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Abstract. The article is devoted to a two-symbol system of en-
coding for real numbers with two bases of different signs g0 ∈ (0; 1

2 ]
and g1 ≡ g0−1, as well as its applications in metric number theory
and the metric theory of functions. We prove that any natural num-
ber a can be represented as

a = 2n +
n∑

k=1

[(−1)1+σkak2
n−k] ≡ (1a1 . . . an)G,

where ak ∈ {0; 1} and σk = a1 + . . . + ak−1, and there exist exac-
tly two such representations. Any number x ∈ (0; g0] can be rep-
resented as

δα1
+

∞∑
k=2

(δαk

k−1∏
j=1

gαj
) ≡ ∆G2

α1α2...αk...
, δαk

= αkg1−αk
.

Most numbers have a unique G2-representation, while a countable
set has exactly two representations: ∆G2

c1...cm01(0) = ∆G2

c1...cm11(0).

For g0 = 1
2 , any number x in the interval [0; 1] has the expansion

x = 1
2α0 +

∞∑
k=1

αk(−1)1+σk

2k
≡ ∆α0α1...αn....
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Introduction

Today, exact sciences confidently operate with both finite and infinite
sets and data arrays. The ideas of coordinate representation and enco-
ding are effectively applied. As a result, powerful families of mathema-
tical objects are described using a small number of basis (reference) ob-
jects and relations. Meaningful information about dependencies and cor-
respondences takes a digital form, encoded by codes: sets, matrices, and
sequences of elements of alphabet, which can be finite or infinite, constant
or variable [11].

Traditionally, two-symbol systems of encoding of information use the
alphabet A = {0, 1}. So far, they remain unmatched in applications,
although three-symbol systems are more efficient in some sense. Two-
symbol systems deserve a special attention, particularly due to the mini-
mality of their alphabet. In the sequel, we will focus on the encoding of
real numbers.

An encoding of real numbers from the set D using the alphabet
A is defined as a surjective mapping (onto mapping) from the space
L = A × A × . . . of sequences of elements of the alphabet A onto the
set D. Traditionally, the binary numeral system is the simplest two-
symbol encoding of numbers. Its metric counterpart is the negabinary
numeral system [6], a system with a negative base (−2).

This work is devoted to an encoding system that is fundamentally
different from the above-mentioned systems.

Such representation of numbers in the interval [0; g0] and its various
applications were studied in the papers [4, 6–10].

Except for [1–3, 5], we are not aware of any other papers where nu-
meral systems with two bases are considered.

1. Existence of a G-representation of a natural number

Definition 1. If, for a natural number a,there exists a sequence (a1,..., an)
of zeros and ones such that

a = 2n +
n∑

k=1

[(−1)1+σkak2
n−k],

where σk = a1 + . . .+ ak−1, then we say that the number a has a G-rep-
resentation. Symbolically, this is written as

a = (1a1 . . . an)G.

The number a is thus an (n+ 1)-digit number.
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For example, each number within the range from 1 to 10 has a G-rep-
resentation, and it has exactly two representations. It is easy to verify
this statement:

1 = 20 = (1)G = 21 − 20 = (11)G,

2 = 21 = (10)G = 22 − 21 = (110)G,

3 = 22 − 21 + 20 = (111)G = 22 − 20 = (101)G,

4 = 22 = (100)G = 23 − 22 = (1100)G,

5 = 23 − 22 + 1 = (1101)G = 23 − 22 + 2− 1 = (1111)G,

6 = 23 − 22 + 2 = (1110)G = 23 − 2 = (1010)G,

7 = 23 − 1 = (1001)G = 23 − 2 + 1 = (1011)G,

8 = 23 = (1000)G = 24 − 23 = (11000)G,

9 = 24 − 23 + 1 = (11001)G = 24 − 23 + 2− 1 = (11011)G,

10 = 24 − 23 + 2 = (11010)G = 24 − 23 + 2− 1 = (11110)G.

Remark 1. As we can see, different G-representations of the same
natural number can have a different number of digits. For example,
8 = (1000)G = (11000)G, and in general

a = 2n = (1 0 . . . 0︸ ︷︷ ︸
n

)G = (11 0 . . . 0︸ ︷︷ ︸
n

)G,

while a = 2n + 1 = 2n+1 − 2n + 1 = (11 0 . . . 0︸ ︷︷ ︸
n−1

1)G = (11 0 . . . 0︸ ︷︷ ︸
n−2

11)G.

