in \mathcal{M}$, was studied in many papers (cf. [2, 3, 4, 5, 6, 7, 12, 13, 14]). It was proved that the answer is positive for the following classes: nilpotent rings (in [5]), nil rings of bounded index (in [14]), nil PI rings (i.e. rings with polynomial identities) and PI rings (in [8]), as well as left T-nilpotent rings (in [1]).

The research of Marek Kępczyk was supported by Bialystok University of Technology Grant WZ/WI-IIT/2/2023 funded from the resources for research by the Ministry of Science and Higher Education of Poland.

²⁰²⁰ Mathematics Subject Classification: 16D25, 16R10, 16N40.

Key words and phrases: rings with polynomial identities, left T-nilpotent rings, prime rings.

In [9, 10, 11, 16, 17] certain generalizations of some results from the papers cited above were obtained for algebras over an arbitrary field. Let \mathcal{H} be a particular class of algebras. We say that an algebra \mathcal{H} is almost in \mathcal{H} (or is almost nilpotent, almost nil of bounded index, etc.) if it has an ideal of finite codimension belonging to \mathcal{H} . Assume that A is a K-algebra and B, C are its subalgebras such that A = B + C. In the article [11], inspired by Petravchuk's work [17], it was shown that if B and C are almost nilpotent (almost nil of bounded index, respectively), then so is A. In the present work, motivated by methods and results from [11, 17], we approach the issue more generally. Let \mathcal{M} be a class of algebras such that if $B, C \in \mathcal{M}$, then $A \in \mathcal{M}$. Moreover, let \mathcal{M} be homomorphically closed, hereditary, closed under extensions, and contain a class of all nilpotent algebras. We prove that if B and C are almost in \mathcal{M} , then so is A. Hence, as a conclusion we obtain that if B and C are almost left T-nilpotent, then so is A. Moreover, we show that if B and C are almost nil PI, then A is almost nil PI, too.

1. The main result

We consider associative algebras over a fixed field K, which are not assumed to have an identity. For an algebra H, the symbol H^* denotes the algebra H with an identity adjoined. If I is an ideal (left ideal, right ideal) of a ring (of an algebra) A, we write $I \triangleleft A$ ($I \triangleleft_l A$, $I \triangleleft_r A$).

Let R be an algebra and R_1 , R_2 its subalgebras such that $R = R_1 + R_2$. Moreover, let \mathcal{N} be the class of all nilpotent algebras.

Throughout the paper, by \mathcal{M} we denote an arbitrary homomorphically closed class of algebras that satisfies the following conditions:

- 1) $\mathcal{N} \subseteq \mathcal{M}$;
- 2) \mathcal{M} is closed under extensions, i.e., if $I \triangleleft H$ and $I, H/I \in \mathcal{M}$, then $H \in \mathcal{M}$;
- 3) \mathcal{M} is hereditary, i.e., if $I \triangleleft H$ and $H \in \mathcal{M}$, then $I \in \mathcal{M}$;
- 4) \mathcal{M} satisfies the condition that if $R_1, R_2 \in \mathcal{M}$, then $R \in \mathcal{M}$.

All of the homomorphically closed classes of algebras known so far that satisfy condition 4) also satisfy conditions 1), 2) and 3).

By \mathcal{F} , \mathcal{B} , \mathcal{P} , and \mathcal{T} we denote the class of all finite dimensional algebras, nil of bounded index algebras, nil PI-algebras and left T-nilpotent algebras, respectively. As we mentioned in the introduction, \mathcal{N} , \mathcal{B} , \mathcal{P} and \mathcal{T}

are examples of the class \mathcal{M} . Let $\mathcal{MF} = \{A \mid \exists I \lhd A, I \in \mathcal{M}, A/I \in \mathcal{F}\}$. Obviously, $\mathcal{M} \subseteq \mathcal{MF}$ and $\mathcal{F} \subseteq \mathcal{MF}$.

Throughout the paper, A is an algebra over K, and B and C are subalgebras of A such that A = B + C. Moreover, let $B_0 \triangleleft B$ and $C_0 \triangleleft C$, where $\dim_K B/B_0 < \infty$ and $\dim_K C/C_0 < \infty$.

Using the above notation, we can formulate the main result of this article as follows:

Theorem 1. If $B \in \mathcal{MF}$ and $C \in \mathcal{MF}$, then $A \in \mathcal{MF}$.

