

The decreasing and monotone injective partial monoid on a finite chain

Muhammad Mansur Zubairu, Abdullahi Umar,
and Fatma Salim Al-Kharousi

Communicated by G. Kudryavtseva

ABSTRACT. In this paper, we consider the monoid \mathcal{DORI}_n consisting of all monotone and order-decreasing partial injective transformations, $I(n, p) = \{\alpha \in \mathcal{DORI}_n : |\text{Im } \alpha| \leq p\}$ the two-sided ideal of \mathcal{DORI}_n , and $RQ_p(n)$ the Rees quotient of $I(n, p)$ on a chain with n elements. We calculate the cardinality of \mathcal{DORI}_n , characterize the Green's relations and their starred analogue for any structure $S \in \{\mathcal{DORI}_n, I(n, p), RQ_p(n)\}$. We demonstrate that for any structure S among $\{\mathcal{DORI}_n, I(n, p), RQ_p(n)\}$, the structure is abundant for all values of n ; specifically, \mathcal{DORI}_n is shown to be an ample monoid, and compute the rank of the Rees quotient $RQ_p(n)$ and the two-sided ideal $I(n, p)$; as a special case, we obtain the rank of the monoid \mathcal{DORI}_n to be $3n - 2$. Finally, we characterize all the maximal subsemigroups of the structure S among $\{\mathcal{DORI}_n, I(n, p), RQ_p(n)\}$.

Introduction

For a natural number n , let $[n]$ denote an n element chain $\{1, 2, \dots, n\}$. Let \mathcal{I}_n be the set of all injective partial transformations on $[n]$. This

The first author acknowledges with gratitude the hospitality provided by Sultan Qaboos University, Oman, during his one-year postdoctoral research visit, and he thanks Bayero University and TETFund (TETF/ES/UNI/KANO/TSAS/2022) for their financial backing.

2020 Mathematics Subject Classification: 20M20.

Key words and phrases: monotone maps, order decreasing, ample monoid, rank properties.

collection is known as *the symmetric inverse semigroup*. A map $\rho \in \mathcal{I}_n$ is called *order decreasing* if (for all $x \in \text{Dom } \rho$) $x\rho \leq x$; an *isotone* map (resp., an *anti-tone* map) if (for all $a, b \in \text{Dom } \rho$) $a \leq b$ implies $a\rho \leq b\rho$ (resp., $a\rho \geq b\rho$). The notations \mathcal{DI}_n and \mathcal{OI}_n usually denote *the semigroup of all order-decreasing injective partial transformations* on $[n]$ and *the semigroup of all isotone injective partial transformations* on $[n]$, respectively. Moreover, let \mathcal{DORP}_n be the *monoid of all monotone and decreasing partial transformations* on $[n]$. The monoid \mathcal{DORP}_n first appeared in [33], where its rank and that of its two-sided ideals were computed. Furthermore, let \mathcal{IC}_n denote the *semigroup of all isotone and order-decreasing injective partial transformations* on $[n]$. The order of \mathcal{IC}_n was obtained in [6, Theorem 14.2.8], as c_{n+1} , where

$$c_n = \frac{1}{n} \binom{2n}{n-1} \quad (1)$$

is known as the *n-th Catalan number*. The monoid \mathcal{IC}_n is referred to as the *injective partial Catalan monoid* defined as:

$$\mathcal{IC}_n = \mathcal{OI}_n \cap \mathcal{DI}_n. \quad (2)$$

The monoids \mathcal{IC}_n , \mathcal{OI}_n and \mathcal{DI}_n have been widely studied in various contexts, see for example [3, 6, 8, 17, 20, 23, 25, 27, 29, 33].

Now let

$$\mathcal{DORI}_n = \mathcal{DORP}_n \cap \mathcal{I}_n \quad (3)$$

be the *monoid of all monotone and decreasing injective partial transformations* on $[n]$. The monoid \mathcal{DORI}_n seems not to have been discussed in the existing literature. In this article, we are going to investigate order, rank and some algebraic properties of the monoid \mathcal{DORI}_n , as well as the rank of its two-sided ideals $I(n, p)$ and their Rees quotients.