Theorem 1. Each natural number has exactly two G-representations,
that is, for any natural number a, there exists a sequence of zeros and
ones (a1, a2, . . . , an) such that

a = 2n +

n∑
k=1

[(−1)1+σkak2
n−k] ≡ (1a1 . . . an)G, (1)

where σ1 = 0, σk = a1 + . . . + ak−1, and there are exactly two such
expansions.

Proof. Obviously, for any natural number a, there exists a natural num-
ber n such that 2n−1 < a ≤ 2n. We will use the method of mathematical
induction on n. For n = 1, we have 1 < a ≤ 2 and the statement is
evident for the numbers 1 and 2 (see the example above).
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Assume that the statement holds for n = k, i.e., for a ∈ (2k−1; 2k],

there exists an expansion a = 2k +
k∑

i=1
[(−1)1+σiai2

k−i] ≡ (1a1 . . . ak)G,

where σi = a1 + . . .+ ai−1, and there are exactly two such expansions.
Consider n = k + 1, i.e., the case of a number a ∈ (2k; 2k+1]. If a =

2k+1, then a = (1 0 . . . 0︸ ︷︷ ︸
k+1

)G = (11 0 . . . 0︸ ︷︷ ︸
k+1

)G. Now, suppose that 2k < a <

2k+1; then 0 < a−2k ≡ u < 2k. By the induction hypothesis, the number
u has a G-representation u = (1c1c2 . . . cm)G, where m < k. Thus, we
have a = 2k + u = 2k+1 − 2k + u = (11 0 . . . 0︸ ︷︷ ︸

k−m

c1 . . . cm)G. Since the

number u ≡ a− 2k satisfies the inequality 0 < u < 2k, it has exactly two
G-representations by the induction hypothesis. Therefore, the number a
also has exactly two G-representations. By the principle of mathematical
induction, the statement is proven for any natural number a.

Definition 2. We say that a G-representation of a natural number is
called canonical if it has the minimum number of digits and the maximum
number of zeros simultaneously.

For example, the canonical G-representation of the numbers

16 = (10000)G = (110000)G, a = 2n−1 = (1 0 . . . 0︸ ︷︷ ︸
n−1

1)G = (1 0 . . . 0︸ ︷︷ ︸
n−2

11)G

is the first of the G-representations.

2. Identification and comparison of natural numbers

Theorem 2. If a = (1a1 . . . anan+1)G and b = (1b1 . . . bn)G, then a ≥ b,
where equality holds only when a = (11 0 . . . 0︸ ︷︷ ︸

m

)G and b = (1 0 . . . 0︸ ︷︷ ︸
n

)G. If

the number of digits in the G-representation of c = (1c1 . . . cn . . . cn+p)G
exceeds the number of digits in the G-representation of b by p, then c > b.

Proof. We only need to consider the case where one number has exac-
tly one more digit than the other. Let a = (1a1 . . . anan+1)G and b =
(1b1 . . . bn)G.

Consider the difference

ρ ≡ a− b = (2n+1− 2n)+ (

n+1∑
i=1

[(−1)1+σiai2
n+1−i]−

n∑
i=1

[(−1)1+σ′
ibi2

n−i]).
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Since min
n+1∑
i=1

[(−1)1+σiai2
n+1−i] = −2n is attained only when 1 − a1 =

a2 = a3 = . . . = an+1 = 0, and max
n∑

i=1
[(−1)1+σ′

ibi2
n−i] = 0 is attained

only when b1 = b2 = . . . = bn = 0, it follows that ρ ≥ 2n+1−2n−2n = 0,
where equality holds only when a = (11 0 . . . 0︸ ︷︷ ︸

m

)G and b = (1 0 . . . 0︸ ︷︷ ︸
n

)G. By

the theorem assumption, let c = (1c1 . . . cn . . . cn+p)G, where p ≥ 2, then
the difference

δ = c− b = (2n+p − 2n)+

+ (

n+p∑
i=1

[(−1)1+σici2
n+1−i]−

n∑
i=1

[(−1)1+σ′
ibi2

n−i]) ≥

≥ 2n+p − 2n − 2n+p−1 + 0 = 2n(2p−1 − 1) > 0,

which implies c > b. This completes the proof.

Remark 2. Two G-representations of a natural number a ̸= 2n have
the same number of digits, while the G-representations of numbers of
the form 2n have different numbers of digits.

