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Abstract. This paper introduces the notion of almost posi-
tive posets as non-negative ones that contain maximal positive sub-
posets. Such posets include both positive posets and P -critical
posets (minimal non-positive ones) which were described by the
authors back in 2005. Almost positive posets also include prin-
cipal posets in the sense of D. Simson. By definition, a non-
negative poset S = {1, · · · , n; ⪯} is principal if the kernel of its Tits
quadratic form qS(z) = qS(z0, z1, · · · , zn), defined by the equality
Ker qS(z) := {t ∈ Z1+n | qS(t) = 0}, is an infinite cyclic subgroup
of Z1+n. In 2019, the authors described all serial principal posets.
This paper concludes the description of all almost positive posets.

Introduction

This paper is related to the Tits quadratic forms which play an important

role in modern representation theory.

The Tits quadratic forms were first introduced by P. Gabriel [12] for

finite quivers. Namely, if Q is a quiver with the set of vertices Q0 and the

set of arrows Q1, then its Tits quadratic form qQ : Zn → Z, n = |Q0|, is
given by the equality qQ(z) =

∑
i∈Q0

z2i −
∑
i→j

zizj , where i → j runs through

the set Q1. For the posets, the closest structure to the quivers, the Tits

quadratic form was first considered by Yu. A. Drozd [11]. By definition,
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for a poset S ̸∋ 0, such quadratic form qS : Z1+n → Z, n = |S|, is given
by the equality qS(z) = z20 +

∑
i∈S

z2i +
∑

i<j, i,j∈S
zizj − z0

∑
i∈S

zi.

The main results of the mentioned papers inspired the study of posets

with positive Tits quadratic form as analogues of the Dynkin diagrams

(in more details, see [7, Introduction]).

In 2005, the authors described all posets with positive Tits quadratic

form [4] using the analogous result on posets of width 2 obtained a little

earlier in [3] (see also [7, Theorem 1] and [9, Section 4] for serial and

non-serial posets, respectively). Such posets are simply called positive.

In the same paper the authors also described all minimal posets with

non-positive Tits form calling them P -critical (see also [6], [8] and [2]1).

Analogously, the results of [10, 16] on quivers and [18] on posets in-

spired the study of posets with non-negative Tits quadratic form as the

natural one (see [7, Introduction]).

In [6] the authors described all minimal posets whose Tits quadratic

form is not non-negative calling them NP -critical (NP means Null+

Positive), Note that posets S with non-negative Tits quadratic form

qS(z), which are simply called non-negative, are analogues of the ex-

tended Dynkin diagrams only when Ker qS(z) := {t ∈ Z1+|S| | qS(t) = 0}
are infinite cyclic subgroups of Z1+|S| (since such property holds for

the quivers with non-negative Tits form that is not positive). The

non-negative posets satisfying the indicated condition (and their Tits

quadratic forms) are said to be principal [13, Definition 2(b)].

In [7] the authors described the serial principal posets. In this pa-

per, we study non-serial principal posets; in particular, we obtain their

complete classification.

Note that some classes of principal posets of order n = 5, 6, 7 (which

in our terminology mean the non-series ones) were described by M. Ga̧-

siorek, D. Simson and K. Zaja̧c with the help of computer programs (the

paper [14] for n = 5, 6 and the preprint [15] for n = 7).

1The paper [4] has been often cited, but is today virtually inaccessible. The main
ideas and many results of this paper are published (in a translation from Russian) in
the paper [2, Sections 1–3] of the one of the previous issue of this journal. That is
why we will often refer to [2] instead of (or parallel with) [4]. Sections 4 and 5 of the
paper [2] present some new ideas about the minimax equivalence method. They are
used in this paper.
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1. Preliminary

1.1. Definitions on posets. Throughout the paper, all posets are
assumed to be non-empty finite posets without the element 0. A partial
order relation is denoted by ≤, or ⪯ when the elements of a poset are
numbered by integer numbers. By a subposet S′ of a poset S we always
mean a full subposet (i.e. with the order relation induced by a given order
relation on S). We identify singletons with the elements themselves, and
(as rule) posets with their Hasse diagrams.

A poset T is called dual to a poset S and denoted by Sop if T = S as
usual sets and x < y in T if and only if x > y in S. The union of disjoint
posets S1, S2 is called their direct sum and denoted by S1

∐
S2.

The notation T ∼= S for posets means that T is isomorphic to S.
When S is specific, we also say that T is of the form S; and by “T
contains S” we mean that there is a subposet in T isomorphic to S.

1.2. Minimax equivalence of posets. The notion of (min, max)-
equivalence of posets was introduced by the first author in [1]. In detail
the properties of this equivalence were studied in [4]. Since some time
we have been used the term minimax equivalence.

In this subsection we remember some definitions and results from
[2,4] (see footnote 1).

Let a be a minimal element of a poset S. We define by S′ = S↑
a

the poset equal to S as an usual set and such that S′ \ a = S \ a as
posets; in the same time the element a is already maximal in S′, which is
comparable with another element x ∈ S′ iff they are incomparable in S.
Dually we define the poset S′ = S↓

a for a maximal element a of S. A
poset T is called minimax equivalent or (min, max)-equivalent to a poset
S if and only if T can be obtained from S in a finite number of such
operations.

The notion of minimax equivalence can be naturally extended to the
notion of minimax isomorphism: a posets T is minimax isomorphic to a
poset S if there exists a poset S′ which is minimax equivalent to T and
isomorphic to S. In this case one writes T ∼=min,max S.

The definition of posets of the form S′=S↑
a (respectively, S′=S↓

a) can

be extended to posets of the form S = S↑
A (respectively, S = S↓

A), whereA
is a lower (respectively, upper) subposet of S, i.e. x ∈ A whenever x < y
(respectively, x > y) and y ∈ A. In this case the poset A becomes an
upper (respectively, lower) subposet of S and comparability are already
interchanged with incomparability between any x ∈ A and y ∈ S \A. By
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Lemma 3 [2], S↑
A (respectively, S↓

A) and S are minimax equivalent. We

write S↑↑
AB, S

↑↓
AB instead of (S↑

A)
↑
B, (S

↑
A)

↓
B, etc.

The following statement was first proved in [1] (see also [2, Prop. 2]).

Proposition 1. The Tits quadratic forms of minimax equivalent posets
are Z-equivalent.

Corollary 1. Minimax equivalent or dual posets simultaneously are or
are not positive, non-negative, etc.

1.3. Principal posets. According [13], a poset S is called principal
if the following conditions hold:

(1) qS(z) is non-negative;
(2) Ker qS(z) := {t | qS(t) = 0} is an infinite cyclic group, i.e. is equal

to tZ for some t ̸= 0 (equivalently, the rank of the symmetric matrix of
qS(z) is equal to |S|).

Proposition 2. For a non-negative poset S, the following conditions are
equivalent:

(a) S is principal;
(b) S contains exactly one P -critical poset denoted by S.

The proposition follows from the definition of a P -critical poset and
the following lemma.

Lemma 1. Any P -critical poset is principal.

This lemma follows from Theorem 2 [4] (according to which a P -cri-
tical poset is minimax equivalent to a Kleiner one), Corollary 1 and the
fact that the Kleiner posets are principal (see, e.g., [17, Appendix 1]).

An element of a poset is called isolated if it is incomparable with all
other its elements. From the above it follows the following statement.

Corollary 2. Let a be an element of a poset S and a< := {x ∈ S |x < a},
a> := {x ∈ S |x > a}. Then the element a is isolated in the poset

S = S↑↓
a<a>, and S \ a is positive if a ∈ S.

2. Main theorems

2.1. Almost positive posets. We call a non-negative poset S almost
positive if S \ x is positive for some x ∈ S. Obviously, positive and
P -critical posets are almost critical. Any almost positive poset that is
not positive is called strictly almost positive poset.
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Proposition 3. A poset S is strictly almost positive if and only if it is
principal.

The proposition follows from Proposition 2 and the main idea of the
proof of Theorem 2 [8].

An almost positive or strictly almost positive poset is called serial if
there is (as in the case of positive posets) an infinite increasing sequence
S ⊂ S(1) ⊂ S(2) ⊂ . . . with the same terms, and non-serial if otherwise.

The serial strictly almost positive posets(≡ the serial principal posets)
are described by the authors in [8] (see Theorem 3). Then the serial al-
most positive posets which are equal to the union of the serial strictly
almost positive posets and the serial positive posets are described by
Theorems 1 and 3 [8].

Note that a P -critical poset, which is not serial in itself (i.e. in the set
of all P -critical ones), can become serial as an almost positive poset. We
call them conditionally serial. By the classifications of serial principal
posets in [7] and P -critical posets [4,6] it follows that, up to isomorphism,
there are only 4 conditionally serial posets; namely, P -critical posets with
numbers 1, 30, 30op and 75 (which are minimax isomorphic). We call the
P -critical posets (as strictly almost positive posets which are closest to
positive ones) without the conditionally serial posets near-positive.

Thus, for a complete classification of the almost positive posets, it
remains to classify the non-serial strictly positive posets without the
near-positive ones. Such posets are said to be essential almost positive.
Their classification (with theorems about minimal minimax systems of
generators) is the main result of this paper. The essential almost positive
posets are collected, up to isomorphism and duality, in Table 2 in the
form of their Hasse diagrams. There are 247 such posets (the selfdual
from which are marked on the pictures by the symbol sd). For the
convenience uf the readers, we also collect all near-positive posets (see
Table 1). In both cases, the equality of the first numbers of their indices
indicates on the same class of minimax isomorphism.

Remark. We emphasize that replacing the principal posets by the
strictly almost positive posets leads to a simpler combinatorics (without
quadratic forms themselves and their matrices). Therefore, instead of
computer programs simpler methods can be used. We traditionally use
our “minimax equivalence method” suggested in [1, 2, 4].