Remark 1. Notice that for $0 \leq n \leq 2$, $\mathcal{DORI}_n = \mathcal{IC}_n$.

The product (or composition) of two transformations ρ and σ in \mathcal{I}_n is defined as $a(\rho \circ \sigma) = ((a)\rho)\sigma$ for all $a \in \text{Dom } \rho$. To prevent confusion, we will use the notation $\rho\sigma$ to denote $\rho \circ \sigma$. Additionally, we will adopt the following notations: $F(\rho) = \{x \in \text{Dom } \rho : x\rho = x\}$ for the set of fixed points of ρ , $f(\rho)$ for the number of fixed points of ρ (i.e., $|F(\rho)|$), $\text{id}_{[n]}$ for the identity transformation on $[n]$, $\text{Im } \rho$ for the image set of the transformation ρ , $\text{Dom } \rho$ for the domain set of the map ρ , $b(\rho) = |\text{Dom } \rho|$ and $h(\rho) = |\text{Im } \rho|$ for the height of ρ . A subset A of $[n]$ is called *convex*

if, for any $a, b \in A$ such that $a \leq b$, and for any $c \in [n]$, if $a < c < b$, then $c \in A$. An element $a \in S$ is called an *idempotent* if $a^2 = a$, the collection of all idempotents in S shall as usual be denoted by $E(S)$.

Now, for $1 \leq p \leq n$, let

$$I(n, p) = \{\rho \in \mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n : |\text{Im } \rho| \leq p\}, \quad (4)$$

be the two-sided ideal of $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ consisting of all monotone and decreasing injective partial functions with a height of at most p . Moreover, for $1 \leq p \leq n$, let

$$RQ_n(p) = I(n, p)/I(n, p-1); \quad (5)$$

denote the Rees quotient of $I(n, p)$. The elements of $RQ_n(p)$ can be viewed as the elements of $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ that have an exact height of p . The composition of two elements in $RQ_n(p)$ is $\mathbf{0}$ if their product in $RQ_n(p)$ has a height that is strictly below p ; else, it remains in $RQ_n(p)$.

In this article, we are going to characterize the Green's equivalences and their starred counterpart, and compute the ranks of the monoid $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ and its two-side ideals. For more details about basic concepts in semigroup theory, we recommend that the reader consult the books [11, 15] by Howie and Higgins, respectively.

This section includes definitions of fundamental terms, and we compute the order of the monoid $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$. In Section 2, we explore all of Green's relations and their starred counterparts within the monoid $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ and its two-sided ideal $I(n, p)$. Additionally, we show that both the monoid $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ and its two-sided ideals are abundant semigroups; in particular, we demonstrate that $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ is an ample monoid. Section 3 focuses on determining the rank of the Rees quotient semigroup $RQ_n(p)$, the two-sided ideal $I(n, p)$, and the monoid $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$. Finally, in Section 4, we characterize all the maximal subsemigroups of the Rees quotients $RQ_n(p)$, the two-sided ideal $I(n, p)$, and in particular, the monoid $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$.

We shall represent every $\rho \in \mathcal{I}\mathcal{C}_n$ in two line notation as:

$$\rho = \begin{pmatrix} x_1 & \dots & x_p \\ a_1 & \dots & a_p \end{pmatrix} \quad (1 \leq p \leq n), \quad (6)$$

where $a_i \leq x_i$ for all $1 \leq i \leq p$. Moreover, we may, without loss of generality, suppose that $1 \leq x_1 < \dots < x_p \leq n$ and $1 \leq a_1 < a_2 < \dots < a_p \leq n$, since ρ is an isotone map.