Theorem 3. The numbers

a = (1a1 . . . ak−11ak+1 . . . an)G and b = (1a1 . . . ak−10bk+1 . . . bn)G

satisfy the following relation:
1) a ≥ b if σk is odd;
2) a ≤ b if σk is even, where equality holds only if

1− ak+1 = ak+2 = . . . = an = 0 = 1− bk+1 = bk+2 = . . . = bn.

Proof. Since ak = 1 and bk = 0, in the first case we have

a− b = 2n−k +

n∑
i=k+1

[(−1)1+σiai2
n−i]−

n∑
i=k+1

[(−1)1+σ′
ibi2

n−i] ≥

≥ 2n−k − 2n−k−1 − 2n−k−1 = 0

because min
n∑

i=k+1

[(−1)1+σiai2
n−i] = −2n−k−1 and

max

n∑
i=k+1

[(−1)1+σ′
ibi2

n−i] = 2n−k−1.
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In the second case, the difference is

a− b = −2n−k +
n∑

i=k+1

[(−1)1+σiai2
n−i]−

n∑
i=k+1

[(−1)1+σ′
ibi2

n−i] ≤

≤ −2n−k + 2n−k−1 + 2n−k−1

because min
n∑

i=k+1

[(−1)1+σiai2
n−i] = −2n−k−1 and

max

n∑
i=k+1

[(−1)1+σ′
ibi2

n−i] = 2n−k−1.

Note that the extreme values in both cases are achieved only under
the condition

1− ak+1 = ak+2 = . . . = an = 0 = 1− bk+1 = bk+2 = . . . = bn.

3. G-representation of the fractional part of a real number

Theorem 4 ([7]). For any number x ∈ [0; 12 ], there exists a sequence of
zeros and ones (αn) such that

x =
α1

2
+

∞∑
k=2

αk(−1)σk

2k
=

α1

2
+

∞∑
k=2

αk

2k−σk(−2)σk
≡ ∆G

α1α2...αn..., (2)

where σk = α1 + α2 + . . .+ αk−1.

Corollary 1. For any number x ∈ [0; 1], there exists a sequence of zeros
and ones (αn) such that

x =
1

2
α0 +

∞∑
k=1

αk(−1)1+σk

2k
≡ ∆α0α1...αn....

The symbolic notation ∆G
α1α2...αn... is called the G-representation of

a number x ∈ [0; 12 ] and of its expansion in series (2). Most numbers
in the interval [0; 12 ] have a unique G-representation, and they are called
G-unary numbers.

A countable set of numbers has exactly two G-representations:

∆G
c1...cm−101(0)

= ∆G
c1...cm−111(0)

,
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and such numbers are called G-binary numbers. The numbers 0 = ∆G
(0)

and 0,5 = ∆G
1(0) have a unique representation and are therefore not

G-binary.
Evidently, every G-binary number is rational. However not every

rational number is G-binary. This is illustrated by the example:

∆G
(10) =

1

2
− 1

23
+

1

25
− 1

27
+ . . . =

2

3
.

Definition 3. A G-cylinder of rank m with base c1c2 . . . cm is the set

∆G
c1c2...cm = {x : x = ∆G

α1α2..., αi = ci, i = 1,m}.

A cylinder is a segment [a; b] with endpoints

a =
α1

2
+

m∑
k=2

(−1)α1+...+αk−1αk

2k
, b = a+

1

2m
.

Cylinders of the same rank do not overlap, and the following equality
holds: ∆G

c1...cm = ∆G
c1...cm0 ∪ ∆G

c1...cm1 along with the basic metric ratio:
2|∆G

c1...cmi| = |∆G
c1...cm |.

For any sequence (cn), the following holds:
∞⋂

m=1
∆G

c1...cm = ∆G
c1...cm ,

which justifies considering a point as a cylinder of infinite rank.
It is easy to prove the following statement: if the G-representation of

a number x is periodic, then x is rational.

4. Left shift and right shift operators

Remark 3. For the following functions to be well defined, we agree that
among the two representations of the same G-binary number, we will use
the representation ∆G

c1...cm−101(0)
.

Definition 4. The operator ωn of an n-fold left shift of the digits in the
G-representation of numbers is the mapping defined by the equation

ωn(x = ∆G
α1α2...αn...) = ∆G

αn+1αn+2...αn+k...
.