2.2. Minimax systems of generators of essential almost posi-
tive posets. In [2, Section 5] the first author introduced the concept of
the minimax system of generators. In particular, the following definitions
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were given. Let K be a class of finite posets closed under isomorphism
and duality and let U = {Ui} be a set of posets. We say that U is a
minimax system (respectively, d-system) of generators of K if any X ∈ K
is minimax isomorphic to a poset Ui (respectively, Ui or Uop

i ) for some
i ∈ I.

Theorem 1. The following 9 posets with the isolated elements 1 form a
minimal minimax d-system of generators for the set M of all essential
almost positive posets:

M1 = {1, 2 ≺ 4, 3 ≺ 4, 3 ≺ 6, 5 ≺ 6},
M2 = {1, 2 ≺ 3 ≺ 4, 5 ≺ 6 ≺ 7, 2 ≺ 6},
M3 = {1, 2 ≺ 4, 3 ≺ 4, 3 ≺ 6, 5 ≺ 6 ≺ 7},
M4 = {1, 2 ≺ 5, 3 ≺ 4 ≺ 5, 3 ≺ 6 ≺ 7, 4 ≺ 7},
M5 = {1, 2 ≺ 3 ≺ 4, 5 ≺ 6 ≺ 7, 2 ≺ 8},
M6 = {1, 2 ≺ 3 ≺ 4, 5 ≺ 6 ≺ 7 ≺ 8, 2 ≺ 7},
M7 = {1, 2 ≺ 3 ≺ 4, 5 ≺ 6 ≺ 7 ≺ 8, 2 ≺ 6, 3 ≺ 8},
M8 = {1, 2 ≺ 4, 3 ≺ 4, 3 ≺ 6, 5 ≺ 6 ≺ 7 ≺ 8},
M9 = {1, 2 ≺ 5, 3 ≺ 4 ≺ 5, 3 ≺ 6 ≺ 7 ≺ 8, 4 ≺ 7}.

This theorem will be proved in Section 3. In Section 4, for any poset
Mi, the class C(Mi) of all, up to isomorphism and duality, posets mini-
max equivalent to Mi will be determined. Thus, we will obtain a comp-
lete classification of all essential almost positive posets (see Table 2).

It will follow from the classification that the poset M5 is, up to iso-
morphism and duality, the only poset of M minimax equivalent to a
poset of the form a

∐
X with X to be serial positive (although we have

Corollary 2). Apparently, this fact determines the differences between
the class C(M5) and the other classes in different situations.

Denote by C0(Mi) the class of all posets that are minimax isomor-
phic to Mi. It follows from Propositions 4–7, 9–12 that for i ̸= 5, we
have the equality C0(Mi) = C(Mi) (i.e. the class C0(Mi) is selfdual in
the sense that together with a poset X it always contains the dual poset
Xop). For i = 5, the situation is different: M5 and Mop

5 are not mini-
max isomorphic. Therefore, the system M = {M1, · · · ,M9} (which is a
d-system of M by Theorem 1) is not a usual one. To get such a system
it is needed to additionally take Mop

5 ; then C0(M5)∪C0(M
op
5 ) = C(M5).

Let us look at three examples regarding various properties of posets.
Emphasize that in the case when a classification is considered (in par-



V. M. Bondarenko, M. V. Styopochkina 71

ticular) up to duality, a property must be symmetrical (closed under
duality),

For a poset X, we call the class C(X) normal if C(X) = C0(X) and
special if otherwise. Recall that an element of a poset is called extreme
if it is minimal or maximal. An element of a poset is called nodal if it is
comparable with all elements and almost nodal if it is incomparable to
only one element.

Theorem 2. Any normal class C(Mi) contains only one poset Fi of
width 2 with an almost nodal extremal element and maximal for this
class of nodal elements. The special class contains two such posets. But
in the second case there is only one poset F0 with the only nodal and
maximal for this class of almost nodal elements.

Note that “one or two posets” implied up to duality. Indeed, it follows
from Table 2 that F1

∼= AP1.2, F2
∼= AP2.5, F3

∼= AP3.3, F4
∼= AP4.2,

F6
∼= AP6.7, F7

∼= AP7.2, F8
∼= AP8.3, F9

∼= AP9.2, F51
∼= AP5.6,

F52
∼= AP5.10, F0

∼= AP5.13.
Recall that Ãn (the cycles) and D̃n are the only serial extended

Dynkin diagrams.

Theorem 3. Any normal class C(Mi) contains only one poset Gi with
the Hasse diagram to be a cycle Ãn. For the special class there are no
such posets. But in the second case the class contains only one poset G0

with the Hasse diagram to be a D̃n.

It follows from Table 2 that G1
∼= AP1.8, G2

∼= AP2.13, G3
∼=

AP3.17, G4
∼= AP4.7, G6

∼= AP6.20, G7
∼= AP7.14, G8

∼= AP8.21,
G9

∼= AP9.15, G0
∼= AP5.28.

It is clear that in cases when we not talking about canonical represen-
tatives of the classes, there may not be any differences between the two
types of classes. As an example, we give the following easily verifiable
statement.

Theorem 4. Any class C(Mi) contains a poset with the Hasse diagram
to be a non-serial Dynkin diagram.

3. Proof of Theorem 1

We use a list of all non-serial positive posets (up to isomorphism and
duality), first obtained in [4], in the form indicated in [9, Section 4]. By
[i, j] with i = 5, 6, 7, j from 1 to 10, 32, 66, respectively, we denote the
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poset {1}
∐

NSPi.j. The elements of this new poset (which is consi-
dered in the form of Hasse diagrams) are numbered by the integer num-
bers 1, 2, . . . , 1 + |NSPi.j| in a such way that p ≺ q implies the element
with number q stands higher or to the right of the element with number p.
We also use a classification of serial positive posets in the form of Theo-
rem 1 [7]. By [i]k,s with i = 1, 2, 3 we denote the poset {0}

∐
(i)k,s, where

(i)k,s is the poset in condition (i) of the theorem with the parameters k
and s.

The posets Mi are direct sums of the one-element poset {1} and
positive posets (non-serial for i ̸= 5 and serial for i = 5): M1 = [5.8],
M2 = [6.1], M3 = [6.22], M4 = [6.27], M5

∼= [2]3,4, M6 = [7.1], M7 =
[7.3], M8 = [7.46], M9 = [7.56].

These posets are non-negative by Table 4.2 [6] of all NP -critical
posets NPi. They are neither positive, nor P -critical, nor serial strictly
almost positive posets by Tables 4.1–4.3 [9] of all non-serial positive
posets, Table 4.1 [6] of all P -critical ones PCi and Theorems 1, 3 [7]
about the positive and serial principal posets. Hence M1, . . . ,M9 ∈ M.

By Corollary 2, to prove the theorem it is enough to verify that any
poset T = {∗}

∐
S with S being positive either does not belong to M,

or is minimax isomorphic to Mi, or is minimax isomorphic to Mop
j for

some i, j. Obviously, T can be considered up to duality.

For the cases of non-serial posets we have the following:

(A1)(A1)(A1) The posets [5.1], [5.3] − [5.5], [6.2] − [6.4], [6.6] − [6.7], [6.10] −
[6.12], [6.14] are positive, because [5.1] ∼= NSP6.19, [5.3] ∼= NSP6.26,
[5.4] ∼= NSP6.28, [5.5] ∼= NSP6.32, [6.2] ∼= NSP7.37, [6.3] ∼= NSP7.42,
[6.4] ∼= NSP7.43, [6.6] ∼= NSP7.52, [6.7] ∼= NSP7.53, [6.10]∼=NSP7.54,
[6.11] ∼= NSP7.60, [6.12] ∼= NSP7.61, [6.14] ∼= NSP7.66.

(A2)(A2)(A2) The posets [5.2], [6.13], [6.15], [7.7], [7.10], [7.19], [7.21], [7.23],
are P -critical, because [5.2] ∼= P32, [6.13] ∼= P36, [6.15] ∼= P37, [7.7] ∼= P47,
[7.10] ∼= P67, [7.19] ∼= P68, [7.21] ∼= P43, [7.23] ∼= P44, [7.25] ∼= P45.

(A3)(A3)(A3) [6.5] ∼= NP49, [7.22] ∼= NP58, [7.24] ∼= NP59; [7.2], [7.5], [7.9],
[7.14], [7.16] ⊃ NP49; [5.6]−[5.7], [5.9], [6.16]−[6.21], [6.23]−[6.26], [6.28]−
[6.29], [6.31]− [6.32], [7.26]− [7.45], [7.47]− [7.55], [7.57]− [7.58], [7.60]−
[7.62], [7.64]− [7.66] ⊃ NP112.

(A4)(A4)(A4) [5.10]↑3
∼= [5.8] = M1; [6.8]

↑↓
27

∼= [6.1]op = Mop
2 , [6.9]↓↓76

∼= [6.1] =

M2; [6.30]↑3
∼= [6.22] = M3; [6.27] = M4; [7.8]↓↓↓387

∼= Mop
5 , [7.11]↓↓↑872

∼=
M5, [7.12]

↑↓
28

∼= Mop
5 , [7.15]↓↓↓876

∼= Mop
5 , [7.18]↓↓87

∼= M5; [7.20]↑↑↓238
∼= M5,

[7.13]↑↓28
∼= [7.1]op = Mop

6 , [7.17]↓↓87
∼= [7.1] = M6; [7.4]

↓↓↓
148

∼= [7.3] = M7,
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[7.6]↑↓↓↓2874
∼= [7.3] = M7; [7.63]

↑
3
∼= [7.46] = M8; [7.59]

↑↑↓
348

∼= [7.56] = M9.
For the cases of serial posets we have the following:

(B1)(B1)(B1) [1]0,s ∼= (1)1,s, [1]2,2 ∼= NSP5.6, [1]2,3 ∼= NSP6.18, [1]2,4 ∼=
NSP7.41, [1]2,5 ∼= PC43, [1]2,s ⊃ NPC70 for s ≥ 6, [1]3,3 ∼= PC35,
[1]k,s ⊃ NPC55 for k ≥ 3, s ≥ 4;

(B2)(B2)(B2) [2]1,3 ∼= NSP5.9, [2]1,4 ∼= NSP6.29, [2]1,5 ∼= NSP7.62, [2]1,6 ∼=
PC46, [2]1,s ⊃ NPC74 for s ≥ 7, [2]2,2 ∼= NSP5.7, [2]2,3 ∼= NSP6.20,
[2]2,4 ∼= NSP7.44, [2]2,5 ∼= PC48, [2]2,s ⊃ NPC76 for s ≥ 6, [2]3,3 ∼=
NSP7.26, [2]3,4 ∼= M5, [2]k,s ⊃ NPC55 for k ≥ 3, s ≥ 5;

(B3)(B3)(B3) [3]k,0 ∼= (3)k,1, [3]k,1 is a serial strictly almost positive poset (see
Theorem 2 [7]), [3]k,s ⊃ NPC112 for s ≥ 2.