The monoid \mathcal{DORI}_n can equivalently be obtained as:

$$\begin{aligned}\mathcal{DORI}_n &= \{\rho \in \mathcal{I}_n : \rho \text{ is monotone \& decreasing}\} \\ &= \{\rho \in \mathcal{I}_n : \rho \text{ is isotone \& decreasing}\} \\ &\quad \cup \{\rho \in \mathcal{I}_n : \rho \text{ is antitone \& decreasing}\}.\end{aligned}$$

Therefore, if we let $DRI_n = \{\rho \in \mathcal{I}_n : \rho \text{ is antitone and decreasing}\}$, then

$$\mathcal{DORI}_n = \mathcal{IC}_n \cup DRI_n. \quad (7)$$

Now, let us briefly analyze the elements in DRI_n . First, observe that every element of height 1 in \mathcal{DORI}_n is both isotone and antitone; that is, it belongs to both \mathcal{IC}_n and DRI_n . However, antitones of height greater than or equal to 2 are never isotone; therefore, they must be included in DRI_n . Thus, we have the following remark.

Remark 2. Every element in DRI_n of height $1 < p < n$ of the form

$$\rho = \begin{pmatrix} x_1 & \dots & x_p \\ a_p & \dots & a_1 \end{pmatrix} \quad (8)$$

possesses the following properties:

- (i) $1 \leq a_1 < \dots < a_p \leq x_1 < \dots < x_p \leq n$;
- (ii) Product of two isotone maps or two antitone maps, is isotone; product of an isotone map and an antitone map, is antitone. Similarly, product of an antitone map and isotone map yields an antitone map.

Lemma 1. Every element in \mathcal{DORI}_n with height greater than $\lceil \frac{n}{2} \rceil$ is necessarily isotone.

Proof. Let $\rho \in \mathcal{DORI}_n$ as expressed in (6) be of height $p > \lceil \frac{n}{2} \rceil$. Suppose by way of contradiction that ρ is antitone. Thus, we must have $1 \leq a_1 < \dots < a_p \leq x_1 < \dots < x_p \leq n$. Now $p > \lceil \frac{n}{2} \rceil$ implies $|\text{Im } \rho| > \lceil \frac{n}{2} \rceil$, i.e., the number of elements in the image set $\{a_1, \dots, a_p\}$ is greater than $\lceil \frac{n}{2} \rceil$. Notice that either $\text{Im } \rho \cap \text{Dom } \rho = \{x_1\}$ or $\text{Im } \rho \cap \text{Dom } \rho = \emptyset$. So, there are two cases to consider.

Case i. If $\text{Im } \rho \cap \text{Dom } \rho = \{x_1\}$. Then the domain set of ρ can be obtain from $[n] \setminus \{a_1, \dots, a_p\} \cup \{x_1\}$. So that the total number of elements in $[n] \setminus \{a_1, \dots, a_p\} \cup \{x_1\}$ is $n - |\text{Im } \rho| + 1$. However, since $|\text{Im } \rho| > \lceil \frac{n}{2} \rceil$, we see that:

$$n - |\text{Im } \rho| + 1 < n - \left\lceil \frac{n}{2} \right\rceil + 1.$$

Thus, if n is odd, we have

$$n - |\text{Im } \rho| + 1 < n - \left\lceil \frac{n}{2} \right\rceil + 1 = n - \frac{n+1}{2} + 1 = \frac{n+1}{2} = \left\lceil \frac{n}{2} \right\rceil < p.$$

This means that the number of elements in the set $[n] \setminus \{a_1, \dots, a_p\} \cup \{x_1\}$ (where the domain elements can be selected) is less than the number of the elements fixed in the image set, which is a contradiction.

Similarly, if n is even, we have

$$n - |\text{Im } \rho| + 1 < n - \left\lceil \frac{n}{2} \right\rceil + 1 = n - \frac{n}{2} + 1 = \frac{n+2}{2} = \left\lceil \frac{n}{2} \right\rceil + 1 < p + 1.$$

This implies that $n - |\text{Im } \rho| < p$, which is also a contradiction.