The operator ωn has the following analytic expression:

ωn(x) =2n(−1)σnx−α1·2n−1+(−1)α1−1α22
n−2+. . .+(−1)α1+...+αn−1−12.

For any n ∈ N , the operator ωn is a piecewise-linear continuous
function that attains its maximum value of 0.5 or minimum value of 0 at
each G-binary point. This fundamentally distinguishes this representa-
tion from all other known two-symbol systems of encoding of numbers.
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Lemma 1. The equation ωn(x) = x has 2n solutions in the form x =
∆G

(α1...αn)
, where α1,. . . , αn are independent variables that take values 0

and 1.

Proof. Indeed, if x = ∆G
α1...αn... is a solution to the equation, then ac-

cording to the definition of the operator y = ωn(x) we have

α1 = αn+1, . . . , αn = α2n, αn+1 = α2n+1 = α1, . . . , α2n = α3n = αn.

So, x = ∆G
(α1α2...αn)

. And the fact that ∆G
(α1...αn)

, where αk ∈ A are free
variables, is the root of the equation is obvious.

Since the image of a G-binary number under the mapping ωn is a
G-binary number of lower rank, and G-binary numbers of different ranks
are never equal, we see that roots of the equation ωn(x) = x cannot be
a G-binary number.

Definition 5. The operator of the right shift of the digits in a G-rep-
resentation with prefix i1 . . . ik is the mapping τi1...ik , defined by the
equation

τi1i2...ik(x = ∆G
α1α2...αn...) = ∆G

i1i2...ikα1α2...αn....

Each such function is linear and has the following analytic expression:

τi1i2...ik(x = ∆G
α1α2...αn...) =

(−1)i1+...+ik

2k
x+

k∑
m=1

im(−1)i1+...+im−1

2m
.

The following equalities are evident:

ωn(τi1...in(x)) = x, τα1(x)...αn(x)(ω
n(x)) = x.

Theorem 5. The equation ωn(x) = τi1...ik(x) has 2n solutions in the
form x = ∆G

(α1...αni1...ik)
, where αj are independent variables that take

values 0 and 1.

Proof. Let x = ∆G
α1α1...αn... be a solution of the equation. Then

αn+1 = i1, . . . αn+k = ik;
αn+k+1 = α1, . . . αn+k+n = αn;

α2n+k+1 = αn+1 = i1, . . . α2n+k+k = αn+k = ik and so on.

Thus, x = ∆G
(α1...αni1...ik)

. It is evident that the number ∆G
(α1...αni1...ik)

is
a solution to the equation.
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Corollary 2. Each solution of the equation ωn(x) = τi1...ik(x) is a
G-unary number and, therefore, an irrational number.

Theorem 6. The system of equations ωn(x) = x = τi1...ik(x) has a

unique solution x = ∆G
(i1...ik)

if n
... k.

Proof. Let n = k, then the equation τi1...ik(x) = x has a unique solution
x = ∆G

(i1...ik)
, which obviously satisfies ωk(x) = x as well.

According to Theorem 5, the equation ωn(x) = τi1...ik(x) has solutions
in the form x = ∆G

(α1...αni1...ik)
while the equation τi1...ik(x) = x has a

unique solution x = ∆G
(i1...ik)

. Thus, when n is a multiple of k, the unique

solution of the system is x = ∆G
(i1...ik)

.

Corollary 3. The solution of the system of equations ωk(x) = x =
τi1...ik(x) is an irrational number.

Definition 6. The G-representations of the numbers x1 = ∆G
α1α2...αn...

and x2 = ∆G
c1c2...cn... are said to have the same tail if there exist indices k

and m such that αk+j = cm+j for all j ∈ N . This is denoted symbolically
as x1 ∼ x2.

The binary relation “to have the same tail” is an equivalence relation.
The set of all representations of a number that share the same tail, i.e.,
an element of the factor set, is called a tail set. Each tail set is countable,
whereas the set of all tail sets has the cardinality of the continuum. All
G-binary numbers form a single tail set.

A function f , defined on the interval [0; 0, 5], is said to preserve the
tails of the G-representations of numbers if for any x ∈ [0; 0, 5], it holds
that f(x) ∼ x.

