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Abstract. In this paper, we consider the monoid DORIn

consisting of all monotone and order-decreasing partial injective
transformations, I(n, p) = {α ∈ DORIn : | Im α| ≤ p} the two-
sided ideal of DORIn, and RQp(n) the Rees quotient of I(n, p) on
a chain with n elements. We calculate the cardinality of DORIn,
characterize the Green’s relations and their starred analogue for
any structure S ∈ {DORIn, I(n, p), RQp(n)}. We demonstrate
that for any structure S among {DORIn, I(n, p), RQp(n)}, the
structure is abundant for all values of n; specifically, DORIn is
shown to be an ample monoid, and compute the rank of the Rees
quotient RQp(n) and the two-sided ideal I(n, p); as a special case,
we obtain the rank of the monoid DORIn to be 3n − 2. Finally,
we characterize all the maximal subsemigroups of the structure S
among {DORIn, I(n, p), RQp(n)}.

Introduction

For a natural number n, let [n] denote an n element chain {1, 2, . . . , n}.
Let In be the set of all injective partial transformations on [n]. This
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collection is known as the symmetric inverse semigroup. A map ρ ∈ In
is called order decreasing if (for all x ∈ Dom ρ) xρ ≤ x; an isotone
map (resp., an anti-tone map) if (for all a, b ∈ Dom ρ) a ≤ b implies
aρ ≤ bρ (resp., aρ ≥ bρ). The notations DIn and OIn usually denote
the semigroup of all order-decreasing injective partial transformations on
[n] and the semigroup of all isotone injective partial transformations on
[n], respectively. Moreover, let DORPn be the monoid of all monotone
and decreasing partial transformations on [n]. The monoid DORPn first
appeared in [33], where its rank and that of its two-sided ideals where
computed. Furthermore, let ICn denote the semigroup of all isotone and
order-decreasing injective partial transformations on [n]. The order of
ICn was obtained in [6, Theorem 14.2.8], as cn+1, where

cn =
1

n

(
2n

n− 1

)
(1)

is known as the n-th Catalan number. The moinoid ICn is referred to as
the injective partial Catalan monoid defined as:

ICn = OIn ∩ DIn. (2)

The monoids ICn, OIn and DIn have been widely studied in various
contexts, see for example [3, 6, 8, 17,20,23,25,27,29,33].

Now let

DORIn = DORPn ∩ In (3)

be the monoid of all monotone and decreasing injective partial transfor-
mations on [n]. The monoid DORIn seems not to have been discussed
in the existing literature. In this article, we are going to investigate or-
der, rank and some algebraic properties of the monoid DORIn, as well
as the rank of its two-sided ideals I(n, p) and their Rees quotients.

Remark 1. Notice that for 0 ≤ n ≤ 2, DORIn = ICn.

The product (or composition) of two transformations ρ and σ in In
is defined as a(ρ ◦ σ) = ((a)ρ)σ for all a ∈ Dom ρ. To prevent confusion,
we will use the notation ρσ to denote ρ ◦ σ. Additionally, we will adopt
the following notations: F (ρ) = {x ∈ Dom ρ : xρ = x} for the set of
fixed points of ρ, f(ρ) for the number of fixed points of ρ (i.e., |F (ρ)|),
id[n] for the identity transformation on [n], Im ρ for the image set of the
transformation ρ, Dom ρ for the domain set of the map ρ, b(ρ) = |Dom ρ|
and h(ρ) = | Im ρ| for the height of ρ. A subset A of [n] is called convex
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if, for any a, b ∈ A such that a ≤ b, and for any c ∈ [n], if a < c < b, then
c ∈ A. An element a ∈ S is called an idempotent if a2 = a, the collection
of all idempotents in S shall as usual be denoted by E(S).

Now, for 1 ≤ p ≤ n, let

I(n, p) = {ρ ∈ DORIn : | Im ρ| ≤ p}, (4)

be the two-sided ideal of DORIn consisting of all monotone and decreas-
ing injective partial functions with a height of at most p. Moreover, for
1 ≤ p ≤ n, let

RQn(p) = I(n, p)/I(n, p− 1); (5)

denote the Rees quotient of I(n, p). The elements of RQn(p) can be
viewed as the elements of DORIn that have an exact height of p. The
composition of two elements in RQn(p) is 0 if their product in RQn(p)
has a height that is strictly below p; else, it remains in RQn(p).

In this article, we are going to characterize the Green’s equivalences
and their starred counterpart, and compute the ranks of the monoid
DORIn and its two-side ideals. For more details about basic concepts
in semigroup theory, we recommend that the reader consult the books
[11,15] by Howie and Higgins, respectively.

This section includes definitions of fundamental terms, and we com-
pute the order of the monoid DORIn. In Section 2, we explore all
of Green’s relations and their starred counterparts within the monoid
DORIn and its two-sided ideal I(n, p). Additionally, we show that both
the monoid DORIn and its two-sided ideals are abundant semigroups;
in particular, we demonstrate that DORIn is an ample monoid. Sec-
tion 3 focuses on determining the rank of the Rees quotient semigroup
RQn(p), the two-sided ideal I(n, p), and the monoid DORIn. Finally,
in Section 4, we characterize all the maximal subsemigroups of the Rees
quotients RQn(p), the two-sided ideal I(n, p), and in particular, the
monoid DORIn.

We shall represent every ρ ∈ ICn in two line notation as:

ρ =

(
x1 . . . xp
a1 . . . ap

)
(1 ≤ p ≤ n), (6)

where ai ≤ xi for all 1 ≤ i ≤ p. Moreover, we may, without loss of
generality, suppose that 1 ≤ x1 < . . . < xp ≤ n and 1 ≤ a1 < a2 < . . . <
ap ≤ n, since ρ is an isotone map.
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The monoid DORIn can equivalently be obtained as:

DORIn = {ρ ∈ In : ρ is monotone & decreasing}
= {ρ ∈ In : ρ is isotone & decreasing}
∪ {ρ ∈ In : ρ is antitone & decreasing}.

Therefore, if we let DRIn = {ρ ∈ In : ρ is antitone and decreasing},
then

DORIn = ICn ∪DRIn. (7)

Now, let us briefly analyze the elements in DRIn. First, observe that
every element of height 1 in DORIn is both isotone and antitone; that is,
it belongs to both ICn and DRIn. However, antitones of height greater
than or equal to 2 are never isotone; therefore, they must be included in
DRIn. Thus, we have the following remark.

Remark 2. Every element in DRIn of height 1 < p < n of the form

ρ =

(
x1 . . . xp
ap . . . a1

)
(8)

possesses the following properties:

(i) 1 ≤ a1 < · · · < ap ≤ x1 < · · · < xp ≤ n;

(ii) Product of two isotone maps or two antitone maps, is isotone; pro-
duct of an isotone map and an antitone map, is antitone. Similarly,
product of an antitone map and isotone map yields an antitone
map.

Lemma 1. Every element in DORIn with height greater than
⌈
n
2

⌉
is

necessarily isotone.

Proof. Let ρ ∈ DORIn as expressed in (6) be of height p >
⌈
n
2

⌉
. Suppose

by way of contradiction that ρ is antitone. Thus, we must have 1 ≤ a1 <
· · · < ap ≤ x1 < · · · < xp ≤ n. Now p >

⌈
n
2

⌉
implies | Im ρ| >

⌈
n
2

⌉
, i.e.,

the number of elements in the image set {a1, . . . , ap} is greater than
⌈
n
2

⌉
.

Notice that either Im ρ∩Dom ρ = {x1} or Im ρ∩Dom ρ = ∅. So, there
are two cases to consider.
Case i. If Im ρ∩Dom ρ = {x1}. Then the domain set of ρ can be obtain
from [n] \ {a1, . . . , ap} ∪ {x1}. So that the total number of elements in
[n] \ {a1, . . . , ap} ∪ {x1} is n− | Im ρ|+ 1. However, since | Im ρ| >

⌈
n
2

⌉
,

we see that:
n− | Im ρ|+ 1 < n−

⌈n
2

⌉
+ 1.
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Thus, if n is odd, we have

n− | Im ρ|+ 1 < n−
⌈n
2

⌉
+ 1 = n− n+ 1

2
+ 1 =

n+ 1

2
=

⌈n
2

⌉
< p.

This means that the number of elements in the set [n]\{a1, . . . , ap}∪{x1}
(where the domain elements can be selected) is less than the number of
the elements fixed in the image set, which is a contradiction.
Similarly, if n is even, we have

n− | Im ρ|+ 1 < n−
⌈n
2

⌉
+ 1 = n− n

2
+ 1 =

n+ 2

2
=

⌈n
2

⌉
+ 1 < p+ 1.

This implies that n− | Im ρ| < p, which is also a contradiction.
Case ii. Using a similar argument as in Case i, we arrived at a contra-
diction; hence, ρ is isotone.