So we have proved that the posetsM1, . . . ,M9 form a minimax d-system
of generators for the set M.

Now we prove that this d-system is minimal.

Lemma 2. Let S be a poset and, for b ∈ S, S<
b := {x ∈ S |x < b},

b< := {x ∈ S |x < b}, b> := {x ∈ S |x > b}, S◦
b = S↑↓

{b<}{b>}. Let T be a
poset minimax equivalent to the poset S, Then the element b is isolated
in T if and only if T = S◦

b .

The lemma follows directly from the definitions.

Lemma 3. The posets that are minimax equivalent to the poset
T1 = {1, 2, 3, 4} with incomparable elements are exhausted up to iso-
morphism by the posets T1, T2 = {1 ≺ 2, 3, 4}, T3 = {1, 2, 3 ≺ 4} and
T4 = {1, 2 ≺ 3, 4}.

The lemma can be proved by simple calculations.
Consider first the posets M2,M3,M4 of order 7.
(a1) Obviously, M3 = T1. By Lemma 3, for any poset X mini-

max equivalent to M3, X is isomorphic to some Ti. Then M2 can not
be minimax isomorphic to M3, otherwise M2 will contain two different
P -critical subposets — M2 = {1, 2 ≺ 3 ≺ 4, 2 ≺ 6 ≺ 7} and K ∼= Ti for
some i = 1, 2, 3, 4 (what is impossible according to Proposition 2). Analo-
gously, M2 ̸∼=min,max Mop

3 , M2 ̸∼=min,max M4 and M2 ̸∼=min,max Mop
4 .

(a2) Suppose that a poset T is minimax equivalent to the poset S :=
M3 and isomorphic to the poset M4. Then by Lemma 2, T = S◦

i for some
1 ≤ i ≤ 7. The poset M4 is of width 4 and its Hasse diagram has a cycle.
Since S◦

i is of width less than 4 for i = 4, 6, 7 and its Hasse diagram is
a tree for i = 1, 2, 3, we came to a contradiction. So M3 ̸∼=min,max M4.
Analogously, M3 ̸∼=min,max Mop

4 .
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Consider now the posets M5, . . . ,M9 of order 8.
(b1) Similarly as in (a1) it is can be proved that X ̸∼=min,max Y

for X = M5,M6,M7 and Y = M8,M9,M
op
8 ,Mop

9 . Also similarly when
X = M5, Y = M6,M7,M

op
6 ,Mop

7 if Lemma 3 is replaced by the fact
that the poset {1, 2 ≺ 3 ≺ 4, 2 ≺ 5 ≺ 6} ∼= M6

∼= M7 is not minimax
isomorphic to the poset {1, 2 ≺ 3 ≺ 4, 5 ≺ 5 ≺ 7} = M5 (see Table 1).

(b2) Similarly as in (a2) it is proved that M8 ̸∼=min,max M9,M
op
9 .

(c) Let us write out, up to isomorphism, all posets with isolated
elements minimax equivalent to the poset S := M6 (see Lemma 2):

S◦
1 = M6;

S◦
2
∼= {1 ≺ 6, 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 3 ≺ 8};

S◦
3
∼= {1, 2 ≺ 3 ≺ 8, 2 ≺ 6, 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8}op;

S◦
4
∼= {1, 2 ≺ 3 ≺ 4 ≺ 5 ≺ 8, 3 ≺ 7, 6 ≺ 7 ≺ 8};

S◦
5
∼= {1 ≺ 2 ≺ 3 ≺ 7, 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8, 2 ≺ 5}op;

S◦
6
∼= {1, 2 ≺ 3 ≺ 4 ≺ 8, 3 ≺ 6, 5 ≺ 6 ≺ 7 ≺ 8};

S◦
7
∼= {1 ≺ 6, 2 ≺ 3 ≺ 4 ≺ 5 ≺ 6, 5 ≺ 8, 3 ≺ 7 ≺ 8}op;

S◦
8
∼= {1, 2 ≺ 3 ≺ 8, 2 ≺ 6, 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8}.

It is easy to check that none of these posets is isomorphic to either
M7 or Mop

7 .
Conditions (a1)–(c) prove that our d-system is minimal.
The proof is complete.

4. The classification of the essential almost positive posets

From Theorem 1 it follows that all essential almost positive posets can be
divided into 9 classes with respect to minimax isomorphism and duality.
The posets M1, . . .M9 will be taken as their representatives. To classify
all the essential almost positive posets (up to isomorphism and duality),
we apply the algorithm [2, Subsection 2.2]2 to each class separately.

Proposition 4. The posets minimax equivalent to M1 are exhausted, up
to isomorphism and duality, by the posets 1.1, . . . , 1.12 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subpo-
sets of M1: X1,0 = ∅, X1,1 = {1}, X1,2 = {2}, X1,3 = {3}, X1,4 =
{1, 2}, X1,5 = {1, 3}, X1,6 = {2, 3}, X1,7 = {2, 5}, X1,8 = {1, 2, 3},

2See also Section 4 [2].
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X1,9 = {1, 2, 5}, X1,10 = {2, 3, 4}, X1,11 = {2, 3, 5}, X1,12 = {1, 2, 3, 4},
X1,13 = {1, 2, 3, 5}, X1,14 = {2, 3, 4, 5},X1,15 = {1, 2, 3, 4, 5}, X1,16 =
{2, 3, 4, 5, 6}.

Denote by K1,j the poset S↑
X for S = M1 and X = X1,j . Then

K1,0
∼= AP1.11, K1,1

∼= AP1.6, K1,2
∼= AP1.5, K1,3

∼= AP1.3, K1,4
∼= AP1.1,

K1,5
∼= AP1.8, K1,6

∼= AP1.4, K1,7
∼= AP op

1.8, K1,8
∼= AP op

1.5, K1,9
∼= AP op

1.6,
K1,10

∼= AP1.2, K1,11
∼= AP op

1.3, K1,12
∼= AP op

1.10, K1,13
∼= AP op

1.11, K1,14
∼=

AP op
1.7, K1,15

∼= AP1.12, K1,16
∼= AP op

1.9.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M1 such that V ⊆ X and V < S \ X:
Y1,1 = (X1,13, {3}), Y1,2 = (X1,15, {3}), Y1,3 = (X1,22, {5}), Y1,4 =
(X1,22, {3, 5}).

Denote by K ′
1,j the poset (S

↑
X)↑V for S = M1 and (X,V ) = Y1,j . Then

K ′
1,1

∼= AP1.9, K
′
1,2

∼= AP1.7, K
′
1,3

∼= AP1.10, K
′
1,4

∼= AP op
1.2.

Step III. As a result we have the posets indicated in the proposition
and posets that are dual to non-selfdual of them (a normal class).

Proposition 5. The posets minimax equivalent to M2 are exhausted, up
to isomorphism and duality, by the posets 2.1, . . . , 2.22 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subposets
of M2: X2,0 = ∅, X2,1 = {1}, X2,2 = {2}, X2,3 = {5}, X2,4 = {1, 2},
X2,5 = {1, 5}, X2,6 = {2, 3}, X2,7 = {2, 5}, X2,8 = {1, 2, 3}, X2,9 =
{1, 2, 5}, X2,10 = {2, 3, 4}, X2,11 = {2, 3, 5}, X2,12 = {2, 5, 6}, X2,13 =
{1, 2, 3, 4}, X2,14 = {1, 2, 3, 5}, X2,15 = {1, 2, 5, 6}, X2,16 = {2, 3, 4, 5},
X2,17 = {2, 3, 5, 6}, X2,18 = {2, 5, 6, 7}, X2,19 = {1, 2, 3, 4, 5}, X2,20 =
{1, 2, 3, 5, 6}, X2,21 = {1, 2, 5, 6, 7}, X2,22 = {2, 3, 4, 5, 6}, X2,23 = {2, 3, 5,
6, 7}, X2,24 = {1, 2, 3, 4, 5, 6}, X2,25 = {1, 2, 3, 5, 6, 7}, X2,26 = {2, 3, 4, 5,
6, 7}.