Case ii. Using a similar argument as in Case i, we arrived at a contradiction; hence, ρ is isotone. \square

Consequently, every element in DRI_n has height p that satisfies $1 \leq p \leq \lceil \frac{n}{2} \rceil$. We now have the following definition. An element $\rho \in \mathcal{DORI}_n$ as expressed in (6) is called *reversible* if $\begin{pmatrix} x_1 & \dots & x_p \\ a_p & \dots & a_1 \end{pmatrix} \in \mathcal{DORI}_n$. The following lemma is important.

Lemma 2. *An element $\rho \in \mathcal{IC}_n$, as expressed in (6), is reversible; specifically, $\begin{pmatrix} x_1 & \dots & x_p \\ a_p & \dots & a_1 \end{pmatrix} \in \mathcal{DORI}_n$ if and only if $a_p \leq x_1$ and $1 \leq p \leq \lceil \frac{n}{2} \rceil$.*

Proof. Notice that $x_1 = \min(\text{Dom } \rho) \geq a_p$, by the order decreasing property. However, since ρ is antitone, then $n - p + 1 \geq x_1$ and $x_1 \geq p$, and so, $n - p + 1 \geq x_1 \geq p$, which implies $n + 1 \geq 2p$. Hence $p \leq \lfloor \frac{n+1}{2} \rfloor = \lceil \frac{n}{2} \rceil$. The converse is trivial. \square

We note the following well known combinatorial identity, which is useful in our subsequent discussions.

Lemma 3 ([21], (3b), p. 8). *For all natural numbers n, a , and b , we have*

$$\sum_{i=b}^n \binom{i}{b} \binom{n+a-i}{a} = \binom{n+a+1}{a+b+1}.$$

It is now clear that to obtain the size of \mathcal{DORI}_n , it is sufficient to compute the size of the set DRI_n . For a transformation ρ on a finite chain, let $b(\rho) = r$ and $h(\rho) = p$. Define the combinatorial function:

$$F(n, p) = |\{\rho \in DRI_n : h(\rho) = p\}|.$$

We then have the following result.

Theorem 1. *The number of elements in DRI_n of a fixed height p is*

$$F(n, p) = \binom{n+1}{2p}.$$

Proof. Let $\rho \in DRI_n$ be as expressed in (8), where $h(\rho) = p$. Moreover, let $r = x_1 = \min(\text{Dom } \rho)$. Note that $p \leq r \leq n - p + 1$, from the proof of Lemma 2, and for all $x_i \in \text{Dom } \rho$ and $a_j \in \text{Im } \rho$, we have $a_j \leq x_i$ since ρ is antitone. To count the number of $\rho \in DRP_n$, we first choose the domain elements. Now, since $r \in \text{Dom } \rho$, we can choose the remaining $p - 1$ elements from $[n] \setminus \{1, \dots, r\}$, i.e., in $\binom{n-r}{p-1}$ ways. Then, we can choose the p images from the set $\{1, \dots, r\}$ in $\binom{r}{p}$ ways. Finally, taking the sum of the product: $\binom{n-r}{p-1} \binom{r}{p}$, from $r = p$ to $r = n - p + 1$ produces

$$F(n, p) = \sum_{r=p}^{n-p+1} \binom{n-r}{p-1} \binom{r}{p} = \binom{n+1}{2p} \quad (\text{by Lemma 3}),$$

as required. \square

Now, let

$$a_n = \sum_{p=2}^{\lceil \frac{n}{2} \rceil} F(n, p) = \sum_{p=2}^{\lceil \frac{n}{2} \rceil} \binom{n+1}{2p} = 2^n - \frac{n(n+1)}{2} - 1.$$

We can now state the following result.