In particular, the above claim for $\mathcal{M} = \mathcal{N}$ is proven in [11, Theorem 1], and for $\mathcal{M} = \mathcal{B}$ in [11, Theorem 2]. In the present article, using Theorem 1, [8, Corollary 6] and [1, Theorem 2.9], we additionally obtain the following

Corollary 1. If $B \in \mathcal{TF}$ and $C \in \mathcal{TF}$, then $A \in \mathcal{TF}$.

Corollary 2. If $B \in \mathcal{PF}$ and $C \in \mathcal{PF}$, then $A \in \mathcal{PF}$.

2. Preliminary results

We shall need the following

Lemma 1 ([11, Lemma 13]). Let R be a K-algebra and let S, T be finite dimensional K-subspaces of R. If M and P are K - subspaces of R such that $\dim(SMT+P)/P < \infty$, then $\dim M/N < \infty$, where $N = \{v \in M | SvT \subseteq P\}$.

We will also need the following result of Mekey [15, Theorem]. A simple proof of this result, based on Lemma 1, can be found in [10, Lemma 5].

Lemma 2 ([15]). Let H be an algebra over an arbitrary field, and P a subalgebra of A such that $\dim H/P < \infty$. Then P contains an ideal I of H such that $\dim H/I < \infty$.

The following modification of Petravchuk's Lemma 7 from [17] (cf. also [18]) will be very useful for further consideration. A simple proof can be found in [11, Lemma 5].

Lemma 3. Let P_1 and P_2 be subalgebras of an algebra H, and let I be an ideal of H such that $I \subseteq P_1 + P_2$. Then there exist subalgebras $Q_1 \subseteq P_1$ and $Q_2 \subseteq P_2$ of H such that $Q_1 + Q_2$ is subalgebra of H and $Q_2 \subseteq P_2$ and $Q_3 \subseteq P_3$ of $Q_3 \subseteq P_3$ is subalgebra of $Q_3 \subseteq Q_3$.

Now we are ready to obtain an extension of [17, Proposition 1].

Proposition 1. For the class MF the following statements hold:

- (i) every subalgebra and every quotient algebra of an algebra from \mathcal{MF} belongs to \mathcal{MF} ;
- (ii) if $P, Q \in \mathcal{MF}$, then the direct product $P \times Q$ belongs to \mathcal{MF} ;
- (iii) if $H \in \mathcal{M}$, $I \triangleleft H$, $H/I \in \mathcal{MF}$ and $I \in \mathcal{MF}$, then $H \in \mathcal{MF}$.

Proof. In the case of the statements (i) and (ii), the proof is obvious. Now we prove (iii). Let $I \triangleleft H$, $H/I \in \mathcal{MF}$ and $I \in \mathcal{MF}$. Hence there exists an ideal J of I such that $J \in \mathcal{M}$ and $I/J \in \mathcal{F}$. Let J_H be an ideal of H generated by J. It is easy to see that since $J \triangleleft I \triangleleft H$, $(J_H)^3 \subseteq J$. Because the class \mathcal{M} is closed under extensions, hereditary and $\mathcal{N} \subseteq \mathcal{M}$, we have $J_H \in \mathcal{M}$. Clearly, we can assume that $J_H = 0$, which implies $I \in \mathcal{F}$. Let $P/I \in \mathcal{M}$ be an ideal of H/I such that $H/P \in \mathcal{F}$. Consider $G = r_P(I)$, the right annihilator of I in P. Obviously $G \triangleleft H$. Since $I \in \mathcal{F}$, we have $S/G \in \mathcal{F}$, so $H/G \in \mathcal{F}$. Combining $(G \cap I)^2 = 0$ with $G/(G \cap I) \approx (G+I)/I \in \mathcal{M}$, we infer that $G \in \mathcal{M}$. Hence $H \in \mathcal{MF}$, which ends the proof.

Let us extend the definition introduced by Petravchuk in [17, Definition 2] to the class \mathcal{M} .

Definition 1. An algebra A = B + C over an arbitrary field K is called an \mathcal{M} -counter-example, if A satisfies the following conditions:

- (1) $A \notin \mathcal{MF}$;
- (2) the subalgebras B and C have ideals $B_0 \triangleleft B$ and $C_0 \triangleleft C$ such that $B_0, C_0 \in \mathcal{M}$ and the number $\dim A/(B_0 + C_0)$ is the smallest possible;
- (3) the algebra A does not have any nonzero ideal lying in the K-sub-space $B_0 + C_0$ from condition (2).