Denote by K2,j the poset S↑
X for S = M2 and X = X2,j . Then

K2,0
∼= AP2.8, K2,1

∼= AP2.2, K2,2
∼= AP op

2.9, K2,3
∼= AP2.17, K2,4

∼= AP op
2.17,

K2,5
∼= AP op

2.2, K2,6
∼= AP2.16, K2,7

∼= AP2.9, K2,8
∼= AP2.21, K2,9

∼= AP op
2.8,

K2,10
∼= AP2.5, K2,11

∼= AP op
2.11, K2,12

∼= AP2.15, K2,13
∼= AP op

2.6, K2,14
∼=

AP op
2.10, K2,15

∼= AP2.19, K2,16
∼= AP op

2.18; K2,17
∼= AP2.12, K2,18

∼= AP2.4,
K2,19

∼= AP2.14, K2,20
∼= AP2.13, K2,21

∼= AP2.22, K2,22
∼= AP2.20, K2,23

∼=
AP2.1, K2,24

∼= AP2.10, K2,25
∼= AP2.19, K2,26

∼= AP op
2.3.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M2 such that V ⊆ X and V < S \X: Y2,1 =
(X2,9, {2}), Y2,2 = (X2,14, {2}), Y2,3 = (X2,15, {2}), Y2,4 = (X2,19, {2}),
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Y2,5 = (X2,19, {5}), Y2,6 = (X2,19, {2, 5}), Y2,7 = (X2,20, {2}), Y2,8 =
(X2,21, {2}),Y2,9 =(X2,24, {2}),Y2,10 =(X2,24, {5}), Y2,11 =(X2,24, {2, 5}),
Y2,12 = (X2,24, {2, 5, 6}), Y2,13 = (X2,25, {2}), Y2,14 = (X2,25, {2, 3}).

Denote by K ′
2,j the poset (S

↑
X)↑V for S = M2 and (X,V ) = Y2,j . Then

K ′
2,1

∼= AP2.3, K
′
2,2

∼= AP op
2.20, K

′
2,3

∼= AP op
2.1, K

′
2,4

∼= AP2.18, K
′
2,5

∼= AP2.6,
K ′

2,6
∼= AP op

2.5, K ′
2,7

∼= AP op
2.12, K ′

2,8
∼= AP op

2.4, K ′
2,9

∼= AP2.11, K ′
2,10

∼=
AP op

2.21, K
′
2,11

∼= AP op
2.16, K

′
2,12

∼= AP2.7, K
′
2,13

∼= AP op
2.15, K

′
2,14

∼= AP2.7.

Step III. We have the same result as in case M1.

Proposition 6. The posets minimax equivalent to M3 are exhausted, up
to isomorphism and duality, by the posets 3.1, . . . , 3.24 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subposets of
M3: X3,0 = ∅, X3,1 = {1}, X3,2 = {2}, X3,3 = {3}, X3,4 = {5}, X3,5 =
{1, 2}, X3,6 = {1, 3}, X3,7 = {1, 5}, X3,8 = {2, 3}, X3,9 = {2, 5}, X3,10 =
{3, 5}, X3,11 = {1, 2, 3}, X3,12 = {1, 2, 5}, X3,13 = {1, 3, 5}, X3,14 =
{2, 3, 4}, X3,15 = {2, 3, 5}, X3,16 = {3, 5, 6}, X3,17 = {1, 2, 3, 4}, X3,18 =
{1, 2, 3, 5}, X3,19 = {1, 3, 5, 6}, X3,20 = {2, 3, 4, 5}, X3,21 = {2, 3, 5, 6},
X3,22 = {3, 5, 6, 7}, X3,23 = {1, 2, 3, 4, 5}, X3,24 = {1, 2, 3, 5, 6}, X3,25 =
{1, 3, 5, 6, 7}, X3,26 = {2, 3, 4, 5, 6}, X3,27 = {2, 3, 5, 6, 7}, X3,28 = {1, 2, 3,
4, 5, 6}, X3,29 = {1, 2, 3, 5, 6, 7}, X3,30 = {2, 3, 4, 5, 6, 7}.

Denote by K3,j the poset S↑
X for S = M3 and X = X3,j . Then

K3,0
∼= AP3.22, K3,1

∼= AP3.14, K3,2
∼= AP3.12, K3,3

∼= AP3.8, K3,4
∼=

AP3.7, K3,5
∼= AP3.1, K3,6

∼= AP3.17, K3,7
∼= AP3.2, K3,8

∼= AP3.11,
K3,9

∼= AP op
3.17, K3,10

∼= AP3.6, K3,11
∼= AP op

3.12, K3,12
∼= AP op

3.14, K3,13
∼=

AP op
3.7, K3,14

∼= AP3.4, K3,15
∼= AP op

3.8, K3,16
∼= AP3.13, K3,17

∼= AP op
3.20,

K3,18
∼= AP op

3.22, K3,19
∼= AP op

3.18, K3,20
∼= AP op

3.15, K3,21
∼= AP op

3.9, K3,22
∼=

AP3.3, K3,23
∼= AP op

3.24, K3,24
∼= AP op

3.23, K3,25
∼= AP op

3.21, K3,26
∼= AP op

3.10,
K3,27

∼= AP op
3.16, K3,28

∼= AP3.23, K3,29
∼= AP3.24, K3,30

∼= AP op
3.19.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M3 such that V ⊆ X and V < S \ X:
Y3,1 = (X3,18, {3}), Y3,2 = (X3,23, {3}), Y3,3 = (X3,23, {5}), Y3,4 =
(X3,23, {3, 5}), Y3,5 = (X3,24, {3}), Y3,6=(X3,28, {3}), Y3,7 = (X3,28, {5}),
Y3,8 = (X3,28, {3, 5}), Y3,9 = (X3,28, {3, 5, 6}), Y3,10 = (X3,29, {2}), Y3,11
= (X3,29, {3}), Y3,12 = (X3,29, {2, 3}).

Denote by K ′
3,j the poset (S↑

X)↑V for S = M3 and (X,V ) = Y3,j .
Then K ′

3,1
∼= AP3.19, K ′

3,2
∼= AP3.16, K ′

3,3
∼= AP3.21, K ′

3,4
∼= AP op

3.3,
K ′

3,5
∼= AP3.10, K ′

3,6
∼= AP3.9, K ′

3,7
∼= AP3.18, K ′

3,8
∼= AP op

3.13, K ′
3,9

∼=
AP3.5, K

′
3,10

∼= AP3.20, K
′
3,11

∼= AP3.15, K
′
3,12

∼= AP op
3.4.
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Step III. We have the same result as in case M1.

Proposition 7. The posets minimax equivalent to M4 are exhausted, up
to isomorphism and duality, by the posets 4.1, . . . , 4.15 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subposets of
M4: X4,0 = ∅, X4,1 = {1}, X4,2 = {2}, X4,3 = {3}, X4,4 = {1, 2}, X4,5 =
{1, 3}, X4,6 = {2, 3}, X4,7 = {3, 4}, X4,8 = {3, 6}, X4,9 = {1, 2, 3},
X4,10 = {1, 3, 4}, X4,11 = {1, 3, 6}, X4,12 = {2, 3, 4}, X4,13 = {2, 3, 6},
X4,14 = {3, 4, 6}, X4,15 = {1, 2, 3, 4}, X4,16 = {1, 2, 3, 6}, X4,17 = {1, 3, 4,
6}, X4,18 = {2, 3, 4, 5}, X4,19 = {2, 3, 4, 6}, X4,20 = {3, 4, 6, 7}, X4,21 =
{1, 2, 3, 4, 5}, X4,22 = {1, 2, 3, 4, 6}, X4,23 = {1, 3, 4, 6, 7}, X4,24 = {2, 3, 4,
5, 6}, X4,25 = {2, 3, 4, 6, 7}, X4,26 = {1, 2, 3, 4, 5, 6}, X4,27 = {1, 2, 3, 4, 6,
7}, X4,28 = {2, 3, 4, 5, 6, 7}.

Denote by K4,j the poset S
↑
X for S = M4 and X = X4,j . Then K4,0

∼=
AP4.14, K4,1

∼= AP4.11, K4,2
∼= AP4.10, K4,3

∼= AP4.13, K4,4
∼= AP op

4.2,
K4,5

∼= AP4.6, K4,6
∼= AP4.5, K4,7

∼= AP4.5, K4,8
∼= AP4.6, K4,9

∼= AP4.3,
K4,10

∼= AP4.7, K4,11
∼= AP4.8, K4,12

∼= AP4.4, K4,13
∼= AP4.7, K4,14

∼=
AP4.3, K4,15

∼= AP op
4.5, K4,16

∼= AP op
4.6, K4,17

∼= AP op
4.6, K4,18

∼= AP op
4.1,

K4,19
∼= AP op

4.5, K4,20
∼= AP4.2, K4,21

∼= AP op
4.9, K4,22

∼= AP op
4.13, K4,23

∼=
AP op

4.11, K4,24
∼= AP op

4.9, K4,25
∼= AP op

4.10, K4,26
∼= AP op

4.15, K4,27
∼= AP op

4.14,
K4,28

∼= AP op
4.12.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M4 such that V ⊆ X and V < S \X: Y4,1 =
(X4,9, {3}), Y4,2 = (X4,15, {3}), Y4,3 = (X4,16, {3}), Y4,4 = (X4,21, {3}),
Y4,5 = (X4,22, {3}), Y4,6 = (X4,22, {3, 4}), Y4,7 = (X4,26, {3}), Y4,8 =
(X4,26, {3, 4}), Y4,9 = (X4,26, {3, 6}), Y4,10 = (X4,26, {3, 4, 6}), Y4,11 =
(X4,27, {2}), Y4,12 = (X4,27, {3}), Y4,13 = (X4,27, {2, 3}), Y4,14 =
(X4,27, {3, 4}), Y4,15 = (X4,27, {2, 3, 4}).

Denote by K ′
4,j the poset (S↑

X)↑V for S = M4 and (X,V ) = Y4,j .
Then K ′

4,1
∼= AP4.2, K ′

4,2
∼= AP op

4.10, K ′
4,3

∼= AP op
4.11, K ′

4,4
∼= AP op

4.12,
K ′

4,5
∼= AP op

4.14, K
′
4,6

∼= AP4.12, K
′
4,7

∼= AP4.14, K
′
4,8

∼= AP4.10, K
′
4,9

∼=
AP4.11, K

′
4,10

∼= AP op
4.2, K

′
4,11

∼= AP4.12, K
′
4,12

∼= AP4.15, K
′
4,13

∼= AP4.9,
K ′

4,14
∼= AP4.9, K

′
4,15

∼= AP op
4.1.

Step III. We have the same result as in case M1.