Theorem 2. *Let \mathcal{DORI}_n be as defined in (7). Then*

$$|\mathcal{DORI}_n| = \frac{1}{n+1} \binom{2(n+1)}{n} + 2^n - \frac{n(n+1)}{2} - 1.$$

Proof. Notice that, as in (7), $\mathcal{DORI}_n = \mathcal{IC}_n \cup DRI_n$. However elements of height 1 are both isotone and antitone maps, and they are counted in \mathcal{IC}_n . Thus,

$$\begin{aligned} |\mathcal{DORI}_n| &= c_{n+1} + \sum_{p=2}^{\lceil \frac{n}{2} \rceil} F(n, p) \\ &= c_{n+1} + a_n \\ &= \frac{1}{n+1} \binom{2(n+1)}{n} + 2^n - \frac{n(n+1)}{2} - 1, \end{aligned}$$

as required. \square

1. Green's and starred Green's relations

Within the framework of semigroup theory, Green's relations consist of five different types, represented as \mathcal{L} , \mathcal{R} , \mathcal{D} , \mathcal{J} , and \mathcal{H} . These relations are defined based on the principal ideals (left, right, or two-sided) generated by the elements of S . For a comprehensive discussion of these relations, readers are encouraged to refer to Howie [11]. As noted in [4], when there is potential for confusion, we denote a relation \mathcal{K} on S as $\mathcal{K}(S)$. It is a well-known result in the study of a finite semigroup, $\mathcal{D} = \mathcal{J}$ (see [11, Proposition 2.1.4]). Consequently, we are going to concentrate on describing the equivalences \mathcal{L} , \mathcal{R} , \mathcal{D} , and \mathcal{H} within the monoid of all decreasing and monotone injective partial transformations $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$.

It is well known that the semigroup $\mathcal{D}\mathcal{I}_n$ is \mathcal{J} -trivial (see [22, Lemma 2.2]). Notice that $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ is a subsemigroup of $\mathcal{D}\mathcal{I}_n$, it follows that for any relation say $\mathcal{K} \in \{\mathcal{L}, \mathcal{R}, \mathcal{H}, \mathcal{J}\}$, we have

$$\mathcal{K}(\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n) = \mathcal{K}(\mathcal{D}\mathcal{I}_n) \cap (\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n \times \mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n).$$

Consequently, we have the following result.

Theorem 3. $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$ is \mathcal{J} -trivial.

In a semigroup S , an element $a \in S$ is termed *regular* if there exists another element $b \in S$ such that $a = aba$. Furthermore, a semigroup S is classified as a *regular semigroup* if all its elements are regular. We are now going to prove a general result about regular elements in an \mathcal{R} -trivial semigroup.

Lemma 4. *In an \mathcal{R} -trivial semigroup S , an element $a \in S$ is regular if and only if a is an idempotent.*

Proof. Let S be an \mathcal{R} -trivial semigroup and $a \in S$ be a regular element. This means $a = aba$ for some $b \in S$. Notice that $(ab)^2 = abab = (aba)b = ab$, so $ab \in E(S)$. Observe also that the equations $a = (ab)a$ and $ab = a(bab)$ ensures that $(a, ab) \in \mathcal{R}$. However, the fact that S is \mathcal{R} -trivial implies that $a = ab$, and so a is an idempotent. The converse is trivial. \square

Remark 3. Now since every \mathcal{J} -trivial semigroup is \mathcal{R} -trivial, then Lemma 4 also holds on $\mathcal{D}\mathcal{O}\mathcal{R}\mathcal{I}_n$.

Consequently, we can immediately derive the following corollary from Theorem 3 and Lemma 4, and Remark 3.

Corollary 1. *An element $\rho \in \mathcal{DORI}_n$ is regular if and only if ρ is an idempotent. Hence, the monoid \mathcal{DORI}_n is non-regular for $n \geq 2$.*

Consequently, based on Theorem 3, we derive the following descriptions of Green's equivalences in the semigroup S in $\{RQ_n(p), I(n, p)\}$.