Remark 1. Suppose that A = B + C is an algebra satisfy conditions (1) and (2) from Definition 1. We show that a certain homomorphic image of A is an \mathcal{M} -counter-example. Indeed, let T be the sum of all ideals of A that are contained in $B_0 + C_0$. By Lemma 3, $T \subseteq Q_1 + Q_2$, where $Q = Q_1 + Q_2$ is a subalgebra of A and $Q_1, Q_2 \in \mathcal{M}$. Thus $Q \in \mathcal{M}$ and

consequently $T \in \mathcal{M}$. Additionally from Proposition 1, $A/T \notin \mathcal{MF}$. Clearly A/T = (B+T)/T + (C+T)/T. Now it is easy to see that A/T is an \mathcal{M} -counter-example.

Lemma 4. Let A be an \mathcal{M} -counter-example. Then

- (i) for every $0 \neq I \triangleleft A$, $A/I \in \mathcal{MF}$;
- (ii) the algebra A has no nonzero ideal from \mathcal{MF} ;
- (iii) A is a prime algebra.

Proof. Let A be an \mathcal{M} -counter-example and $0 \neq I \lhd A$. By Definition 1, $I \nsubseteq B_0 + C_0$. Denote $\overline{A} = A/I$, $\overline{B} = (B+I)/I$, $\overline{C} = (C+I)/I$. Moreover $\overline{B_0} = (B_0 + I)/I$ and $\overline{C_0} = (C_0 + I)/I$. Clearly $\overline{A} = \overline{B} + \overline{C}$. By Definition 1(i), $\overline{B}, \overline{C} \in \mathcal{MR}$. Additionally dim $\overline{A}/(\overline{B_0} + \overline{C_0}) < \dim A/(B_0 + C_0)$. So $\overline{A} \in \mathcal{MF}$, which gives (i).

By (i) and Proposition 1, (ii) becomes obvious.

Let us prove statement (iii). Suppose, contrary to our claim, that A is not a prime algebra. Hence there exist nonzero ideals I and J of A such that IJ = 0. Since $(I \cap J)^2 = 0$, part (ii) yields $I \cap J = 0$. Hence A can be embedded into the product $A/I \times A/J$. By statements (i) and (ii) of Lemma 3, we obtain that $A \in \mathcal{MF}$, which is a contradiction. \square

3. Proof of Theorem 1

Proof of Theorem 1: Suppose the assertion of the theorem is false. It follows that there exists an \mathcal{M} -counter-example, and therefore we can assume that A is an \mathcal{M} -counter-example. Let S, T be arbitrary finite dimensional K-subspaces of B^* . Clearly, $N = \{v \in A \mid SvT \subseteq B_0 + C_0\} \neq 0$ since $0 \neq B_0 \subseteq N$. Lemma 1 implies that $\dim A/N < \infty$, so by using Lemma 2, we have that N contains an ideal $I_B(S,T)$ of A such that $\dim A/I_B(S,T) < \infty$. Consider $G_B(S,T) = B + I_B(S,T)$. Clearly, $G_B(S,T)$ is a subalgebra of A. Moreover

$$G_B(S,T) = G_B(S,T) \cap A = G_B(S,T) \cap (B+C),$$

so the modularity of the lattice of subgroups of the group A^+ implies $G_B(S,T)=B+C\cap G_B(S,T)$. Note that $G_B(S,T)\cap C_0\lhd C$, so $C_0\cap G_B(S,T)\in \mathcal{M}$. If $\dim G_B(S,T)/(A_0+C_0\cap G_B(S,T))<\dim A/(A_0+C_0)$, then by Definition 1 and Remark 1, we obtain that $G_B(S,T)\in \mathcal{M}$

and consequently $I_B(S,T) \in \mathcal{M}$ which leads to a contradiction with Lemma 4(ii). Hence dim $G_B(S,T)/(A_0+C_0\cap G_B(S,T))=\dim A/(A_0+C_0)$.

Let $Z = \{e_1, e_2, \ldots, e_n\}$ be a basis of the K-linear space $A/(B_0 + C_0)$. We can assume that $Z \subseteq A$. Since $\dim G_B(S,T)/(A_0 + G_B(S,T) \cap C_0)$ = $\dim A/(A_0 + C_0)$, it follows that $Z \subseteq G_B(S,T)$. Analogously we can define a subalgebra $G_C(S,T) = C + I_C(S,T)$ of A for arbitrary finite dimensional K-subspaces S,T of C^* and some ideal $I_C(S,T) \triangleleft A$. Similarly we obtain that $Z \subseteq G_C(S,T)$. Let $\mathcal B$ and $\mathcal C$ be the sets of all finite dimensional K-subspaces of B^* and C^* , respectively. Consider

$$G = \bigcap_{S,T \in \mathcal{B}} G_B(S,T) \cap \bigcap_{S,T \in \mathcal{C}} G_C(S,T).$$

Now, it is not hard to check that $AGA \subseteq B_0 + C_0$. Moreover $0 \neq Z \subseteq G$. But $AGA \triangleleft A$. Using Definition 1(3), we have AGA = 0. By Lemma 4(*iii*), A is a prime algebra, so GA = 0 and consequently G = 0, a contradiction.