Consequently, every element in DRIn has height p that satisfies 1 ≤
p ≤ ⌈n2 ⌉. We now have the following definition. An element ρ ∈ DORIn

as expressed in (6) is called reversible if

(
x1 . . . xp
ap . . . a1

)
∈ DORIn. The

following lemma is important.

Lemma 2. An element ρ ∈ ICn, as expressed in (6), is reversible; speci-

fically,

(
x1 . . . xp
ap . . . a1

)
∈ DORIn if and only if ap ≤ x1 and 1 ≤ p ≤ ⌈n2 ⌉.

Proof. Notice that x1 = min(Dom ρ) ≥ ap, by the order decreasing pro-
perty. However, since ρ is antitone, then n− p+1 ≥ x1 and x1 ≥ p, and
so, n−p+1 ≥ x1 ≥ p, which implies n+1 ≥ 2p. Hence p ≤ ⌊n+1

2 ⌋ = ⌈n2 ⌉.
The converse is trivial.

We note the following well known combinatorial identity, which is
useful in our subsequent discussions.

Lemma 3 ( [21], (3b), p. 8). For all natural numbers n, a, and b, we
have

n∑
i=b

(
i

b

)(
n+ a− i

a

)
=

(
n+ a+ 1

a+ b+ 1

)
.

It is now clear that to obtain the size of DORIn, it is sufficient to
compute the size of the set DRIn. For a transformation ρ on a finite
chain, let b(ρ) = r and h(ρ) = p. Define the combinatorial function:

F (n, p) = |{ρ ∈ DRIn : h(ρ) = p}|.
We then have the following result.
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Theorem 1. The number of elements in DRIn of a fixed height p is

F (n, p) =

(
n+ 1

2p

)
.

Proof. Let ρ ∈ DRIn be as expressed in (8), where h(ρ) = p. Moreover,
let r = x1 = min(Dom ρ). Note that p ≤ r ≤ n−p+1, from the proof of
Lemma 2, and for all xi ∈ Dom ρ and aj ∈ Im ρ, we have aj ≤ xi since
ρ is antitone. To count the number of ρ ∈ DRPn, we first choose the
domain elements. Now, since r ∈ Dom ρ, we can choose the remaining
p − 1 elements from [n] \ {1, . . . , r}, i.e., in

(
n−r
p−1

)
ways. Then, we can

choose the p images from the set {1, . . . , r} in
(
r
p

)
ways. Finally, taking

the sum of the product:
(
n−r
p−1

)(
r
p

)
, from r = p to r = n− p+ 1 produces

F (n, p) =

n−p+1∑
r=p

(
n− r

p− 1

)(
r

p

)
=

(
n+ 1

2p

)
(by Lemma 3),

as required.

Now, let

an =

⌈n
2
⌉∑

p=2

F (n, p) =

⌈n
2
⌉∑

p=2

(
n+ 1

2p

)
= 2n − n(n+ 1)

2
− 1.

We can now state the following result.

Theorem 2. Let DORIn be as defined in (7). Then

|DORIn| =
1

n+ 1

(
2(n+ 1)

n

)
+ 2n − n(n+ 1)

2
− 1.

Proof. Notice that, as in (7), DORIn = ICn∪DRIn. However elements
of height 1 are both isotone and antitone maps, and they are counted in
ICn. Thus,

|DORIn| = cn+1 +

⌈n
2
⌉∑

p=2

F (n, p)

= cn+1 + an

=
1

n+ 1

(
2(n+ 1)

n

)
+ 2n − n(n+ 1)

2
− 1,

as required.
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1. Green’s and starred Green’s relations

Within the framework of semigroup theory, Green’s relations consist of
five different types, represented as L,R,D,J , andH. These relations are
defined based on the principal ideals (left, right, or two-sided) generated
by the elements of S. For a comprehensive discussion of these relations,
readers are encouraged to refer to Howie [11]. As noted in [4], when
there is potential for confusion, we denote a relation K on S as K(S).
It is a well-known result in the study of a finite semigroup, D = J
(see [11, Proposition 2.1.4]). Consequently, we are going to concentrate
on describing the equivalences L,R,D, and H within the monoid of all
decreasing and monotone injective partial transformations DORIn.

It is well known that the semigroup DIn is J -trivial (see [22, Lem-
ma 2.2]). Notice that DORIn is a subsemigroup of DIn, it follows that
for any relation say K ∈ {L,R,H,J }, we have

K(DORIn) = K(DIn) ∩ (DORIn ×DORIn).

Consequently, we have the following result.

Theorem 3. DORIn is J -trivial.

In a semigroup S, an element a ∈ S is termed regular if there exists
another element b ∈ S such that a = aba. Furthermore, a semigroup S is
classified as a regular semigroup if all its elements are regular. We are now
going to prove a general result about regular elements in an R-trivial
semigroup.

Lemma 4. In an R-trivial semigroup S, an element a ∈ S is regular if
and only if a is an idempotent.

Proof. Let S be an R-trivial semigroup and a ∈ S be a regular element.
This means a = aba for some b ∈ S. Notice that (ab)2 = abab =
(aba)b = ab, so ab ∈ E(S). Observe also that the equations a = (ab)a
and ab = a(bab) ensures that (a, ab) ∈ R. However, the fact that S is
R-trivial implies that a = ab, and so a is an idempotent. The converse
is trivial.

Remark 3. Now since every J -trivial semigroup is R-trivial, then Lem-
ma 4 also holds on DORIn.

Consequently, we can immediately derive the following corollary from
Theorem 3 and Lemma 4, and Remark 3.
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Corollary 1. An element ρ ∈ DORIn is regular if and only if ρ is an
idempotent. Hence, the monoid DORIn is non-regular for n ≥ 2.

Consequently, based on Theorem 3, we derive the following descrip-
tions of Green’s equivalences in the semigroup S in {RQn(p), I(n, p)}.

Theorem 4. Let S ∈ {RQn(p), I(n, p)}. Then S is J -trivial. Hence,
for n ≥ p ≥ 2, the semigroup S is non-regular.

When a semigroup is not regular, it is common practice to examine
the starred Green’s relations to identify its algebraic structure. The
five starred Green’s equivalences include L∗,R∗,D∗,J ∗, and H∗. The
relation L∗ is defined as: for a, b ∈ S, (a, b) ∈ L∗ if and only if a and b
are related by L in some over-semigroup of S; the relation R∗ is defined
dually. The D∗ relation is defined as the join of L∗ and R∗, while H∗

is the intersection of L∗ and R∗. A semigroup S is described as left
abundant if every L∗-class contains at least one idempotent; it is called
right abundant if everyR∗-class includes at least one idempotent; and it is
called abundant if both every L∗-class and every R∗-class of S contain an
idempotent [4,5]. Several classes of transformation semigroups have been
identified as left abundant, right abundant, or abundant; refer to [2,18,23,
24,27,28,31,32,34] for examples. In this section, we aim to characterize
the starred versions of Green’s equivalences for S ∈ {DORIn, I(n, p)}.

We will need the following definition and lemmas from [2, 11, 24] for
our subsequent discussions: A subsemigroup A of a semigroup S is called
full if E(A) = E(S); it is referred to as an inverse ideal of S if for every
a ∈ A, there exists a′ ∈ S such that aa′a = a and both a′a and aa′ are
in A.

Lemma 5 ( [24, Lemma 3.1.8.]). Every inverse ideal A of S is abundant.

Lemma 6 ( [24, Lemma 3.1.9.]). If A is an inverse ideal of S, then (1)
L∗(A) = L(S) ∩ (A × A); (2) R∗(A) = R(S) ∩ (A × A); (3) H∗(A) =
H(S)× (A×A).

Lemma 7 ( [11, Exercise 5.11(2)]). In the inverse semigroup In, we have

(a) ρLσ if and only if Im ρ = Imσ;

(b) ρRσ if and only if Dom ρ = Dom σ;

(c) ρDσ if and only if | Im ρ| = | Imσ|;

(d) D = J .
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We are now going to illustrate the following outcome.

Theorem 5. Let DORIn be as defined in (2). Then DORIn is an
inverse ideal of In.

Proof. Let ρ ∈ DORIn be expressed as in (6). Then ρ−1 ∈ In. Observe
that for 1 ≤ i ≤ p,

xiρρ
−1ρ = aiρ

−1ρ = xiρ.

Additionally, we have ρρ−1 = IdDom ρ ∈ DORIn and ρ−1ρ = IdIm ρ ∈
DORIn, as required.

Remark 4. It is straightforward to observe that DORIn forms a full
subsemigroup of I−

n (where I−
n represents the monoid of all decrea-

sing partial injections on [n], as referenced in [30]) in the sense that
E(DORIn) = E(I−

n ). Consequently, E(DORIn) constitutes a semilat-
tice (by semilattice, we refer to a commutative semigroup in which each
of its element is an idempotent).

Now, as a result of Theorem 5 and Lemma 5, we have the result
below.

Theorem 6. Let DORIn be as defined in (2). Then DORIn is abun-
dant.