Theorem 4. *Let $S \in \{RQ_n(p), I(n, p)\}$. Then S is \mathcal{J} -trivial. Hence, for $n \geq p \geq 2$, the semigroup S is non-regular.*

When a semigroup is not regular, it is common practice to examine the starred Green's relations to identify its algebraic structure. The five starred Green's equivalences include \mathcal{L}^* , \mathcal{R}^* , \mathcal{D}^* , \mathcal{J}^* , and \mathcal{H}^* . The relation \mathcal{L}^* is defined as: for $a, b \in S$, $(a, b) \in \mathcal{L}^*$ if and only if a and b are related by \mathcal{L} in some over-semigroup of S ; the relation \mathcal{R}^* is defined dually. The \mathcal{D}^* relation is defined as the join of \mathcal{L}^* and \mathcal{R}^* , while \mathcal{H}^* is the intersection of \mathcal{L}^* and \mathcal{R}^* . A semigroup S is described as *left abundant* if every \mathcal{L}^* -class contains at least one idempotent; it is called *right abundant* if every \mathcal{R}^* -class includes at least one idempotent; and it is called *abundant* if both every \mathcal{L}^* -class and every \mathcal{R}^* -class of S contain an idempotent [4,5]. Several classes of transformation semigroups have been identified as left abundant, right abundant, or abundant; refer to [2,18,23, 24, 27, 28, 31, 32, 34] for examples. In this section, we aim to characterize the starred versions of Green's equivalences for $S \in \{\mathcal{DORI}_n, I(n, p)\}$.

We will need the following definition and lemmas from [2, 11, 24] for our subsequent discussions: A subsemigroup A of a semigroup S is called *full* if $E(A) = E(S)$; it is referred to as an *inverse ideal* of S if for every $a \in A$, there exists $a' \in S$ such that $aa'a = a$ and both $a'a$ and aa' are in A .

Lemma 5 ([24, Lemma 3.1.8.]). *Every inverse ideal A of S is abundant.*

Lemma 6 ([24, Lemma 3.1.9.]). *If A is an inverse ideal of S , then (1) $\mathcal{L}^*(A) = \mathcal{L}(S) \cap (A \times A)$; (2) $\mathcal{R}^*(A) = \mathcal{R}(S) \cap (A \times A)$; (3) $\mathcal{H}^*(A) = \mathcal{H}(S) \times (A \times A)$.*

Lemma 7 ([11, Exercise 5.11(2)]). *In the inverse semigroup \mathcal{I}_n , we have*

- (a) $\rho \mathcal{L} \sigma$ if and only if $\text{Im } \rho = \text{Im } \sigma$;
- (b) $\rho \mathcal{R} \sigma$ if and only if $\text{Dom } \rho = \text{Dom } \sigma$;
- (c) $\rho \mathcal{D} \sigma$ if and only if $|\text{Im } \rho| = |\text{Im } \sigma|$;
- (d) $\mathcal{D} = \mathcal{J}$.

We are now going to illustrate the following outcome.

Theorem 5. *Let \mathcal{DORI}_n be as defined in (2). Then \mathcal{DORI}_n is an inverse ideal of \mathcal{I}_n .*

Proof. Let $\rho \in \mathcal{DORI}_n$ be expressed as in (6). Then $\rho^{-1} \in \mathcal{I}_n$. Observe that for $1 \leq i \leq p$,

$$x_i \rho \rho^{-1} \rho = a_i \rho^{-1} \rho = x_i \rho.$$

Additionally, we have $\rho \rho^{-1} = \text{Id}_{\text{Dom } \rho} \in \mathcal{DORI}_n$ and $\rho^{-1} \rho = \text{Id}_{\text{Im } \rho} \in \mathcal{DORI}_n$, as required. \square

Remark 4. It is straightforward to observe that \mathcal{DORI}_n forms a full subsemigroup of \mathcal{I}_n^- (where \mathcal{I}_n^- represents the monoid of all decreasing partial injections on $[n]$, as referenced in [30]) in the sense that $E(\mathcal{DORI}_n) = E(\mathcal{I}_n^-)$. Consequently, $E(\mathcal{DORI}_n)$ constitutes a semilattice (by semilattice, we refer to a commutative semigroup in which each of its element is an idempotent).