References

- [1] Andruszkiewicz, R.R., Kępczyk, M.: On left T-nilpotent rings. Results Math. **79**(4), 157 (2024). https://doi.org/10.1007/s00025-024-02187-3
- Bahturin, Yu., Giambruno, A.: Identities of sums of commutative subalgebras. Rend. Circ. Mat. Palermo 43, 250-258 (1994). https://doi.org/10.1007/BF028 44841
- [3] Beidar, K.I., Mikhalev, A.V.: Generalized polynomial identities and rings which are sums of two subrings. Algebr. Logic **34**, 1–5 (1995). https://doi.org/10.1007/BF00750549
- [4] Ferrero, M., Puczyłowski, E.R.: On rings which are sums of two subrings. Arch. Math. 53, 4–10 (1989). https://doi.org/10.1007/BF01194866
- Kegel, O.H.: Zur Nilpotenz gewisser assoziativer Ringe. Math. Ann. 149, 258–260 (1963). https://doi.org/10.1007/BF01470877
- [6] Kelarev, A.V.: A sum of two locally nilpotent rings may be not nil. Arch. Math. 60, 431–435 (1993). https://doi.org/10.1007/BF01202307
- Kępczyk, M.: Rings which are sums of PI subrings. J. Algebra Appl. 19(8), 2050157 (2020). https://doi.org/10.1142/S0219498820501571
- [8] Kępczyk, M.: A ring which is a sum of two PI subrings is always a PI ring. Isr.
 J. Math. 221(1), 481–487 (2017). https://doi.org/10.1007/s11856-017-1554-3
- [9] Kępczyk, M.: A note on algebras which are sums of two subalgebras. Canad. Math. Bull. 59(2), 340–345 (2016). https://doi.org/10.4153/CMB-2015-082-6
- [10] Kępczyk, M.: Note on algebras which are sums of two PI subalgebras. Algebra Appl. 14(10), 1550149 (2015). https://doi.org/10.1142/S0219498815501492

- [11] Kępczyk, M.: On algebras that are sums of two subalgebras satisfying certain polynomial identities. Publ. Math. Debrecen 72(3-4), 257-267 (2008). https:// doi.org/10.5486/PMD.2008.3765
- [12] Kępczyk, M., Puczyłowski, E.R.: Rings which are sums of two subrings satisfying polynomial identities. Comm. Algebra 29(5), 2059–2065 (2001). https://doi.org/10.1081/AGB-100002168
- [13] Kępczyk, M., Puczyłowski, E.R.: Rings which are sums of two subrings. J. Pure Appl. Algebra 133(1-2), 151-162 (1998). https://doi.org/10.1016/S0022-4049(97)00191-6
- [14] Kępczyk, M., Puczyłowski, E.R.: On radicals of rings which are sums of two subrings. Arch. Math. 66, 8–12 (1996). https://doi.org/10.1007/BF01323977
- [15] Mekey, A.: On subalgebras of finite codimension. Stud. Sci. Math. Hung. 27, 119–123 (1992).
- [16] Petravchuk, A.: On the sum of an almost abelian Lie algebra and a Lie algebra that is finite-dimensional over its center. Ukr. Math. J. 51(5), 707–715 (1999). https://doi.org/10.1007/BF02591706
- [17] Petravchuk, A.: On associative algebras which are sum of two almost commutative subalgebras. Publ. Math. Debrecen 53(1–2), 191–206 (1998). https://doi.org/10.5486/PMD.1998.1949
- [18] Puczyłowski, E.R.: Some results and questions on radicals of rings which are sums of two subrings. In: Rizvi, S.T., Zaidi, S.M.A. (eds) Trends in theory of rings and modules, pp. 125–138 (2005).

CONTACT INFORMATION

M. Kępczyk

Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15–351 Białystok, Poland E-Mail: m.kepczyk@pb.edu.pl

Received by the editors: 07.04.2025 and in final form 29.07.2025.