Now, we present the result below.

Theorem 7. Let DORIn be as defined in (2). Then for ρ, σ ∈ DORIn,
we have:

(i) ρL∗σ if and only if Im ρ = Imσ;

(ii) ρR∗σ if and only if Dom ρ = Dom σ;

(iii) ρH∗σ if and only if Im ρ = Imσ and Dom ρ = Dom σ.

Proof. (i) Since DORIn is an inverse ideal of In by Theorem 5, it follows
from Lemma 6 that

L∗(DORIn) = L(In) ∩ (DORIn ×DORIn).

Thus, (ρ, σ) ∈ L∗(DORIn) if and only if (ρ, σ) ∈ L(In) ∩ (DORIn ×
DORIn) if and only if Im ρ = Imσ by Lemma 7(a).
(ii) The argument is analogous to (i).
(iii) follows from (i) and (ii).
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Let H∗
ρ denote the H∗−class of ρ in DORIn. Then we have the

following result.

Corollary 2. Let DORIn be as defined in (2). Then for any ρ ∈
DORIn,

|H∗
ρ | =

{
1, if h(ρ) ∈ {0, 1, ⌈n2 ⌉+ 1, . . . , n};
2, if 2 ≤ h(ρ) ≤ ⌈n2 ⌉.

Proof. Let ρ ∈ DORIn be expressed as in (6). If h(ρ) = 0, 1, the result is
trivial. Now, if h(ρ) ∈ {⌈n2 ⌉+ 1, . . . , n}, h(ρ) > ⌈n2 ⌉, i.e., ρ is necessarily
an isotone map by Lemma 1. So, ρ is not reversible by Lemma 2; that
is to say the map,

σ =

(
x1 . . . xp
ap . . . a1

)
/∈ DORIn.

This means that Dom ρ can only admit the image set {a1, . . . , ap} in one
way. Thus, it follows from Theorem 7(iii) that ρH∗σ if and only if ρ = σ,
and consequently, |H∗

ρ | = 1.

On the other hand, if 2 ≤ h(ρ) ≤ ⌈n2 ⌉, then by Lemma 2, ρ is reversible,
and thus the map

σ =

(
x1 . . . xp
ap . . . a1

)
∈ DORIn.

This means that Dom ρ can only admit the image set {a1, . . . , ap} in two
ways. It follows from Theorem 7(iii) that ρH∗σ. Hence, |H∗

ρ | = 2, as
required.

An abundant semigroup S is called adequate if the set of idempotents
E(S) forms a semilattice. Inverse monoids (or semigroups) are typically
examples of adequate monoids (or semigroups) because, in this case, we
have R∗ = R and L∗ = L [5]. Consequently, as noted in Remark 4, the
semigroup DORIn is also adequate.

For an element a in an adequate semigroup S, we denote the (unique)
idempotent in the L∗-class (or R∗-class) containing a as a∗ (or a+). An
adequate semigroup S is called ample if for all elements a ∈ S and all
idempotents e ∈ S, the following conditions hold:

ae = (ae)+a and ea = a(ea)∗.

Since DORIn is a subsemigroup of I−
n , and since E(DORIn) = E(I−

n ),
and given that I−

n is an ample semigroup, we can conclude from Remark 4
that the following result holds.
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Theorem 8. Let DORIn be as defined in (2). Then DORIn is an
ample semigroup for all n.

We demonstrate in the following lemma that the relations L∗ and R∗

in the monoid DORIn do not commute for n ≥ 2.

Lemma 8. For n ≥ 2, in the monoid DORIn, it holds that R∗ ◦ L∗ ̸=
L∗ ◦ R∗.

Proof. Consider

ρ =

(
1
1

)
and σ =

(
2
2

)
in DORIn. It follows from Theorem 7 that (ρ, σ) ∈ L∗◦R∗, but (ρ, σ) /∈
R∗ ◦ L∗, as required.

Before we can characterize the relations D∗ and J ∗, we must first
present the following analogues of [30, Lemmas 2.7, 2.8, and 2.9] (respec-
tively).

Lemma 9. Let ρ ∈ DORIn be as expressed in (6). Then there exists
σ ∈ DORIn with Im σ = {1, . . . , p} such that (ρ, σ) ∈ R∗.

Proof. Let ρ be an element of DORIn. Then ρ is either isotone or
antitone. In the former, let ρ be as expressed as in (6); and in the latter,
let ρ be as expressed in (8). Now define

σ =

(
x1 . . . xp
1 . . . p

)
.

Clearly, σ is in DORIn, and in either of the cases Dom ρ = Dom σ, and
so by Theorem 7(ii), we see that (ρ, σ) ∈ R∗.

Lemma 10. Let ρ ∈ DORIn be expressed as in (6). Then there exists
σ ∈ DORIn with Dom σ = {n− p+ 1, . . . , n} such that (ρ, σ) ∈ L∗.

Proof. Let ρ be an element of DORIn. Then ρ is either isotone or
antitone. In the former, let ρ be as expressed as in (6); and in the latter,
let ρ be as expressed in (8). Now define

σ =

(
n− p+ 1 . . . n

a1 . . . ap

)
.

Clearly, σ is in DORIn, and in either of the cases we see that Im ρ =
Im σ, and so by Theorem 7(ii), (ρ, σ) ∈ L∗, as required.
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Lemma 11. Let ρ, σ ∈ DORIn. If ρ ∈ J∗
σ, then | Im ρ| ≤ | Im σ|.

Proof. Let ρ ∈ J∗(σ). Then, according to [5, Lemma 1.7], there exist
β0, β1, . . . , βn ∈ DORIn, γ1, . . . , γn, τ1, . . . , τn in DORIn such that ρ =
β0, σ = βn, and (βi, γiβi−1τi) ∈ D∗ for i = 1, . . . , n. Thus,

| Im βi |=| Im γiβi−1τi |≤| Im βi−1 |,

so that
| Im ρ |≤| Im σ | .

The result now follows.

Within the semigroup DORIn, we establish a relation K on DORIn

defined by the condition that (ρ, σ) ∈ K if and only if | Im ρ| = | Im σ|.
It follows that D ⊆ K. By utilizing Theorem 7 and Lemmas 9–11, and
noting that all the maps in DORIn are decreasing maps, the next results
are the direct corollaries to [25, Lemmas 2.10 & 2.14].

Corollary 3. For the monoid DORIn, it follows that D∗ = R∗ ◦ L∗ ◦
R∗ = L∗ ◦ R∗ ◦ L∗.

Corollary 4. Let ρ, σ ∈ DORIn. Then (ρ, σ) ∈ D∗ if and only if
| Im ρ| = | Im σ|.

Corollary 5. On the monoid DORIn, we have J ∗ = D∗.

Now we deduce that:

Lemma 12. On the semigroups RQn(p) and I(n, p), it holds that D∗ =
R∗ ◦ L∗ ◦ R∗ = L∗ ◦ R∗ ◦ L∗.

Lemma 13. If S ∈ {RQn(p), I(n, p)}, then S is abundant.

Remark 5. (i) It is evident from Theorem 7(i) and (ii) that for each
1 ≤ p ≤ n, the number of L∗-classes is equal to the number of
R∗-classes in J∗

p = {ρ ∈ DORIn : | Im ρ| = p}. This quantity
corresponds to the total number of p size subsets contained in [n],
given by

(
n
p

)
.

(ii) For S within the set {RQn(p), I(n, p)}, the characterizations of
the starred Green’s relations found in Theorem 7 are valid in S as
well.

(iii) If S is a semigroup in {RQn(p), I(n, p)}, then S is adequate be-
cause E(S) is a semilattice, making it an ample semigroup.
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A semigroup S with 0 is called 0−∗bisimple if it has a unique nonzero
D∗−class [23]. Therefore, we have established the following result.

Theorem 9. Let RQn(p) be as defined in (5). Then RQn(p) is a non-
regular 0−∗bisimple ample semigroup.

Thus, the semigroup I(n, p), like DORIn is the union of the J ∗

classes J∗
0 , J

∗
1 , . . . , J

∗
p , where

J∗
p = {ρ ∈ I(n, p) : | Im ρ| = p}.

Moreover, the ideal I(n, p) has
(
n
p

)
R∗-classes, and

(
n
p

)
L∗-classes in each

J∗
p . Consequently, the Rees quotient RQn(p) has

(
n
p

)
+ 1 R∗-classes and(

n
p

)
+1 L∗-classes. (The term 1 results from the singleton class containing

the zero element in every instance.) We now present the following lemma,
which follows from Remark 5.

Lemma 14. For all 0 ≤ p ≤ n, if J∗
p = {ρ ∈ DORIn : | Im ρ| = p},

then |E(J∗
p )| =

(
n
p

)
.

It is a known fact from [6, Proposition 14.3.1] that |E(ICn)| = 2n,
thus since E(DORIn) = E(ICn), it follows that |E(DORIn)| = 2n.