Now, as a result of Theorem 5 and Lemma 5, we have the result below.

Theorem 6. *Let \mathcal{DORI}_n be as defined in (2). Then \mathcal{DORI}_n is abundant.*

Now, we present the result below.

Theorem 7. *Let \mathcal{DORI}_n be as defined in (2). Then for $\rho, \sigma \in \mathcal{DORI}_n$, we have:*

- (i) $\rho \mathcal{L}^* \sigma$ if and only if $\text{Im } \rho = \text{Im } \sigma$;
- (ii) $\rho \mathcal{R}^* \sigma$ if and only if $\text{Dom } \rho = \text{Dom } \sigma$;
- (iii) $\rho \mathcal{H}^* \sigma$ if and only if $\text{Im } \rho = \text{Im } \sigma$ and $\text{Dom } \rho = \text{Dom } \sigma$.

Proof. (i) Since \mathcal{DORI}_n is an inverse ideal of \mathcal{I}_n by Theorem 5, it follows from Lemma 6 that

$$\mathcal{L}^*(\mathcal{DORI}_n) = \mathcal{L}(\mathcal{I}_n) \cap (\mathcal{DORI}_n \times \mathcal{DORI}_n).$$

Thus, $(\rho, \sigma) \in \mathcal{L}^*(\mathcal{DORI}_n)$ if and only if $(\rho, \sigma) \in \mathcal{L}(\mathcal{I}_n) \cap (\mathcal{DORI}_n \times \mathcal{DORI}_n)$ if and only if $\text{Im } \rho = \text{Im } \sigma$ by Lemma 7(a).

- (ii) The argument is analogous to (i).
- (iii) follows from (i) and (ii). \square

Let H_ρ^* denote the \mathcal{H}^* -class of ρ in \mathcal{DORI}_n . Then we have the following result.

Corollary 2. *Let \mathcal{DORI}_n be as defined in (2). Then for any $\rho \in \mathcal{DORI}_n$,*

$$|H_\rho^*| = \begin{cases} 1, & \text{if } h(\rho) \in \{0, 1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}; \\ 2, & \text{if } 2 \leq h(\rho) \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

Proof. Let $\rho \in \mathcal{DORI}_n$ be expressed as in (6). If $h(\rho) = 0, 1$, the result is trivial. Now, if $h(\rho) \in \{\lceil \frac{n}{2} \rceil + 1, \dots, n\}$, $h(\rho) > \lceil \frac{n}{2} \rceil$, i.e., ρ is necessarily an isotone map by Lemma 1. So, ρ is not reversible by Lemma 2; that is to say the map,

$$\sigma = \begin{pmatrix} x_1 & \dots & x_p \\ a_p & \dots & a_1 \end{pmatrix} \notin \mathcal{DORI}_n.$$

This means that $\text{Dom } \rho$ can only admit the image set $\{a_1, \dots, a_p\}$ in one way. Thus, it follows from Theorem 7(iii) that $\rho \mathcal{H}^* \sigma$ if and only if $\rho = \sigma$, and consequently, $|H_\rho^*| = 1$.

On the other hand, if $2 \leq h(\rho) \leq \lceil \frac{n}{2} \rceil$, then by Lemma 2, ρ is reversible, and thus the map

$$\sigma = \begin{pmatrix} x_1 & \dots & x_p \\ a_p & \dots & a_1 \end{pmatrix} \in \mathcal{DORI}_n.$$

This means that $\text{Dom } \rho$ can only admit the image set $\{a_1, \dots, a_p\}$ in two ways. It follows from Theorem 7(iii) that $\rho \mathcal{H}^* \sigma$. Hence, $|H_\rho^*| = 2$, as required. \square

An abundant semigroup S is called *adequate* if the set of idempotents $E(S)$ forms a semilattice. Inverse monoids (or semigroups) are typically examples of adequate monoids (or semigroups) because, in this case, we have $\mathcal{R}^* = \mathcal{R}$ and $\mathcal{L}^* = \mathcal{L}$ [5]. Consequently, as noted in Remark 4, the semigroup \mathcal{DORI}_n is also adequate.