Proposition 8. The posets minimax equivalent to M5 are exhausted, up
to isomorphism and duality, by the posets 5.1, . . . , 5.52 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subpo-
sets of M5: X5,0 = ∅, X5,1 = {1}, X5,2 = {2}, X5,3 = {5}, X5,4 =
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{1, 2}, X5,5 = {1, 5}, X5,6 = {2, 3}, X5,7 = {2, 5}, X5,8 = {5, 6}, X5,9 =
{1, 2, 3}, X5,10 = {1, 2, 5}, X5,11 = {1, 5, 6}, X5,12 = {2, 3, 4}, X5,13 =
{2, 3, 5}, X5,14 = {2, 5, 6}, X5,15 = {5, 6, 7}, X5,16 = {1, 2, 3, 4}, X5,17 =
{1, 2, 3, 5}, X5,18 = {1, 2, 5, 6}, X5,19 = {1, 5, 6, 7}, X5,20 = {2, 3, 4, 5},
X5,21 = {2, 3, 5, 6}, X5,22 = {2, 5, 6, 7}, X5,23 = {1, 2, 3, 4, 5}, X5,24 =
{1, 2, 3, 5, 6}, X5,25 = {1, 2, 5, 6, 7}, X5,26 = {2, 3, 4, 5, 6}, X5,27 = {2, 3, 5,
6, 7}, X5,28 = {2, 5, 6, 7, 8}, X5,29 = {1, 2, 3, 4, 5, 6}, X5,30 = {1, 2, 3, 5, 6,
7}, X5,31 = {1, 2, 5, 6, 7, 8}, X5,32 = {2, 3, 4, 5, 6, 7}, X5,33 = {2, 3, 5, 6, 7,
8}, X5,34 = {1, 2, 3, 4, 5, 6, 7}, X5,35 = {1, 2, 3, 5, 6, 7, 8}, X5,36 = {2, 3, 4,
5, 6, 7, 8}.

Denote by K5,j the poset S↑
X for S = M5 and X = X5,j . Then

K5,0
∼= AP5.21, K5,1

∼= AP5.4, K5,2
∼= AP op

5.22, K5,3
∼= AP5.29, K5,4

∼=
AP op

5.43, K5,5
∼= AP op

5.1, K5,6
∼= AP5.42, K5,7

∼= AP op
5.18, K5,8

∼= AP5.44,
K5,9

∼= AP5.50, K5,10
∼= AP op

5.28, K5,11
∼= AP op

5.3, K5,12
∼= AP5.11, K5,13

∼=
AP5.36, K5,14

∼= AP5.30, K5,15
∼= AP5.51, K5,16

∼= AP op
5.10, K5,17

∼= AP op
5.35,

K5,18
∼= AP op

5.26, K5,19
∼= AP op

5.9, K5,20
∼= AP op

5.49, K5,21
∼= AP op

5.20, K5,22
∼=

AP5.37, K5,23
∼= AP op

5.41, K5,24
∼= AP5.19, K5,25

∼= AP5.38, K5,26
∼= AP op

5.34,
K5,27

∼= AP5.25, K5,28
∼= AP5.8, K5,29

∼= AP op
5.24, K5,30

∼= AP op
5.31, K5,31

∼=
AP op

5.52, K5,32
∼= AP5.27, K5,33

∼= AP5.2, K5,34
∼= AP5.17, K5,35

∼= AP op
5.45,

K5,36
∼= AP op

5.5.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M5 such that V ⊆ X and V < S \ X:
Y5,1 = (X5,23, {5}), Y5,2 = (X5,25, {2}), Y5,3 = (X5,29, {5}), Y5,4 =
(X5,29, {5, 6}), Y5,5 = (X5,30, {2}), Y5,6=(X5,31, {2}), Y5,7 = (X5,34, {2}),
Y5,8 = (X5,34, {5}), Y5,9 = (X5,34, {2, 5}), Y5,10 = (X5,34, {5, 6}), Y5,11 =
(X5,34, {2, 5, 6}), Y5,12 = (X5,34, {5, 6, 7}), Y5,13 = (X5,34, {2, 5, 6, 7}),
Y5,14 = (X5,35, {2}), Y5,15 = (X5,35, {2, 3}).

Denote by K ′
5,j the poset (S↑

X)↑V for S = M5 and (X,V ) = Y5,j .
Then K ′

5,1
∼= AP op

5.16, K ′
5,2

∼= AP5.12, K ′
5,3

∼= AP5.46, K ′
5,4

∼= AP5.14,
K ′

5,5
∼= AP5.48, K ′

5,6
∼= AP op

5.7, K ′
5,7

∼= AP op
5.32, K ′

5,8
∼= AP5.23, K ′

5,9
∼=

AP5.33, K
′
5,10

∼= AP5.39, K
′
5,11

∼= AP5.47, K
′
5,12

∼= AP5.6, K
′
5,13

∼= AP op
5.13,

K ′
5,14

∼= AP op
5.40, K

′
5,15

∼= AP op
5.15.

Step III. As a result we have up to duality every poset indicated in
the proposition, but not have dual to them (a special class).

Proposition 9. The posets minimax equivalent to M6 are exhausted, up
to isomorphism and duality, by the posets 6.1, . . . , 6.30 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower of M6:
X6,0 = ∅, X6,1 = {1}, X6,2 = {2}, X6,3 = {5}, X6,4 = {1, 2}, X6,5 =
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{1, 5}, X6,6 = {2, 3}, X6,7 = {2, 5}, X6,8 = {5, 6}, X6,9 = {1, 2, 3},
X6,10 = {1, 2, 5}, X6,11 = {1, 5, 6}, X6,12 = {2, 3, 4}, X6,13 = {2, 3, 5},
X6,14 = {2, 5, 6}, X6,15 = {1, 2, 3, 4}, X6,16 = {1, 2, 3, 5}, X6,17 = {1, 2, 5,
6}, X6,18 = {2, 3, 4, 5}, X6,19 = {2, 3, 5, 6}, X6,20 = {2, 5, 6, 7}, X6,21 =
{1, 2, 3, 4, 5}, X6,22 = {1, 2, 3, 5, 6}, X6,23 = {1, 2, 5, 6, 7}, X6,24 = {2, 3, 4,
5, 6}, X6,25 = {2, 3, 5, 6, 7}, X6,26 = {2, 5, 6, 7, 8}, X6,27 = {1, 2, 3, 4, 5, 6},
X6,28 = {1, 2, 3, 5, 6, 7}, X6,29 = {1, 2, 5, 6, 7, 8}, X6,30 = {2, 3, 4, 5, 6, 7},
X6,31 = {2, 3, 5, 6, 7, 8}, X6,32 = {1, 2, 3, 4, 5, 6, 7}, X6,33 = {1, 2, 3, 5, 6, 7,
8}, X6,34 = {2, 3, 4, 5, 6, 7, 8}.

Denote by K6,j the poset S↑
X for S = M6 and X = X6,j . Then

K6,0
∼= AP6.13, K6,1

∼= AP6.3, K6,2
∼= AP op

6.14, K6,3
∼= AP6.16, K6,4

∼=
AP op

6.26, K6,5
∼= AP6.1, K6,6

∼= AP6.25, K6,7
∼= AP6.12, K6,8

∼= AP6.26,
K6,9

∼= AP6.29, K6,10
∼= AP op

6.16, K6,11
∼= AP op

6.3, K6,12
∼= AP6.7, K6,13

∼=
AP6.22, K6,14

∼= AP6.14, K6,15
∼= AP op

6.6, K6,16
∼= AP op

6.21, K6,17
∼= AP op

6.13,
K6,18

∼= AP op
6.28, K6,19

∼= AP6.11, K6,20
∼= AP6.23, K6,21

∼= AP op
6.24, K6,22

∼=
AP op

6.10, K6,23
∼= AP6.27, K6,24

∼= AP6.17, K6,25
∼= AP6.18, K6,26

∼= AP6.5,
K6,27

∼= AP6.15, K6,28
∼= AP6.20, K6,29

∼= AP6.30, K6,30
∼= AP6.19, K6,31

∼=
AP6.2, K6,32

∼= AP6.10, K6,33
∼= AP op

6.27, K6,34
∼= AP op

6.4.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M6 such that V ⊆ X and V < S \X: Y6,1 =
(X6,17, {2}), Y6,2 = (X6,21, {5}), Y6,3 = (X6,22, {2}), Y6,4 = (X6,23, {2}),
Y6,5 = (X6,27, {2}), Y6,6 = (X6,27, {5}), Y6,7 = (X6,27, {2, 5}), Y6,8 =
(X6,27, {5, 6}), Y6,9 = (X6,27, {2, 5, 6}), Y6,10 = (X6,28, {2}), Y6,11 =
(X6,29, {2}), Y6,12 = (X6,32, {2}), Y6,13 = (X6,32, {5}), Y6,14 = (X6,32, {2,
5}), Y6,15 = (X6,32, {5, 6}), Y6,16 = (X6,32, {2, 5, 6}), Y6,17 = (X6,32, {2, 5,
6, 7}), Y6,18 = (X6,33, {2}), Y6,19 = (X6,33, {2, 3}).

Denote by K ′
6,j the poset (S↑

X)↑V for S = M6 and (X,V ) = Y6,j .
Then K ′

6,1
∼= AP6.4, K

′
6,2

∼= AP6.9, K
′
6,3

∼= AP op
6.19, K

′
6,4

∼= AP op
6.2, K

′
6,5

∼=
AP op

6.17, K ′
6,6

∼= AP6.24, K ′
6,7

∼= AP6.28, K ′
6,8

∼= AP6.6, K ′
6,9

∼= AP op
6.7,

K ′
6,10

∼= AP op
6.18, K

′
6,11

∼= AP op
6.5, K

′
6,12

∼= AP op
6.11, K

′
6,13

∼= AP6.21, K
′
6,14

∼=
AP op

6.22, K
′
6,15

∼= AP op
6.29, K

′
6,16

∼= AP op
6.25, K

′
6,17

∼= AP6.8, K
′
6,18

∼= AP op
6.23,

K ′
6,19

∼= AP op
6.8.