2. Rank properties

Let A be a nonempty subset of a semigroup S. The smallest subsemigroup
of S that includes A is referred to as the subsemigroup generated by A,
typically represented by the notation ⟨A⟩. If A is a finite subset of S
such that ⟨A⟩ = S, then S is termed a finitely-generated semigroup. The
rank of a finitely generated semigroup S is defined as the smallest size
of a subset A for which ⟨A⟩ is equal to S. Specifically,

rank(S) = min{|A| : ⟨A⟩ = S}.

For a more in-depth examination of ranks in semigroup theory, we
recommend that readers refer to [12, 13]. Numerous authors have ex-
plored the ranks of various classes of transformation semigroups on the
finite chain [n]. In particular, we would like to highlight the contributions
of Gomes and Howie [7–9,14], Umar [23,25,26], and Zubairu et al. [31–34]
and the references therein. To the best of our knowledge, the monoid
DORIn seem not to have appeared in the literature and so the rank of
the monoid DORIn, its Rees quotient RQn(p), and its two-sided ideal
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I(n, p) have not yet been discussed. In this section, we aim to address
these questions.

We will begin our findings by first noting the following definition
from [19, Introduction] which also hold for the monoid DORIn.

Definition 1. An element ρ ∈ DORIn is called quasi-idempotent if
ρ2 is an idempotent. Equivalently, ρ in DORIn is quasi-idempotent if
ρ4 = ρ2.

Remark 6. (i) On the semigroup DORIn, every quasi-idempotent
of height p and of shift 1 (shift of an element say α is the cardinal
of the set S(α) = {x ∈ [n] : xα ̸= x}, see [30]) is of the form:

ε =

(
y1 · · · yi−1 yi yi+1 · · · yp
y1 · · · yi−1 yiε yi+1 · · · yp

)
, (9)

where 1 ≤ y1 < · · · < yi−1 < yiε < yi < · · · < yp ≤ n. Notice also
that quasi-idempotents of shift 1 are not idempotents.

(ii) Every idempotent element is quasi-idempotent but the converse is
not necessarily true.

We now introduce the following definition.

Definition 2. An antitone map ρ ∈ DORIn, of height 2 ≤ p ≤ ⌈n2 ⌉, is
said to be a vital element if Dom ρ is convex and minDom ρ is a fixed
point. That is to say ρ is of the form:

ρ =

(
yp yp + 1 · · · yp + p− 1
yp yp−1 · · · y1

)
, (10)

where 1 ≤ y1 < · · · < yp ≤ n.

The following lemma can be stated immediately.

Lemma 15. For 2 ≤ p ≤ ⌈n2 ⌉, every L∗-class of an element, say ρ, of
height p in the monoid DORIn contains a unique vital element in L∗

ρ.

Proof. Let ρ ∈ DORIn with h(ρ) = p, where 2 ≤ p ≤ ⌈n2 ⌉. Then ρ is
either an isotone map or an antitone map. In the former, let ρ be as
expressed as in (6); and in the latter, let ρ be as expressed in (8). Con-
sider L∗

ρ, now it is clear that in either case, ap = max(Im α). Moreover,
a1 < · · · < ap < ap + 1 < · · · < ap + p− 1. Thus, the map

δ =

(
ap ap + 1 · · · ap + p− 1
ap ap−1 · · · a1

)
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is an antitone map in DORIn, where Im ρ = Im δ, and so δ ∈ L∗
ρ.

Clearly Dom δ is convex, and ap = min(Dom δ) is a fixed point of δ.
Therefore, δ is the unique vital element in L∗

α.

The next lemma concerns factorizations of antitone maps with a con-
vex domain in the monoid DORIn.

Lemma 16. Every antitone element ρ ∈ DORIn with a convex do-
main is a product of quasi-idempotents and the unique vital element that
belongs to L∗

ρ.

Proof. Consider an antitone map of height p with a convex domain, say
ρ, in DORIn of the form:

ρ =

(
t t+ 1 · · · t+ p− 1
ap ap−1 · · · a1

)
,

where 2 ≤ p ≤ ⌈n2 ⌉ and 1 ≤ a1 < · · · < ap ≤ t < · · · < t + p − 1 ≤ n for
some t ∈ [n]. Now, for 1 ≤ i ≤ p, define:

εi =
(

ap ap + 1 · · · ap + i− 2 t+ i− 1 t+ i · · · t+ p− 1
ap ap + 1 · · · ap + i− 2 ap + i− 1 t+ i · · · t+ p− 1

)

& δ =

(
ap ap + 1 · · · ap + p− 1
ap ap−1 · · · a1

)
.

Notice that ap ≤ t implies ap + i− 1 ≤ t+ i− 1 for all 1 ≤ i ≤ p, and so
εi is an isotone idempotent (if ap = t ) or quasi-idempotent (if ap < t)
element of shift 1 and height p in DORIn. Moreover, it is clear that
a1 < · · · < ap < ap + 1 < · · · < ap + p − 1. Thus, δ is an antitone map
with a convex domain that fixes ap = min Dom δ. Therefore, δ is a vital
element. Furthermore, Im ρ = Im δ implies δ ∈ L∗

ρ, which is unique by
Lemma 15.

At this juncture, observe that:

ε1ε2 · · · εpδ =

(
t t+ 1 · · · t+ p− 1
ap t+ 1 · · · t+ p− 1

)(
ap t+ 1 t+ 2 · · · t+ p− 1
ap ap + 1 t+ 2 · · · t+ p− 1

)
· · ·(

ap ap + 1 · · · ap + p− 2 t+ p− 1
ap ap + 1 · · · ap + p− 2 ap + p− 1

)(
ap ap + 1 · · · ap + p− 1
ap ap−1 · · · a1

)
=

(
t t+ 1 · · · t+ p− 1
ap ap−1 · · · a1

)
= ρ,

as postulated.

Theorem 10. The monoid DORIn is generated by quasi-idempotents
of shift 1 and vital elements.
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Proof. Let ρ ∈ DORIn. Then, ρ is either an isotone map or an antitone
map.
(i) If ρ is an isotone map, then ρ ∈ ICn. Thus, by [1, Lemma 3.3], ρ is
quasi-idempotent-generated.
(ii) Now suppose ρ is an antitone map of the form

ρ =

(
x1 · · · xp
ap · · · a1

)
of height 2 ≤ p ≤ ⌈n2 ⌉, where a1 < · · · < ap < x1 < · · · < xp. Now
suppose si+1 = xi+1 − xi for all 1 ≤ i ≤ p− 1. Next, observe that:

x1 + s2 + s3 + · · ·+ si+1 = x1 + (x2 − x1) + (x3 − x2) + · · ·
+ (xi − xi−1) + (xi+1 − xi)

= xi+1.

This shows that for each 1 ≤ i ≤ p− 1, xi+1 = x1+ s2+ s3+ · · ·+ si+1 ≥
x1 + i. So, the map

ξi =

(
x1 · · · x1 + i− 1 xi+1 xi+2 · · · xp
x1 · · · x1 + i− 1 x1 + i xi+2 · · · xp

)
,

is an idempotent if xi+1 = x1 + i; and it is quasi-idempotent of shift 1
and height p in DORIn if xi+1 > x1 + i for all 1 ≤ i ≤ p. Notice also
that since ap ≤ x1, it follows that ap ≤ x1 < x1 + 1 < · · · < x1 + p − 1.
Therefore, the map σ defined as

σ =

(
x1 x1 + 1 · · · x1 + p− 1
ap ap−1 · · · a1

)
is an antitone map in DORIn with convex domain, and so by Lemma 16,
σ is generated by quasi-idempotents and the unique vital element in L∗

σ.
Now observe that:

ξ1 · · · ξpσ =

(
x1 x2 x3 · · · xp
x1 x1 + 1 x3 · · · xp

)(
x1 x1 + 1 x3 x4 · · · xp
x1 x1 + 1 x1 + 2 x4 · · · xp

)
· · ·

(
x1 x1 + 1 · · · x1 + p− 2 xp
x1 x1 + 1 · · · x1 + p− 2 x1 + p− 1

)(
x1 x1 + 1 · · · x1 + p− 1
ap ap−1 · · · a1

)
=

(
x1 x2 · · · xp
ap ap−1 · · · a1

)
= ρ,

as required.
Clearly, Im ρ = Im σ, and so L∗

σ = L∗
ρ. Hence, ρ is generated by quasi-

idempotent and the unique vital element in L∗
ρ.
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To investigate the minimum generating set of DORIn, we first note
the following definition from [1].