Recall that a bijective (i.e., one-to-one and onto) mapping of a set
onto itself is called a transformation of this set. It is known [9] that the set
of all continuous transformations of the interval [0; 0, 5] that preserve the
tails of G-representations forms an infinite, noncommutative group under
the composition of transformations. Examples of such transformations
include

f1(x) =

{
τ1(x) if 0 ≤ x ≤ x1 = ∆G

(1),

ω(x) if x1 ≤ x ≤ 0, 5;

f2(x) =

{
τ1(x) if 0 ≤ x ≤ x2 = ∆G

(101),

ω(x) if x2 ≤ x ≤ 0, 5.
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5. G2-representation of numbers of interval [0,g0]

G-representation is a special case of a more general two-symbol repre-
sentation with two bases of different signs. Let us recall its definition.
Suppose two bases are fixed: g0 ∈ (0; 12 ], g1 ≡ g0 − 1, and the numbers
δ0 = 0, δ1 = g0.

Theorem 7 ([8]). For any number x ∈ [0; g0], there exists a sequence of
zeros and ones (αn) such that

x = δα1 +
∞∑
k=2

(δαk

k−1∏
j=1

gαj ) ≡ ∆G2
α1α2...αk...

, δαk
= αkg1−αk

. (3)

Corollary 4. If g0 = 1
2 , then δαk

= αk

2k
,

k−1∏
j=1

gαj = (−1)α1+...+αk−1

2k−1 and

series (3) takes the form of (2).

The symbolic notation ∆G2
α1α2...αk...

of the number x and its expansion
in the alternating series (3) is called the G2-representation, and αk is
called its kth digit.

Lemma 2. The Lebesgue measure of the set

C ≡ C[G2; s1...sm] = {x : x = ∆G2
α1...αn..., αk...αk+m−1 ̸= s1...sm, k ∈ N}

of numbers from the interval [0, g0], whose G2-representation does not
contain the sequence s1s2 . . . sm as consecutive digits, is equal to zero.

Proof. Consider the set

E = {x : x = ∆G2
α1α2...αn..., αkm+1 . . . αkm+m ̸= s1 . . . sm ∀k ∈ N}.

Clearly, C ⊂ E. We will prove that the Lebesgue measure λ(E) = 0,
which will imply that λ(C) = 0. Define F0 ≡ [0; g0], and let Fk be the
union of all cylinders of rank km that contain points from E as interior
points. Let F k+1 ≡ Fk \ Fk+1. Then, we have Fk = Fk+1 ∪ F k+1,
λ(Fk+1) = λ(Fk) − λ(F k+1), E ⊃ Fk ⊃ Fk+1 ∀k ∈ N and λ(E) =
lim
k→∞

λ(Fk).

Now, we express λ(Fk) in the following form:

λ(Fk) =
g0λ(Fk)

λ(Fk−1)
· λ(Fk−1)

λ(Fk−2)
· . . . · λ(F1)

λ(F0)
=

= g0

k∏
i=1

λ(Fi)

λ(Fi−1)
= g0

k∏
i=1

λ(Fi)− λ(F i)

λ(Fi−1)
= g0

k∏
i=1

(1− λ(F i)

λ(Fi−1)
).
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From this, it follows that

λ(E) = lim
k→∞

λ(Fk) = g0

∞∏
k=1

λ(Fk)

λ(Fk−1)
= g0

∞∏
k=1

(1− λ(F k)

λ(Fk−1)
).

Since |∆G2
α1...αki

| = |gi||∆G2
α1...αk

|, we have c1 ≤
|∆G2

α1...αki|

|∆G2
α1...αk

|
≤ c2, where

c1 = min{g0;−g1}, c2 = max{g0;−g1}, and thus

0 < cm1 ≤
|∆G2

α1...αkms1...sm |
|∆G2

α1...αkm |
=

m∏
i=1

|gsi | ≤ cm2 < 1.

Hence, the ratio λ(Fk)
λ(Fk−1)

is bounded away from zero, which means that

the difference 1 − λ(Fk)
λ(Fk−1)

is bounded away from one. Therefore, the

necessary condition for the convergence of the infinite product is not
satisfied, implying that the product diverges to zero.

Corollary 5. The set C is a Cantor-type null set with a self-similar
structure.

Theorem 8. Almost every number in the interval [0; g0] contains every
possible sequence of digits in its G2-representation infinitely many times.

Proof. Let (s1, . . . , sm) be an arbitrary ordered sequence of zeros and
ones, let H be the set of all numbers in [0; g0] whose G2-representation
contains the sequence of digits s1s2 . . . sm infinitely many times as con-
secutive digits, and let D be the set of all numbers that contain this
sequence only a finite number of times as consecutive digits in their
G2-representation.