Step III. We have the same result as in case M1.

Proposition 10. The posets minimax equivalent to M7 are exhausted,
up to isomorphism and duality, by the posets 7.1, . . . , 7.31 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subposets
of M7: X7,0 = ∅, X7,1 = {1}, X7,2 = {2}, X7,3 = {5}, X7,4 = {1, 2},
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X7,5 = {1, 5}, X7,6 = {2, 3}, X7,7 = {2, 5}, X7,8 = {1, 2, 3}, X7,9 =
{1, 2, 5}, X7,10 = {2, 3, 4}, X7,11 = {2, 3, 5}, X7,12 = {2, 5, 6}, X7,13 =
{1, 2, 3, 4}, X7,14 = {1, 2, 3, 5}, X7,15 = {1, 2, 5, 6}, X7,16 = {2, 3, 4, 5},
X7,17 = {2, 3, 5, 6}, X7,18 = {2, 5, 6, 7}, X7,19 = {1, 2, 3, 4, 5}, X7,20 =
{1, 2, 3, 5, 6}, X7,21 = {1, 2, 5, 6, 7}, X7,22 = {2, 3, 4, 5, 6}, X7,23 = {2, 3, 5,
6, 7}, X7,24 = {1, 2, 3, 4, 5, 6}, X7,25 = {1, 2, 3, 5, 6, 7}, X7,26 = {2, 3, 4, 5,
6, 7}, X7,27 = {2, 3, 5, 6, 7, 8}, X7,28 = {1, 2, 3, 4, 5, 6, 7}, X7,29 = {1, 2, 3,
5, 6, 7, 8}, X7,30 = {2, 3, 4, 5, 6, 7, 8}.

Denote by K7,j the poset S↑
X for S = M7 and X = X7,j . Then

K7,0
∼= AP7.16, K7,1

∼= AP7.4, K7,2
∼= AP7.19, K7,3

∼= AP7.22, K7,4
∼=

AP op
7.29, K7,5

∼= AP7.6, K7,6
∼= AP op

7.16, K7,7
∼= AP7.12, K7,8

∼= AP7.30,
K7,9

∼= AP7.17, K7,10
∼= AP7.7, K7,11

∼= AP op
7.11, K7,12

∼= AP7.25, K7,13
∼=

AP op
7.3, K7,14

∼= AP op
7.18, K7,15

∼= AP7.23, K7,16
∼= AP op

7.21, K7,17
∼= AP7.13,

K7,18
∼= AP op

7.31, K7,19
∼= AP op

7.15, K7,20
∼= AP7.14, K7,21

∼= AP7.28, K7,22
∼=

AP7.27, K7,23
∼= AP7.15, K7,24

∼= AP op
7.13, K7,25

∼= AP7.18, K7,26
∼= AP7.21,

K7,27
∼= AP7.3, K7,28

∼= AP7.11, K7,29
∼= AP op

7.30, K7,30
∼= AP op

7.7.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M2 such that V ⊆ X and V < S \X: Y7,1 =
(X7,9, {2}), Y7,2 = (X7,18, {2}), Y7,3 = (X7,19, {2}), Y7,4 = (X7,19, {5}),
Y7,5 = (X7,19, {2, 5}), Y7,6 = (X7,20, {2}), Y7,7 = (X7,21, {2}), Y7,8 =
(X7,24, {2}), Y7,9 = (X7,24, {5}), Y7,10 = (X7,24, {2, 5}), Y7,11 = (X7,24, {2,
5, 6}), Y7,12 = (X7,25, {2}), Y7,13 = (X7,25, {2, 3}), Y7,14 = (X7,28, {2}),
Y7,15 = (X7,28, {5}), Y7,16=(X7,28, {2, 3}), Y7,17 = (X7,28, {2, 5}), Y7,18 =
(X7,28, {2, 3, 5}), Y7,19 = (X7,28, {2, 5, 6}), Y7,20 = (X7,28, {2, 3, 5, 6}),
Y7,21 = (X7,28, {2, 5, 6, 7}), Y7,22 = (X7,28, {2, 3, 5, 6, 7}), Y7,23 = (X7,29,
{2}), Y7,24 = (X7,29, {2, 3}).

Denote by K ′
7,j the (S↑

X)↑V for S = M7 and (X,V ) = Y7,j . Then
K ′

7,1
∼= AP7.5, K

′
7,2

∼= AP op
7.28, K

′
7,3

∼= AP7.31, K
′
7,4

∼= AP7.8, K
′
7,5

∼= AP op
7.2,

K ′
7,6

∼= AP op
7.23, K

′
7,7

∼= AP op
7.5, K

′
7,8

∼= AP op
7.25, K

′
7,9

∼= AP op
7.26, K

′
7,10

∼=
AP op

7.20, K
′
7,11

∼= AP7.9, K
′
7,12

∼= AP op
7.17, K

′
7,13

∼= AP op
7.6, K

′
7,14

∼= AP op
7.12,

K ′
7,15

∼= AP op
7.24, K

′
7,16

∼= AP op
7.22, K

′
7,17

∼= AP7.10, K
′
7,18

∼= AP7.24, K
′
7,19

∼=
AP7.20, K

′
7,20

∼= AP7.26, K
′
7,21

∼= AP7.2, K
′
7,22

∼= AP op
7.8, K

′
7,23

∼= AP7.29,
K ′

7,24
∼= AP op

7.4.

Step III. We have the same result as in case M1.

Proposition 11. The posets minimax equivalent to M8 are exhausted,
up to isomorphism and duality, by the posets 8.1, . . . , 8.30 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower of M8:
X8,0 = ∅, X8,1 = {1}, X8,2 = {2}, X8,3 = {3}, X8,4 = {5}, X8,5 = {1, 2},
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X8,6 = {1, 3}, X8,7 = {1, 5}, X8,8 = {2, 3}, X8,9 = {2, 5}, X8,10 =
{3, 5}, X8,11 = {1, 2, 3}, X8,12 = {1, 2, 5}, X8,13 = {1, 3, 5}, X8,14 =
{2, 3, 4}, X8,15 = {2, 3, 5}, X8,16 = {3, 5, 6}, X8,17 = {1, 2, 3, 4}, X8,18 =
{1, 2, 3, 5}, X8,19 = {1, 3, 5, 6}, X8,20 = {2, 3, 4, 5}, X8,21 = {2, 3, 5, 6},
X8,22 = {3, 5, 6, 7}, X8,23 = {1, 2, 3, 4, 5}, X8,24 = {1, 2, 3, 5, 6}, X8,25 =
{1, 3, 5, 6, 7}, X8,26 = {2, 3, 4, 5, 6}, X8,27 = {2, 3, 5, 6, 7}, X8,28 = {3, 5, 6,
7, 8}, X8,29 = {1, 2, 3, 4, 5, 6}, X8,30 = {1, 2, 3, 5, 6, 7}, X8,31 = {1, 3, 5, 6,
7, 8}, X8,32 = {2, 3, 4, 5, 6, 7}, X8,33 = {2, 3, 5, 6, 7, 8}, X8,34 = {1, 2, 3, 4,
5, 6, 7}, X8,35 = {1, 2, 3, 5, 6, 7, 8}, X8,36 = {2, 3, 4, 5, 6, 7, 8}.

Denote by K8,j the poset S↑
X for S = M8 and X = X8,j . Then

K8,0
∼= AP8.28, K8,1

∼= AP8.18, K8,2
∼= AP8.16, K8,3

∼= AP8.9, K8,4
∼=

AP8.8, K8,5
∼= AP8.1, K8,6

∼= AP8.21, K8,7
∼= AP8.2, K8,8

∼= AP8.15,
K8,9

∼= AP op
8.21, K8,10

∼= AP8.6, K8,11
∼= AP op

8.16, K8,12
∼= AP op

8.18, K8,13
∼=

AP op
8.8, K8,14

∼= AP8.4, K8,15
∼= AP op

8.9, K8,16
∼= AP8.10, K8,17

∼= AP op
8.25,

K8,18
∼= AP op

8.28, K8,19
∼= AP op

8.12, K8,20
∼= AP op

8.19, K8,21
∼= AP8.7, K8,22

∼=
AP8.17, K8,23

∼= AP op
8.30, K8,24

∼= AP op
8.27, K8,25

∼= AP op
8.22, K8,26

∼= AP op
8.13,

K8,27
∼= AP8.11, K8,28

∼= AP8.3, K8,29
∼= AP8.29, K8,30

∼= AP op
8.29, K8,31

∼=
AP op

8.26, K8,32
∼= AP op

8.14, K8,33
∼= AP op

8.20, K8,34
∼= AP8.27, K8,35

∼= AP8.30,
K8,36

∼= AP op
8.24.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M8 such that V ⊆ X and V < S \ X:
Y8,1 = (X8,18, {3}), Y8,2 = (X8,23, {3}), Y8,3 = (X8,23, {5}), Y8,4 =
(X8,23, {3, 5}), Y8,5 = (X8,24, {3}), Y8,6=(X8,29, {3}), Y8,7 = (X8,29, {5}),
Y8,8 = (X8,29, {3, 5}), Y8,9 = (X8,29, {3, 5, 6}), Y8,10 = (X8,30, {3}), Y8,11
= (X8,34, {3}), Y8,12 = (X8,34, {5}), Y8,13 = (X8,34, {3, 5}), Y8,14 = (X8,34,
{3, 5, 6}), Y8,15 = (X8,34, {3, 5, 6, 7}), Y8,16 = (X8,35, {2}), Y8,17 = (X8,35,
{3}), Y8,18 = (X8,35, {2, 3}).