Definition 3 ( [1, Definition 3.5]). A quasi-idempotent element ε of shift
1 as expressed in (9) is called an essential element if yiε = yi− 1, and so
essential elements of height p are of the form:

ε =

(
y1 · · · yi−1 yi yi+1 · · · yp
y1 · · · yi−1 yi − 1 yi+1 · · · yp

)
. (11)

Remark 7. For 1 ≤ n ≤ 2, the quasi-idempotent elements in DORIn

are all essential elements. However, for n ≥ 3, not every quasi-idempotent
element of shift 1 is an essential element. For example, the element

α =

(
1 4 5
1 2 5

)
∈ DORI5

is a quasi-idempotent of shift 1, but since 4α = 2 ̸= 3, then it is not an
essential element. Moreover, every quasi-idempotent of height n − 1 is
necessarily essential.

At this juncture, we introduce the following definition.

Definition 4. A vital element δ is called convex if Im δ is convex, i.e.,
if δ is of the form

δ =

(
yp yp + 1 · · · yp + p− 1
yp yp − 1 · · · yp − p+ 1

)
,

where 1 ≤ yp − p+ 1 < · · · < yp + p− 1 ≤ n.

Remark 8. Every convex vital element of height 2 ≤ p ≤ ⌈n2 ⌉ is of the
form:

δi =

(
i i+ 1 · · · i+ p− 1
i i− 1 · · · i− p+ 1

)
, (12)

where p ≤ i ≤ n− p+ 1. Moreover, it is worth noticing that since every
vital element is an antitone map, and there are no antitone map of height
p > ⌈n2 ⌉ by the contrapositive of Lemma 1, then there are no convex vital
elements of height p > ⌈n2 ⌉.

We now have the following lemma.

Lemma 17. Every non-convex vital element in DORIn is a product of
a convex vital element and essential elements.
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Proof. Let δ be a non-convex vital element of height 2 ≤ p ≤ ⌈n2 ⌉, as
expressed in (10). This means that there exists 0 ≤ i ≤ p− 2 such that
{yp−i, yp−i+1, . . . , yp} is convex and yp−(i+1) − yp−i > 1. That is to say,

{yp−i, yp−i+1, . . . , yp−1, yp} = {yp − i, yp − i+ 1, . . . , yp − 1, yp},

so that δ is of the form

δ =

(
yp yp + 1 · · · yp + i− 1 yp + i yp + i+ 1 · · · yp + p− 1
yp yp − 1 · · · yp − i+ 1 yp − i yp−(i+1) · · · y1

)
.

This means that the subset (of Im δ) {y1, . . . , yp−(i+1)} needs not be
convex. Notice that

{yp−i − 1, yp−i − 2, . . . , yp−i − (p− i− 2), yp−i − (p− i− 1)}

is a convex set consisting of translates of yp−i, which can be replaced
with yp − i (since yp−i = yp − i) as follows:

{yp − i− 1, yp − i− 2, . . . , yp − p+ 2, yp − p+ 1}.

Thus, the set {yp − p + 1, yp − p + 2, . . . , yp − i − 1, yp − i, yp − i + 1,
. . . , yp − 1, yp} is convex. Therefore, the map δ∗ defined as:

δ∗ =

(
yp yp + 1 · · · yp + i− 1 yp + i yp + i+ 1 · · · yp + p− 1
yp yp − 1 · · · yp − i+ 1 yp − i yp − i− 1 · · · yp − p+ 1

)
is a convex vital element. Additionally, the map γ defined as

γ =

(
yp − p+ 1 yp − p+ 2 · · · yp − i− 1 yp − i yp − i+ 1 · · · yp − 1 yp

y1 y2 · · · yp−i−1 yp−i yp−i+1 · · · yp−1 yp

)
is a decreasing isotone map which is generated by essential elements
by [1, Theorem 3.7]. Now, clearly, δ∗γ = δ. The result now follows.

We now give and prove a key result of this section.

Theorem 11. The monoid DORIn is generated by essential and convex
vital elements.

Proof. Notice from Theorem 10, DORIn is generated by quasi-idempo-
tents of shift 1 and vital elements. Now we need to show that quasi-
idempotent elements of shift 1 can be generated by essential elements,
and the vital elements can be generated by the convex vital elements.
Now let ε ∈ DORIn as expressed in (9) be a quasi-idempotent. Since
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yi > yiε, we can let s = yi − yiε, so clearly yiε + j − 1 < yiε + j for all
1 ≤ j ≤ s and also yi = yiε+ s. Now for 1 ≤ j ≤ s define εj as:

εj =

(
y1 · · · yi−1 yiε+ j yi+1 · · · yp
y1 · · · yi−1 yiε+ j − 1 yi+1 · · · yp

)
.

Notice that yi−1 < yiε < yiε+ 1 < · · · < yiε+ s = yi < yi+1, and so for
each j, we can easily see that εj is an essential element. Moreover, it is
not difficult to see that

εsεs−1 · · · ε1 = ε.

Furthermore, by Lemma 17 the vital elements can be generated by convex
vital elements. The result follows.

Lemma 18. Every element in S ∈ {RQn(p), I(n, p)} of height p can be
expressed as a product of essential and convex vital elements in S, each
of height p.

Proof. Let α ∈ S ∈ {RQn(p), I(n, p)}. Then clearly α is of height p,
and so since in the proofs of Lemma 17 and Theorem 10, h(ρ) = h(ξi) =
h(δ) = h(δ∗) = h(σ) = p for all i ∈ {1, . . . , p}, then the result easily
follows.

Now, for 2 ≤ p ≤ ⌈n2 ⌉, let O(p) be the collection of all convex vital
elements in RQn(p), and let E(RQn(p) \ {0}) be the collection of all
nonzero idempotents in RQn(p) andM(p) be the collection of all essential
elements in RQn(p). It is important to note from definition that no
essential element is an idempotent and vice-versa. Similarly, no essential
is a convex vital element. Thus, O(p)∩M(p) = ∅, O(p)∩E(RQn(p)\{0})
= ∅ and M(p) ∩ E(RQn(p) \ {0}) = ∅. Then, we present the following
lemma.

Lemma 19. (i) For 2 ≤ p ≤ ⌈n2 ⌉, |O(p)| = n− 2p+ 2.

(ii) For each 1 ≤ p ≤ n, we have |E(RQn(p) \ {0})| =
(
n
p

)
.

(iii) |M(p)| = (n− 1)
(
n−2
p−1

)
.

Proof. (i) Notice that by Remark 8, the domain of each convex vital ele-
ment of height 2 ≤ p ≤ ⌈n2 ⌉ is of the form {i, i+ 1, . . . , i+ p− 1}, where
p ≤ i ≤ n − p + 1. Clearly the domain set has its minimum element,
i, within the range p ≤ i ≤ n − p + 1. This number is equivalent to
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counting all the possible minimum elements (which are within the range
p ≤ i ≤ n− p+ 1) of the possible domains set.

(ii) Notice that since every idempotent element is an injective map, and
to form an idempotent of height p is to select p elements out of the do-
main [n], then fix each of these elements to form an idempotent element.
This number is equivalent to

(
n
p

)
R∗-classes in J∗

p .

(iii) Notice that for 1 ≤ i ≤ n− 1, the element i+ 1 can be paired with
i (which is equivalent to mapping i + 1 to i) in n − 1 ways. Now, from
the remaining n − 2 elements (i.e., elements of [n] \ {i, i + 1}), we can
select p− 1 elements as our fixed points to form an essential element in(
n−2
p−1

)
ways. Hence we have altogether (n − 1)

(
n−2
p−1

)
essential elements,

as required.

Now, let

G(p) =

{
E(RQn(p) \ {0}) ∪M(p), if p ∈ {1, ⌈n2 ⌉+ 1, . . . , n};
M(p) ∪ E(RQn(p) \ {0}) ∪O(p), if 2 ≤ p ≤ ⌈n2 ⌉.

Consequently, we have the following result.

Corollary 6. On the Rees quotient semigroup RQn(p), we have:

|G(p)| =

{(
n
p

)
+ (n− 1)

(
n−2
p−1

)
, if p ∈ {1, ⌈n2 ⌉+ 1, . . . , n};(

n
p

)
+ (n− 1)

(
n−2
p−1

)
+ n− 2p+ 2, if 2 ≤ p ≤ ⌈n2 ⌉.

Proof. The result follows directly from Lemma 19.

The forthcoming result establishes that G(p) is the minimum genera-
ting set of RQn(p) \ {0}.

Lemma 20. Let ρ, σ be elements in RQn(p) \ {0} (1 ≤ p ≤ n). Then
ρσ ∈ G(p) if and only if ρ, σ ∈ G(p) and ρσ = ρ or ρσ = σ.

Proof. Suppose ρσ ∈ G(p). Thus either ρσ ∈ E(RQn(p) \ {0}) or ρσ ∈
M(p) or ρσ ∈ O(p). We consider the three cases separately.

Case i. If ρσ ∈ E(RQn(p) \ {0}). Then

p = f(ρσ) ≤ f(ρ) ≤ | Im ρ| = p,

p = f(ρσ) ≤ f(σ) ≤ | Im σ| = p.
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This ensures that
F (ρ) = F (ρσ) = F (σ),

and so ρ, σ ∈ E(RQn(p) \ {0}) and ρσ = ρ.