We will prove that H is a full Lebesgue measure set, meaning that
λ(H) = g0. To do this, it is sufficient to show that λ(H) = 0, where

H = [0; g0] \H. Clearly, H =
∞⋃
n=1

Dn, where

Dn = {x : x = ∆G2
α1...αn..., αk+1 . . . αk+m ̸= s1 . . . sm, ∀k ≥ n}.

Now, we compute λ(Dn). Since Dn =
⋃

α1∈A
. . .

⋃
αn∈A

[∆G2
α1...αn

∩D],

∆G2
α1...αn

∩D = ∆G2
α1...αn

∩H,

by the previous lemma, we have λ(∆G2
α1...αn

∩D) = 0, and thus, λ(Dn) = 0.

Hence λ(H) = 0 because λ(H) ≤
∞∑
n=1

λ(Dn) = 0, which completes the

proof.
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6. Applications of G2-representation in the theory of lo-
cally complicated functions

Theorem 9. If a G2-representation of numbers is defined by the parame-
ter g0 ∈ (0; 12 ], and r0 ∈ (0; 12 ], then the system of functional equations{

f(g0x) = r0f(x),

f(g0 + (g0 − 1)x) = r0 + (r0 − 1)f(x)

in the class of continuous functions defined on the interval (0, g0] has a
unique solution. Moreover, when g0 = r0, the solution is f(x) = x, and
when g0 ̸= r0, the function f(x) is singular, meaning that its derivative is
equal to zero almost everywhere (with respect to the Lebesgue measure).

Proof. Let x = ∆G2
α1...αn... be an arbitrary number in the interval [0, g0].

Then g0x = g0δα1 + g0δα2gα1 + g0δα3gα1gα2 + . . . = ∆G2
0α1α2...

,

g0 + (g0 − 1)x = g0 + g1x = g0 + g1δα1 + g1δα2gα1 + . . . = ∆G2
1α1α2...

,

and thus, from the system of functional equations, we obtain

f(∆G2
α1α2...) = α1r1−α1 + rα1f(∆

G2
α2α3...) =

= α1r1−α1 + rα1(α2r1−α2 + rα2f(∆
G2
α3...αn...)) =

= α1r1−α1 + rα1α2r1−α2 + rα1rα2f(∆
G2
α3...αn...) = . . . =

= α1r1−α1 +

n∑
k=2

αkr1−αk

k−1∏
i=1

rαi + (

k∏
i=1

rαi)f(∆
G2
αn+1αn+2...).

The product
n∏

i=1
rαi → 0 as n → ∞ and f is continuous on [0, g0], so it

attains a minimum and maximum value. Therefore, the remainder term
in the expansion tends to zero, and we obtain

f(x) = α1r1−α1 +

∞∑
k=2

αkr1−αk

k−1∏
i=1

rαi ≡ ∆
G′

2
α1α2...,

where the last symbolic notation is the G′
2-representation with bases r0

and r1 = r0 − 1.

As we see, f acts as a projector from the G2-representation to the
G′

2-representation of numbers, which implies the continuity and strict
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monotonicity of f . When g0 = r0, the G2-representation and G′
2-repre-

sentation are identical, and thus, f(x) = x.
Now we prove that f is singular for g0 ̸= r0. Since f is continuous

and monotonic, by Lebesgue’s theorem, it has a finite derivative almost
everywhere (with respect of the Lebesgue measure). Let C ⊂ [0; g0] be
the set of points where f has a finite derivative. If f has a derivative at
a G2-unary point x0 ∈ [0; g0], then it is expressed as

f ′(x0) = lim
n→∞

|∆G′
2

α1α2...αn |
|∆G2

α1α2...αn |
= lim

n→∞

r0
n∏

i=1
|rαi |

g0
n∏

i=1
|gαi |

=

= lim
n→∞

r0
g0

n∏
i=1

|rαi

gαi

| = r0
g0

∞∏
i=1

|rαi

gαi

|.

If g0 ̸= r0, then the infinite product diverges to zero, because the neces-
sary condition for the convergence of an infinite product is not satisfied.
Hence, f ′(x0) = 0. This conclusion applies to every point x such that
f has a finite derivative at x and this point belongs to the set H of all
numbers satisfying the conditions of the previous theorem. Therefore, f
is a singular function.
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