Denote by K ′
8,j the (S↑

X)↑V for S = M8 and (X,V ) = Y8,j . Then
K ′

8,1
∼= AP8.24, K ′

8,2
∼= AP8.20, K ′

8,3
∼= AP8.26, K ′

8,4
∼= AP op

8.3, K ′
8,5

∼=
AP8.14, K ′

8,6
∼= AP op

8.11, K ′
8,7

∼= AP8.22, K ′
8,8

∼= AP op
8.17, K ′

8,9
∼= AP op

8.5,
K ′

8,10
∼= AP8.13, K

′
8,11

∼= AP op
8.7, K

′
8,12

∼= AP8.12, K
′
8,13

∼= AP op
8.10, K

′
8,14

∼=
AP8.23, K

′
8,15

∼= AP8.5, K
′
8,16

∼= AP8.25, K
′
8,17

∼= AP8.19, K
′
8,18

∼= AP op
8.4.

Step III. We have the same result as in case M1.

Proposition 12. The posets minimax equivalent to M9 are exhausted,
up to isomorphism and duality, by the posets 9.1, . . . , 9.31 (see Table 2).

Proof. Step I. Describe, up to strong isomorphism, all lower subposets of
M9: X9,0 = ∅, X9,1 = {1}, X9,2 = {2}, X9,3 = {3}, X9,4 = {1, 2}, X9,5 =
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{1, 3}, X9,6 = {2, 3}, X9,7 = {3, 4}, X9,8 = {3, 6}, X9,9 = {1, 2, 3},
X9,10 = {1, 3, 4}, X9,11 = {1, 3, 6}, X9,12 = {2, 3, 4}, X9,13 = {2, 3, 6},
X9,14 = {3, 4, 6}, X9,15 = {1, 2, 3, 4}, X9,16 = {1, 2, 3, 6}, X9,17 = {1, 3, 4,
6}, X9,18 = {2, 3, 4, 5}, X9,19 = {2, 3, 4, 6}, X9,20 = {3, 4, 6, 7}, X9,21 =
{1, 2, 3, 4, 5}, X9,22 = {1, 2, 3, 4, 6}, X9,23 = {1, 3, 4, 6, 7}, X9,24 = {2, 3, 4,
5, 6}, X9,25 = {2, 3, 4, 6, 7}, X9,26 = {3, 4, 6, 7, 8}, X9,27 = {1, 2, 3, 4, 5, 6},
X9,28 = {1, 2, 3, 4, 6, 7}, X9,29 = {1, 3, 4, 6, 7, 8}, X9,30 = {2, 3, 4, 5, 6, 7},
X9,31 = {2, 3, 4, 6, 7, 8}, X9,32 = {1, 2, 3, 4, 5, 6, 7}, X9,33 = {1, 2, 3, 4, 6, 7,
8}, X9,34 = {2, 3, 4, 5, 6, 7, 8}.

Denote by K9,j the poset S↑
X for S = M9 and X = X9,j . Then

K9,0
∼= AP9.29, K9,1

∼= AP9.22, K9,2
∼= AP9.19, K9,3

∼= AP9.26, K9,4
∼=

AP op
9.3, K9,5

∼= AP9.13, K9,6
∼= AP9.10, K9,7

∼= AP9.6, K9,8
∼= AP9.7,

K9,9
∼= AP9.8, K9,10

∼= AP9.15, K9,11
∼= AP9.17, K9,12

∼= AP9.9, K9,13
∼=

AP op
9.15, K9,14

∼= AP9.5, K9,15
∼= AP op

9.10, K9,16
∼= AP op

9.13, K9,17
∼= AP op

9.7,
K9,18

∼= AP9.1, K9,19
∼= AP op

9.6, K9,20
∼= AP9.11, K9,21

∼= AP op
9.20, K9,22

∼=
AP op

9.26, K9,23
∼= AP op

9.16, K9,24
∼= AP op

9.12, K9,25
∼= AP9.14, K9,26

∼= AP9.2,
K9,27

∼= AP op
9.31, K9,28

∼= AP op
9.27, K9,29

∼= AP op
9.23, K9,30

∼= AP op
9.18, K9,31

∼=
AP op

9.21, K9,32
∼= AP op

9.28, K9,33
∼= AP op

9.30, K9,34
∼= AP9.25.

Step II. Describe, up to strong isomorphism, all pairs (X,V ) of
proper lower subposets in M2 such that V ⊆ X and V < S \X: Y9,1 =
(X9,9, {3}), Y9,2 = (X9,15, {3}), Y9,3 = (X9,16, {3}), Y9,4 = (X9,21, {3}),
Y9,5 = (X9,22, {3}), Y9,6 = (X9,22, {3, 4}), Y9,7 = (X9,27, {3}), Y9,8 =
(X9,27, {3, 4}), Y9,9 = (X9,27, {3, 6}), Y9,10 = (X9,27, {3, 4, 6}), Y9,11 =
(X9,28, {3}), Y9,12 = (X9,28, {3, 4}), Y9,13 = (X9,32, {3}), Y9,14 = (X9,32,
{3, 4}), Y9,15 = (X9,32, {3, 6}), Y9,16 = (X9,32, {3, 4, 6}), Y9,17 = (X9,32,
{3, 4, 6, 7}), Y9,18 = (X9,33, {2}), Y9,19 = (X9,33, {3}), Y9,20 = (X9,33, {2,
3}), Y9,21 = (X9,33, {3, 4}), Y9,22 = (X9,33, {2, 3, 4}).

Denote by K ′
9,j the poset (S

↑
X)↑V for S = M9 and (X,V ) = Y9,j . Then

K ′
9,1

∼= AP9.3, K ′
9,2

∼= AP op
9.19, K ′

9,3
∼= AP op

9.22, K ′
9,4

∼= AP op
9.21, K ′

9,5
∼=

AP op
9.29, K

′
9,6

∼= AP9.25, K
′
9,7

∼= AP9.30, K
′
9,8

∼= AP9.21, K
′
9,9

∼= AP9.23,
K ′

9,10
∼= AP op

9.2, K
′
9,11

∼= AP9.28, K
′
9,12

∼= AP9.18, K
′
9,13

∼= AP9.27, K
′
9,14

∼=
AP op

9.14, K
′
9,15

∼= AP9.16, K
′
9,16

∼= AP op
9.11, K

′
9,17

∼= AP9.4, K
′
9,18

∼= AP9.21,
K ′

9,19
∼= AP9.31, K

′
9,20

∼= AP9.20, K
′
9,21

∼= AP9.12, K
′
9,22

∼= AP op
9.1.

Step III. We have the same result as in case M1.

Propositions 4–12 provide a complete classification up to isomorphism
and duality of essential almost positive posets (see Table 2).
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Table 1. The near-positive posets aPi.j.
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q qqq
q
q��

� q
q4.24

q qq qq�

q
�

q
q�

4.25

q qqq qq
��
��

qq4.26

q qqq
q q
��
�

qq4.27

q qqq
q q
��

�
�
�
��qq4.28 sd
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Table 2. The essential almost positive posets APi.j.