Case ii. Now suppose ρσ ∈ M(p). Thus ρσ is an essential. Thus ρσ is
an essential element which can be expressed as in (11), that is:

ρσ =

(
y1 · · · yi−1 yi yi−1 · · · yp
y1 · · · yi−1 yi − 1 yi+1 · · · yp

)
.

This means that Dom ρ = Dom ρσ, Im σ = Im ρσ, and Im ρ = Dom σ.
Thus,

ρ =

(
y1 · · · yi−1 yi yi+1 · · · yp
y1 · · · yi−1 yiρ yi+1 · · · yp

)
and

σ =

(
y1 · · · yi−1 yiρ yi+1 · · · yp
y1 · · · yi−1 yi − 1 yi+1 · · · yp

)
.

Notice that since ρ and σ are decreasing maps, we must have yiρ ≤ yi
and yi − 1 ≤ yiρ, and so yi − 1 ≤ yiρ ≤ yi. However, the fact that ρσ is
an essential element, implies either yiρ = yi− 1 or yiρ = yi. We consider
the two subcases separately.
Subcase a. If yiρ = yi−1, then ρ and σ are obviously essential and idem-
potent elements, respectively, and so ρσ = ρ and σ ∈ E(RICn(p) \ {0}).
Subcase b. If yiρ = yi, then ρ and σ are clearly idempotent and essential
elements, respectively. Thus, it follows easily that ρσ = σ and ρ ∈
E(RICn(p)\{0}). In either of the subcases, we see that ρ, σ ∈ G(p) and
either ρσ = σ or ρσ = ρ.

Case iii. Now suppose ρσ ∈ O(p). Thus, ρσ is a convex vital element,
which has the form

ρσ =

(
i i+ 1 · · · i+ p− 1
i i− 1 · · · i− p+ 1

)
,

where p ≤ i ≤ n − p + 1. This means that Dom ρ = Dom ρσ, Im σ =
Im ρσ, and Im ρ = Dom σ. Thus,

ρ =

(
i i+ 1 · · · i+ p− 1
iρ (i+ 1)ρ · · · (i+ p− 1)ρ

)
and

σ =

(
iρ (i+ 1)ρ · · · (i+ p− 1)ρ
i i− 1 · · · i− p+ 1

)
.
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The claim here is that ρ must be an idempotent. Notice that ρ and
σ are decreasing maps. Thus, iρ ≤ i and i = (iρ)σ ≤ iρ. This en-
sures that iρ = i. Moreover, for any i − p + 1 ≤ j ≤ i − 1 we see that
j ≤ (j+2)ρ ≤ j+2. This means that either (j+2)ρ = j or (j+2)ρ = j+1
or (j + 2)ρ = j + 2.

Notice that if (j + 2)ρ = j, then in particular, if j = i − 2, we see that
(i − 2 + 2)ρ = i − 2, that is, iρ = i − 2, which contradicts the fact that
iρ = i.

Now, if (j+2)ρ = j+1 for all j, then in particular, if j = i− 1, we have
(i− 1 + 2)ρ = i− 1 + 1, that is, (i+ 1)ρ = i, which also contradicts the
fact that iρ = i. Hence, we conclude that (j + 2)ρ = j + 2 for all j.
This ensures that

ρ =

(
i i+ 1 · · · i+ p− 1
i i+ 1 · · · i+ p− 1

)
and σ =

(
i i+ 1 · · · i+ p− 1
i i− 1 · · · i− p+ 1

)
.

Therefore, σ ∈ O(p) ⊂ G(p) and ρ ∈ E(RQn(p) \ {0}) ⊂ G(p), and also
ρσ = σ.

The converse follows easily.

Thus, we state one of the main results in this section.

Theorem 12. Let RQn(p) be as defined in (5). Then

rank RQn(p) =

{(
n
p

)
+ (n− 1)

(
n−2
p−1

)
, if p ∈ {1, ⌈n2 ⌉+ 1, . . . , n};(

n
p

)
+ (n− 1)

(
n−2
p−1

)
+ n− 2p+ 2, if 2 ≤ p ≤ ⌈n2 ⌉.

Proof. By Lemma 20, we know that G(p) is the minimal generating set
of RQn(p), and Corollary 6 provides its order.

For 1 ≤ p ≤ n− 1 let

J∗
p = {ρ ∈ DORIn : | Im ρ| = p},

and, for 2 ≤ p ≤ ⌈n2 ⌉ let O(p) and M(p) be the collection of all convex
vital and essential elements in J∗

p , and let

G(p) =

{
E(J∗

p ) ∪M(p), if p ∈ {1, ⌈n2 ⌉+ 1, . . . , n};
M(p) ∪ E(J∗

p ) ∪O(p), if 2 ≤ p ≤ ⌈n2 ⌉.

The following lemma is needed in the quest to determine the ranks of
the monoid DORIn and its two-sided ideal I(n, p).
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Lemma 21. In each J∗
p , we have:

|G(p)| =

{(
n
p

)
+ (n− 1)

(
n−2
p−1

)
, if p ∈ {1, ⌈n2 ⌉+ 1, . . . , n};(

n
p

)
+ (n− 1)

(
n−2
p−1

)
+ n− 2p+ 2, if 2 ≤ p ≤ ⌈n2 ⌉.

Proof. It is important to note that J∗
p = RQn(p) \ {0}, and so G(p) de-

fined on J∗
p and RQn(p) are equal. Thus, the result follows from Corol-

lary 6.

Let us recall from (12) that, for 2 ≤ p ≤ ⌈n2 ⌉ and any p ≤ i ≤ n−p+1
the convex vital element of height p has the form:

δi =

(
i i+ 1 · · · i+ p− 1
i i− 1 · · · i− p+ 1

)
.

We now give the following definition.

Definition 5. A convex vital element δi (p ≤ i ≤ n − p + 1) is called
extreme if the union of its domain and image set contains 1 or n, i.e., if
n ∈ Dom δi ∪ Im δi or 1 ∈ Dom δi ∪ Im δi.

For the purpose of illustrations, consider the following convex vital

elements of height 3 in DORI7: δ1 =

(
3 4 5
3 2 1

)
, δ2 =

(
4 5 6
4 3 2

)
, and

δ3 =

(
5 6 7
5 4 3

)
. Clearly, δ1 and δ2 are extreme vital elements. However,

δ2 is not.
Considering the convex vital element δi (p ≤ i ≤ n − p + 1) defined

as in (12), its two extreme cases are when i = p and i = n− p+ 1, i.e.,

δp =

(
p p+ 1 · · · 2p− 1
p p− 1 · · · 1

)
and

δn−p+1 =

(
n− p+ 1 n− p+ 2 · · · n− 1 n
n− p+ 1 n− p · · · n− 2p+ 1 n− 2p+ 2

)
,

respectively. These elements have the following property:
If n is odd and p = ⌈n2 ⌉ =

n+1
2 . Then,

n− p+ 1 = n− n+ 1

2
+ 1 =

n+ 1

2
= ⌈n

2
⌉ = p.
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Hence, if n is odd, n > 1 and p = ⌈n2 ⌉, then it is easy to see that there
is only one extreme convex vital element which is δ⌈n

2
⌉.

However, if n is even, n > 2 and p = ⌈n2 ⌉, then there are two extreme
convex vital elements: δn

2
and δn+2

2
.

We now have the following lemma.

Lemma 22. Let 2 ≤ p ≤ ⌈n2 ⌉ − 1. Then, for p + 1 ≤ i ≤ n − p, the
convex vital element δi in J∗

p as expressed in (12), can be expressed as a
product of a convex vital element and idempotent elements in J∗

p+1.

Proof. Let δp, i be a convex vital element in J∗
p as expressed in (12), where

p + 1 ≤ i ≤ n − p. Notice that adding and subtracting p to the range
p + 1 ≤ i ≤ n − p implies 2p + 1 ≤ i + p ≤ n and 1 ≤ i − p ≤ n − 2p,
respectively. Thus, we see that i + p ≤ n and i − p ≥ 1, which ensures
that the map defined as

δ′p, i =

(
i i+ 1 · · · i+ p− 1 i+ p
i i− 1 · · · i− p+ 1 i− p

)
is a convex vital element in J∗

p+1. Notice that the map ϵ defined as

ϵ =

(
i− p+ 1 i− p+ 2 · · · i i+ 1
i− p+ 1 i− p+ 2 · · · i i+ 1

)
is in E(J∗

p+1). Now it is easy to see that

δ′p, iϵ =

(
i i+ 1 · · · i+ p− 1 i+ p
i i− 1 · · · i− p+ 1 i− p

)(
i− p+ 1 i− p+ 2 · · · i i+ 1
i− p+ 1 i− p+ 2 · · · i i+ 1

)
=

(
i i+ 1 · · · i+ p− 1
i i− 1 · · · i− p+ 1

)
= δp, i

as required.