N=247

q qq qq q
�
@

1.1 sd

q qq qqq
�
�
@
�
�

1.2

q qq qqq
�@

1.3

qqqq qq
�
�
@

1.4 sd

q qq qqq
�
�
@

1.5

q qq qqq��
�

1.6

q qq qqq�
�@
@

1.7

q qq qqq
�
�
H

H

1.8

q qq qqq
�
�
@
@

1.9

q qqq
qq

�
�
�

�
�

1.10

q q qqq q��

1.11

q q qqqq���
�

1.12 sd

qqq qqqq�
�

2.1

qqq qqqq�

�

2.2

qqq qqqq�
�

2.3

q qq qqq
q

�
��
�

2.4

qqq
qqqq�

�
�

2.5

qqq
qqqq�

�
�

2.6

qqq qqq
q

�
��
�

�

2.7

q qqq qqq�

2.8

q qqq qqq�
�

2.9

q qq qqqq
��

2.10

q qq qqqq
�
�
�

2.11

q qq qqqq
�
��
�

2.12

q qq qqqq
��

�HH

2.13 sd qqqq qq
q

�

2.14 sd

q qq qqq
q

�
��
�

2.15

q qqq qq
q

�

�

2.16

q qq
q qqq

�
�
��

�

2.17

q qq
q qqq

�
�
��
�

2.18

q qq
q
qqq

�
�
��
�

2.19

q qqq qqq
�
��
�

2.20

q qqq
qqq

�
�
���

�
�

2.21

q qq
qq qq

�
�
��
�
�
��

2.22 sd

qq
q qqqq�

@

3.1 sd

qq
q qqqqJJ



3.2 sd

q qq qqq
q

�
�
@
�
�

3.3

q qq qqq
q

�
�
��

@
�
�
��

3.4

q q
q qqq

q




JJ





JJ

3.5 sd

q qqq qqq�
�
@

3.6 sd

q qq qqqq
�
�
@

3.7

q qq qqqq
�@

3.8

q qq qqqq
�
�
@
@

3.9

q qq qqqq
�
�
@
@

3.10

qqq qqq
q

�
�
��

@

3.11 sd

q qq
q qqq

�
�
��

@

3.12

q qq qqq
q

�
��
�

@

3.13

q qq qqq
q

�
�
�

�

3.14

q qq qqq
q

�
�
@
@

3.15

q qq qqq
q

�
�
��@
@

3.16

q
qq qqqq

�
�
�

HH

3.17

q qqqq qq
�
�
J
J





3.18

q qq qqqq
�
��
�@
@

3.19

q qqq
q qq

�
�

A
A

�
�

3.20

q qqq
q qq

�
�
��
A
A
�

3.21

q q qqqq q��

3.22

q q qqqq q
�
�

�
�

�

3.23

q q
qqqq

q
�
�
��

�
�

3.24

qqq qqqq�
�A
A

�

4.1

qqq qqqq@

�
�

4.2

q qq qqqq
�
@

4.3 sd

q qq qqqq
�
�A
A

4.4 sd

q qq qqqq
�

A
A

4.5

q qq qqqq
�
�
�

4.6

qq q qqqq
�

@
@

4.7 sd

q qqq qqq
�
�
�

�

4.8 sd

q qq qqq
q

�
�
@

A
A

4.9

q qq qqq
q

�
�
��

@
@

4.10

q qq
qqqq

�
��
�

�

4.11

q qqq
qqq

��
�

�
�

4.12

q q qqqq q���

4.13
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q q qqqq q
��

��

4.14

q q qq qq q�
�

�
�

4.15

qqq qqqq
q
�
�
�

5.1

qqq qqqq
q

�
�
�
��

5.2

qqq qqqq
q

�
��
�
��

5.3

qqq qqqq
q

�
�
���
�

5.4

qqq qqq
q q
�

�
�

5.5

q qq qqq
qq

�
�
�

5.6

q qqq
qqqq

�
�
�
��

5.7

q qqq
qqqq

�
��
�
�
�

5.8

q qqq
qqqq

�
�
��

�
�
�
�

5.9

q qq qqq
q

q��
5.10

q qqq qqqq��
5.11

q qqqq qq
q����
�

5.12

q qqqq qq
q��
�

5.13

qqq qqq
qq

�
�
�
�

5.14

qqq qqq
qq

�
�
�
�
��

5.15

qqq
q qqq
q

�
�

�
�

5.16

q qq qqqqq
�

5.17

q qq qqqqq
��

5.18

q qq qqqqq
�
�
�
�

5.19

q qq qqqqq�
�
�

5.20

q qq qqq
qq

�
�
��

5.21

q qq qqqq q
�

5.22

q qq qqq
qq

�
�
�

5.23

q qqq qq
qq�

�

5.24

q qq qqq
qq

�
�
�

5.25

q qq qqq
qq

�
�
�
�

5.26

q qq
q qqqq

�
�
�

5.27

q qq
q qqqq

�
�
�

5.28

q qq
q qqqq

�
�
��

�
�

5.29

q qq qqq
qq

�
�

�

5.30

q qq qq
qq q

�
�
��

�

5.31

q qq
qqqqq

�
�

5.32

q qq qqqqq�
�
�
�

5.33

q
qq qqqqq����

5.34

q
qq qqqqq

�
�
�

5.35

q
qq qqqqq��
�

5.36

q qq qqq
qq

�
�

5.37

q qq qqq
qq

�
�
��

5.38

q qq qqq
qq

�
�
�

5.39

q qq qqq
qq

�
�
�
��

5.40

q qq
q
qq
qq

�
�

5.41

q qq
q
q

q qq��
5.42

q qq
q q
q qq

�
�
�

5.43

q qq
q q
q

qq
�
�
��

�

5.44

q qq
q q
q

qq
�
�
�
�

�

5.45

q qq
q
qqqq

�
�
�
�

5.46

q qq
q
qqqq

�
�
�
�
�

5.47

q qq
q
qqqq

�
�
�
�
�
��

5.48

q qq
q qqqq

�
�
���
�

5.49

q
q
qqq
qqq

�
�
�
��
�

5.50

q qq
q qqqq

�
�
��

�
�
�
�
��

5.51

q qq
q qqqq

�
�
�
�

�
�
�
�
��

5.52

qqq qqqq
q
�

�

6.1 sd

qqq qq
q
q�

�
�q

6.2

qqq
qqqq�
�
�
�q

6.3

qqq qq
qq

�

�q
6.4

q qq q
q
qq

�
��
�
��q

6.5

qqq
qqqq�

�
�

q6.6

qqq
q
qq
q

�

�

q6.7

qqq qqq
q

�
��
�
��

�

q6.8

qqq
qqqqq

�
�
�
�
�

6.9 sd

q qq qqqq
��

�q
6.10
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qqqqq q q�
�
q

6.11

q qq qqqqq
�
�

�

6.12 sd

q qqq
qqq�

�q
6.13

q qqq qqq�
�

q6.14 qqqq qq
q

�q
6.15 sd

q qq
q qqq

�
�
��

�q
6.16

qqq
q

qq q
�
�

q6.17

q qq qq
qq

�
��

�

�

q6.18

q qqq qqq
�
��
�

�

q
6.19

q qq qq
qq

��
�
��

HH

q
6.20 sd

q qqq qq
q

��
�
�q

6.21

qq qq qq
q

��

�q
6.22

q qq qqq
q

�
��
�
��q6.23

q qq
q
qq
qq��

�

6.24

q qq
q
qq

qq�
�

6.25

q qq
q q
q qq

�
�
��

�

6.26

q qq
q
qqq

�
�
�
�

�

q
6.27

q qq
q qqqq

�
�
���
�

�

6.28

q qqq
qqq

�
�
�
��

�
�q

6.29

q qq
qq q
q

�
�
�
�

�
�
�
�q

6.30 sd

q
qq q
qqqq

�

�
�

7.1 sd

q
qq qq qq

�

�
�q

7.2

q
qq qq qq��

�

�

q7.3 q
qq qq qq��
�

�
�
q

7.4

q
qq q
qqq���
�

�
�q

7.5 q
qq q

q qq�
�

�
q

7.6 q
qq q

q q
q�
�
�q

7.7 qqq q
q qq�
�

�
q

7.8

qq
q
qqqq

�
�

�
q�

7.9 sd

qq qqq qq
�q�

7.10 sd

qqq qqqq
�
�
�q

7.11

q qq qqqq
�
�
�
�
q

7.12

q qq qqq q
�
��
�

q
7.13

q qq qqqq
�
�
�
�HH

q
7.14 sd

qqqq
qqq

�q �

7.15

qqqqq qq�

q
�
�

7.16

qqqq
qqq

�
�

q
�
�

7.17

qq qq
qq q
�
�
�q

7.18 q
qqqqq q

�
�
��

�q
7.19 sd

qqqq
qqq

�q��
7.20

qqqq qqq
�
�
��
�
�q

7.21

qqqq
qqq�������

q7.22

q qq qq
q q

�
�
��
�
�

q
7.23

q qqq qq
q

�
�
�
�

q
7.24

q qqq qq
q

�
��
�

�q
7.25

qqqq qqq
�
�
��
�
�q�

7.26

qqqq qq
q

�
�
�
�

q
�
�

7.27 sd

qq
q
qq q

q
�
�
��

�
�
q

7.28

qq q
q

q q
q

�
�
�
�

�
�q

7.29

qq qq
q q
q

�
�
�
�

�
�

�q

7.30

qq qqqq
q

�
�
�
�

�
�q

7.31

qq
q
q
qqq�

@q
8.1 sd

qq
q
q
qqq�
�

A
A

q
8.2 sd

q qq qqq
q

�
�
@
�
�

q8.3

q qq q
q
qq

�
�
�
�

@
�
�
�
�q

8.4

q q
q qqq

q




JJ






J
J

q8.5

q qqq qqq�
�
@

q8.6 sd

q qq qqqqqA
A�
�

8.7

q qq qqqq
�
�
@

q8.8

q qq qqqq
�@

q8.9

q qq qqq
q

�
��
�

@
q

8.10

q qq qq
qq

@�
�q

8.11

q qq qqqqq
�
�




JJ

8.12

q qq qqqq
�
�

@
@

q8.13

q qq qqq qq��
�
�@
@

8.14

qqq qqq
q

�
�
�
�

@

q8.15 sd

q qq
q
qqq

�
�
�
�

@

q8.16

q qq qqq
q

�
��
�

@

q8.17

q qq qqq
q

�
�
�
��

�

q8.18

q qq qqq
q

�
�
@
@

q8.19

q
qq

qq
qq

�
�
�
�
@
@q

8.20

q
q

q qqqq
�

�
�
��

HH

q8.21
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q
qqqq qq

�
�
��
JJ



q

8.22

q qq qqq
qq









J
J

JJ

8.23 sd

q
qq qqqq

�
�
��

�
�
��@
@q

8.24

q qqq
q
qq

�
�

C
C
C
C

�

q8.25

q qqq
q qq

�
�
�
�
A
A
�

q8.26

q q qqqq q
�
�

�
�

�

q
8.27

q q qqqq q��

q
8.28

q q qqqq q
�

�
�
��

�

q
8.29

q q
qqqq

q
�
�
��

�
�

q8.30

qqq qqqq�
�
��

A
A

�
�
q9.1

qqq qqqq@

�
�

q9.2

qqq qq
q
q

q�
�

@

9.3

qqq qq
qq

@

�
�

q
@

9.4 sd

q qqq qqq q
�
@

9.5 sd

q qq qqqqq A
A�

9.6

q qq qqqqq
��

�

9.7

q qq qq
qq

�

@q9.8 sd

q qq qq
qq

�
�
��

A
A

q9.9 sd

q qq qqqqq B
B
BB�

9.10

q qqq qq
qq

�
@

�

9.11

q
qq qq

qqq
�
�
@

A
A

9.12

q qq qq
qqq

��
�
�

9.13

q qq qqqqq
@

�
�

9.14

qq
qq qqqq

�
�
�

@
@

9.15

qq q qqqq
q

�
�
�

�
�

9.16

q qqq qqqq
�
�
�
�
�

9.17 sd

q qqq qq qq
�
�
�

A
A

9.18

q
q
qqq qqq

�
�
�
�

�
@

9.19

q
q
qqq qqq

�
�
�

B
B
BB

9.20

q
qq
qq

qqq
�
�
�
�

�
@

9.21

q qq qqq qq
�
�
�
�
�
�

9.22

q
qq qqqq
q

�
�
��
�
�
�

9.23

q
q

qqq qq q
�
�
�

�

9.24

q
qqqq qqq��

�

�

9.25

q q qqqq qq���

9.26

q q qqqq qq
��

�
�

�

9.27

q q qqqq qq
���

� �

9.28

q q qqqq qq
��

��

9.29

q q
q

qqq qq
�

�
�
��
�

9.30

q q qq qq q
q

�
�

�
�

9.31
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