Remark 9. It is crucial to highlight that there is no convex vital element
and idempotent of height greater than p that can generate the extreme
convex vital elements of height p, δp and δn−p+1.

We now present the following lemma.

Lemma 23.

J∗
p ⊂

{
⟨J∗

p+1⟩, if p ∈ {0, 1, ⌈n2 ⌉+ 1, . . . , n− 2};
⟨J∗

p+1 ∪ {δp, δn−p+1}⟩, if 2 ≤ p ≤ ⌈n2 ⌉.
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Proof. (i) If ⌈n2 ⌉ + 1 ≤ p ≤ n − 2 or p = 0, 1 then using Theorem 10,
it is enough to establish that every element in G(p) can be written as
a product of elements in G(p + 1). That is to say, every essential or
idempotent element of height p can be written as a product of essential
or idempotent elements of height p+ 1. Thus, we consider the elements
of E(J∗

p ) and M(p) separately.
a. (1) The elements in E(J∗

p ):

Let ϵ ∈ E(J∗
p ) be expressed as:

ϵ =

(
y1 · · · yp
y1 · · · yp

)
,

where 1 ≤ y1 < · · · < yp ≤ n. Since p ≤ n − 2, it follows that (Dom ϵ)′

contains at least two elements, say c and d. Without loss of generality,
suppose c < d. Let A = Dom ϵ ∪ {c} and B = Dom ϵ ∪ {d}, and define
ϵ1 and ϵ2 as follows:

For x ∈ A and y ∈ B

xϵ1 =

{
x, if x ̸= c;
c, if x = c

and yϵ2 =

{
y, if y ̸= d;
d, if y = d.

Clearly, ϵ1 and ϵ2 are idempotents in E(J∗
p+1), and one can easily show

that ϵ = ϵ1ϵ2.
(2) The elements in M(p):

Let ε be an essential element of height p as expressed in (11), which
has the form:

ε =

(
y1 · · · yi−1 yi yi+1 · · · yp
y1 · · · yi−1 yi − 1 yi+1 · · · yp

)
.

Now, since p ≤ n−2, it follows that (Dom ε ∪ Im ε)′ contains at least one
element, say d. Notice that yi − 1 ̸∈ Dom ε. Now let A = Dom ε ∪ {d}
and B = Dom ε ∪ {yi − 1}, and define ε′ and ϵ as follows:

For x ∈ A and y ∈ B

xε′ =

{
xε, if x ̸= d;
d if x = d

and yϵ = y.

Notice that ϵ ∈ E(J∗
p+1) ⊂ G(p+ 1), and it is not difficult to see that ε′

is an essential element in M(p+1) ⊂ G(p+1). One can now easily show
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that ε = ε′ϵ.

b. Now suppose 2 ≤ p ≤ ⌈n2 ⌉. The essential and idempotent elements in
G(p) within this range have been addressed by (i) above. So it is sufficient
to show that every convex vital element in G(p) can be expressed as a
product of elements in G(p+ 1) ∪ {δp, δn−p+1}.

Let δi be a convex vital element of height p in G(p), as expressed in
(12). It follows from Lemma 22 that for all p + 1 ≤ i ≤ n − p, δi is a
product of a convex vital element and an idempotent element, each of
height p + 1. Notice that the remaining convex vital elements δp and
δn−p+1 in G(p), which by Remark 9 are not expressible as products of
elements in G(p+1), as such, every convex vital element in G(p) can be
expressed as a product of elements in G(p+ 1) ∪ {δp, δn−p+1}. We have
now finalized the proof of the lemma.

Remark 10. It becomes clear from the above lemma that for 2 ≤ p ≤
⌈n2 ⌉, any minimum generating set of I(n, p) must contain all the extreme
convex vital elements of height below p, i.e., the elements δi and δn−i+1

for all 2 ≤ i ≤ p− 1.

Now, on I(n, p) let

W (p) =


G(p), if p = 0, 1;
G(p) ∪O(⌈n2 ⌉) ∪ {δi, δn−i+1 : 2 ≤ i ≤ ⌈n2 ⌉ − 1}, if p ∈ {⌈n2 ⌉+ 1, . . . , n− 1};
G(p) ∪ {δi, δn−i+1 : 2 ≤ i ≤ p− 1}, if 2 ≤ p ≤ ⌈n2 ⌉.

We now present the following lemmas.

Lemma 24. For 0 ≤ p ≤ n− 1, W (p) is the minimum generating set of
I(n, p).

Proof. The result follows from the fact that G(p) is the minimum genera-
ting set ⟨J∗

p ⟩ by Lemma 20, and also from the fact that each minimum
generating set of the ideal I(n, p) must contain all the extreme convex
vital elements below height p, as stated in Remark 10.

Lemma 25. For 1 ≤ p ≤ n−1, we have |W (p)| = (n−2)+
(
n
p

)
+(n−1)(

n−2
p−1

)
.

|W (p)| =

{
1, if p = 0;

(n− 2) +
(
n
p

)
+ (n− 1)

(
n−2
p−1

)
, if 1 ≤ p ≤ n− 1.
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Proof. If p = 0, the result is trivial. Now, if p ∈ {1, ⌈n2 ⌉+ 1, . . . , n− 1},
we see that

|W (p)| = |E(J∗
p )|+ |O

(
⌈n
2
⌉
)
|+ |{δi, δn−i+1 : 2 ≤ i ≤ ⌈n

2
⌉ − 1}|.

Thus, by Lemma 21, it follows that

|W (p)| = 2
(
⌈n
2
⌉ − 2

)
+
(
n− 2

(
⌈n
2
⌉
)
+ 2

)
+

(
n

p

)
+ (n− 1)

(
n− 2

p− 1

)
= (n− 2) +

(
n

p

)
+ (n− 1)

(
n− 2

p− 1

)
.

Similarly, if 2 ≤ p ≤ ⌈n2 ⌉, then

|W (p)| = |G(p)|+ |{δi, δn−i+1 : 2 ≤ i ≤ p− 1}|.

Thus, by Lemma 21, we see that

|W (p)| = 2(p− 2) + (n− 2p+ 2) +

(
n

p

)
+ (n− 1)

(
n− 2

p− 1

)
= (n− 2) +

(
n

p

)
+ (n− 1)

(
n− 2

p− 1

)
.

The result now follows.

Therefore, we have the following result.

Theorem 13. Let I(n, p) be as defined in (4). Then,

rank I(n, p) =

{
1, if p = 0;

(n− 2) +
(
n
p

)
+ (n− 1)

(
n−2
p−1

)
, if 1 ≤ p ≤ n− 1.

Proof. If p = 0, the result is trivial. Now, observe that by Lemma 23,
⟨J∗

p ∪ {δi, δn−i+1 : 2 ≤ i ≤ p − 1}⟩ = I(n, p) for all 1 ≤ p ≤ n − 1.
Notice that if 2 ≤ p ≤ ⌈n2 ⌉, then ⟨G(p) ∪ {δi, δn−i+1 : 2 ≤ i ≤ p− 1}⟩ =
⟨J∗

p ∪ {δi, δn−i+1 : 2 ≤ i ≤ p − 1}⟩; and if ⌈n2 ⌉ + 1 ≤ p ≤ n − 1, then
⟨E(J∗

p ) ∪ O(⌈n2 ⌉) ∪ {δi, δn−i+1 : 2 ≤ i ≤ ⌈n2 ⌉ − 1}⟩ = ⟨J∗
p ∪ O(⌈n2 ⌉) ∪

{δi, δn−i+1 : 2 ≤ i ≤ ⌈n2 ⌉ − 1}⟩. In either case, the result follows from
Lemmas 24 and 25.

We now present the following result.

Theorem 14. Let DORIn be as defined in (3). Then, the rank DORIn

= 3n− 2.
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Proof. Notice that for any ρ ∈ W (n−1), ρid[n] = id[n]ρ = ρ. This means
that the product of identity element and any other element of W (n− 1)
does not generate any new element apart from elements in W (n − 1).
Notice also that ⟨W (n − 1)⟩ = I(n, n − 1) and I(n, n − 1) ∪ {id[n]} =
DORIn. Since I(n, n− 1) and {id[n]} are disjoint, it follows that

rank DORIn = rank I(n, n− 1) + rank |{id[n]}|.

Thus, using Theorem 13 we see that

rank DORIn = (n− 2) +

(
n

n− 1

)
+ (n− 1)

(
n− 2

n− 2

)
+ 1

= 3n− 2,

as required.

3. The maximal subsemigroups of the Rees quotient
RQn(p), the two-sided ideal I (n, p) and the mo-
noid DORI n

A subsemigroup M ⊆ S is called maximal provided that M ̸= S and
for any subsemigroup X ⊆ S, the inclusion M ⊆ X implies M = X or
X = S. That is, a proper non-empty subsemigroup M of a semigroup
S, is maximal if M ⊆ T ⊆ S for some subsemigroup T of S, we have
M = T or T = S [6, 10]. In other words, a proper subsemigroup of a
semigroup S is considered maximal if it is not contained in any other
proper subsemigroup of S. We would like to highlight [16, Table 1],
which presents a list of different transformation semigroups along with
the number of their maximal subsemigroups. An element a ∈ S is said to
be indecomposable if there are no elements b, c ∈ S\{a} such that a = bc.
Now let Base(S) denote the collection of all indecomposable elements of
S, usually known as base of the semigroup S, i.e.,

Base(S) = S \ S2 = {x ∈ S| ∀y, z ∈ S : x ̸= yz}.

We now prove a more general result.

Proposition 1. Let S be a semigroup and Base(S) be the base of S.
Then for any a ∈ Base(S), S \ {a} is a maximal subsemigroup of S.

Proof. Let x, y ∈ S \ {a}, where a ∈ Base(S). Thus, xy ̸= a and so
xy ∈ S \ {a}, which implies that S \ {a} is a subsemigroup of S. Now to



M. M. Zubairu, A. Umar, F. S. Al-Kharousi 309

show that S\{a} is maximal, let M be any subsemigroup of S containing
S \ {a}, i.e.,

S \ {a} ⊆ M ⊆ S.

(i) If a ∈ M then it follows easily that M = S, which will implies that
S \ {a} is maximal.
(ii) Now suppose a ̸∈ M , then M \ {a} = M and so,

S \ {a} ⊆ M \ {a} ⊆ S.

Notice that M ⊆ S implies M \ {a} ⊆ S \ {a}. Thus,

S \ {a} ⊆ M \ {a} ⊆ S \ {a},

which implies that S \ {a} = M \ {a} = M , i.e., S \ {a} = M . Hence
S \ {a} is maximal.

We start our findings by first referring back to Lemmas 20 and 24,
which state that the sets G(p) and W (p) are the minimum generating
sets of RQn(p) and the two-sided ideal I(n, p). Moreover, in particular,
the set W (n−1)∪{id[n]} is the minimum generating set of DORIn. We
now present the following lemma.

Lemma 26. An element ρ ∈ RQn(p) is indecomposable if and only if
ρ ∈ G(p).

Proof. Let ρ ∈ RQn(p) be an indecomposable element. Clearly, ρ must
be included in any generating set of RQn(p) because it cannot be gen-
erated by any other elements, and so ρ ∈ G(p). Conversely, suppose
ρ ∈ G(p). Notice that G(p) is the minimum generating set of RQn(p) by
Lemma 20, so that for any σ, δ ∈ G(p) \ {ρ}, we either have σδ = σ or
σδ = δ, and so σδ ̸= ρ. Hence ρ is not decomposable, as required.

The following result now follows.

Corollary 7. An element ρ ∈ I(n, p) is indecomposable if and only if
ρ ∈ W (p). In particular, an element ρ ∈ DORIn is indecomposable if
and only if ρ ∈ W (n− 1) ∪ {id[n]}.

Recall also that in the semigroup DORIn, the set W (n− 1) consists
of the essential elements, the idempotent elements of J∗

n−1, the convex
vital elements of height ⌈n2 ⌉, and all the extreme convex vital elements
of height below ⌈n2 ⌉. We now state and prove the following result.
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Theorem 15. Let RQn(p) be as defined in (5). Then,

(a) For p ∈ {1, ⌈n2 ⌉+1, . . . , n}, a subsemigroup M of RQn(p) is maxi-
mal if and only if M belongs to one of the following two types:

(i) Mϵ = RQn(p) \ {ϵ}, where ϵ ∈ E(RQn(p));

(ii) Mε = RQn(p) \ {ε}, where ε ∈ M(p).

(b) For p ∈ {2, . . . , ⌈n2 ⌉}, a subsemigroup M of RQn(p) is maximal if
and only if M belongs to one of the following three types:

(i) Mϵ = RQn(p) \ {ϵ}, where ϵ ∈ E(RQn(p));

(ii) Mε = RQn(p) \ {ε}, where ε ∈ M(p);

(iii) Mδ = RQn(p) \ {δ}, where δ ∈ O(p).

Proof. (a) If p ∈ {1, ⌈n2 ⌉+1, . . . , n}, then by Proposition 1 the result fol-
lows from the fact that G(p) = E(RQn(p))∪M(p) is the minimum gene-
rating set by Lemma 20, consisting of all the indecomposable elements
of RQn(p) by Lemma 26.
(b) Now, if p ∈ {2, . . . , ⌈n2 ⌉}, then the result follows from the fact that
G(p) = E(RQn(p)) ∪ M(p) ∪ O(p) is the minimum generating set by
Lemma 20 consisting of all the indecomposable elements of RQn(p) by
Lemma 26.

Remark 11. Note that if the generating set is only minimal, the state-
ment in Lemma 26 and Corollary 7 may not be true. To see this, consider
the cyclic group C12 = ⟨x : x12 = e⟩. Then ⟨x3, x4⟩ = C12. However,
⟨{x3, x4} \ {x3}⟩ = ⟨x4⟩ = C3 ⊂ C6 ⊂ C12, is not maximal.

We now have the following corollary.

Corollary 8. If p ∈ {1, ⌈n2 ⌉ + 1, . . . , n}, then the semigroup RQn(p)

contains exactly
(
n
p

)
+ (n − 1)

(
n−2
p−1

)
maximal subsemigroups; and if p ∈

{2, . . . , ⌈n2 ⌉} then the semigroup RQn(p) contains exactly
(
n
p

)
+ (n − 1)(

n−2
p−1

)
+ n− 2p+ 2 maximal subsemigroups.

Proof. The result follows from counting all the maximal subsemigroups
as stated in Theorem 15.

The next result characterizes the maximal subsemigroups of the two-
side ideal I(n, p).

Theorem 16. Let I(n, p) be as defined in (4). Then,
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(a) For p ∈ {1, ⌈n2 ⌉+1, . . . , n}, a subsemigroup M of I(n, p) is maximal
if and only if M belongs to one of the following four types:

(i) Mϵ = I(n, p) \ {ϵ}, where ϵ ∈ E(J∗
p );

(ii) Mε = I(n, p) \ {ε}, where ε ∈ M(p);

(iii) Mδ = I(n, p) \ {δ}, where δ ∈ O(⌈n2 ⌉);
(iv) Mδ′ = I(n, p) \ {δ′}, where δ′ ∈ {δi, δn−i+1 : 2 ≤ i ≤ ⌈n2 ⌉− 1}.

(b) For p ∈ {2, . . . , ⌈n2 ⌉}, a subsemigroup M of I(n, p) is maximal if
and only if M belongs to one of the following four types:

(i) Mϵ = I(n, p) \ {ϵ} where ϵ ∈ E(J∗
p );

(ii) Mε = I(n, p) \ {ε}, where ε ∈ M(p);

(iii) Mδ = I(n, p) \ {δ}, where δ ∈ O(p);

(iv) Mδ′ = I(n, p) \ {δ′}, where δ′ ∈ {δi, δn−i+1 : 2 ≤ i ≤ p− 1}.

Proof. (a) If p ∈ {1, ⌈n2 ⌉+ 1, . . . , n− 1}, the result follows from the fact
that W (p) = G(p)∪O(⌈n2 ⌉)∪ {δi, δn−i+1 : 2 ≤ i ≤ ⌈n2 ⌉− 1} is the mini-
mum generating set by Lemma 24, consisting of all the indecomposable
elements of I(n, p) by Corollary 7.

(b) Now, if p ∈ {2, . . . , ⌈n2 ⌉}, then the result also follows from the fact
that W (p) = G(p)∪{δi, δn−i+1 : 2 ≤ i ≤ p− 1} is the minimum genera-
ting set by Lemma 24, consisting of all the indecomposable elements of
I(n, p) by Corollary 7.

We now have the following corollary.

Corollary 9. For 1 ≤ p ≤ n− 1, the semigroup I(n, p) contains exactly
(n− 2) +

(
n
p

)
+ (n− 1)

(
n−2
p−1

)
maximal subsemigroups.

Proof. The result follows from counting all the maximal subsemigroups
as stated in Theorem 16.

In conclusion, we wrap up the paper with the following results with-
out proof.

Theorem 17. Let DORIn be as defined in (3). Then, a subsemigroup
M of DORIn is maximal if and only if M belongs to one of the following
five types:

(i) Mid[n]
= DORIn \ {id[n]};
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(ii) Mϵ = DORIn \ {ϵ}, where ϵ ∈ E(J∗
n−1);

(iii) Mε = DORIn \ {ε}, where ε ∈ M(p);

(iv) Mδ = DORIn \ {δ}, where δ ∈ O(⌈n2 ⌉);

(v) Mδ′ = DORIn \ {δ′}, where δ′ ∈ {δi, δn−i+1 : 2 ≤ i ≤ ⌈n2 ⌉ − 1}.

Corollary 10. The monoid DORIn contains exactly 3n − 2 maximal
subsemigroups.
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