For an element a in an adequate semigroup S , we denote the (unique) idempotent in the \mathcal{L}^* -class (or \mathcal{R}^* -class) containing a as a^* (or a^+). An adequate semigroup S is called *ample* if for all elements $a \in S$ and all idempotents $e \in S$, the following conditions hold:

$$ae = (ae)^+a \text{ and } ea = a(ea)^*.$$

Since \mathcal{DORI}_n is a subsemigroup of \mathcal{I}_n^- , and since $E(\mathcal{DORI}_n) = E(\mathcal{I}_n^-)$, and given that \mathcal{I}_n^- is an ample semigroup, we can conclude from Remark 4 that the following result holds.

Theorem 8. *Let \mathcal{DORI}_n be as defined in (2). Then \mathcal{DORI}_n is an ample semigroup for all n .*

We demonstrate in the following lemma that the relations \mathcal{L}^* and \mathcal{R}^* in the monoid \mathcal{DORI}_n do not commute for $n \geq 2$.

Lemma 8. *For $n \geq 2$, in the monoid \mathcal{DORI}_n , it holds that $\mathcal{R}^* \circ \mathcal{L}^* \neq \mathcal{L}^* \circ \mathcal{R}^*$.*

Proof. Consider

$$\rho = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ and } \sigma = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

in \mathcal{DORI}_n . It follows from Theorem 7 that $(\rho, \sigma) \in \mathcal{L}^* \circ \mathcal{R}^*$, but $(\rho, \sigma) \notin \mathcal{R}^* \circ \mathcal{L}^*$, as required. \square

Before we can characterize the relations \mathcal{D}^* and \mathcal{J}^* , we must first present the following analogues of [30, Lemmas 2.7, 2.8, and 2.9] (respectively).

Lemma 9. *Let $\rho \in \mathcal{DORI}_n$ be as expressed in (6). Then there exists $\sigma \in \mathcal{DORI}_n$ with $\text{Im } \sigma = \{1, \dots, p\}$ such that $(\rho, \sigma) \in \mathcal{R}^*$.*

Proof. Let ρ be an element of \mathcal{DORI}_n . Then ρ is either isotone or antitone. In the former, let ρ be as expressed as in (6); and in the latter, let ρ be as expressed in (8). Now define

$$\sigma = \begin{pmatrix} x_1 & \dots & x_p \\ 1 & \dots & p \end{pmatrix}.$$

Clearly, σ is in \mathcal{DORI}_n , and in either of the cases $\text{Dom } \rho = \text{Dom } \sigma$, and so by Theorem 7(ii), we see that $(\rho, \sigma) \in \mathcal{R}^*$. \square

Lemma 10. *Let $\rho \in \mathcal{DORI}_n$ be expressed as in (6). Then there exists $\sigma \in \mathcal{DORI}_n$ with $\text{Dom } \sigma = \{n-p+1, \dots, n\}$ such that $(\rho, \sigma) \in \mathcal{L}^*$.*

Proof. Let ρ be an element of \mathcal{DORI}_n . Then ρ is either isotone or antitone. In the former, let ρ be as expressed as in (6); and in the latter, let ρ be as expressed in (8). Now define

$$\sigma = \begin{pmatrix} n-p+1 & \dots & n \\ a_1 & \dots & a_p \end{pmatrix}.$$

Clearly, σ is in \mathcal{DORI}_n , and in either of the cases we see that $\text{Im } \rho = \text{Im } \sigma$, and so by Theorem 7(ii), $(\rho, \sigma) \in \mathcal{L}^*$, as required. \square

Lemma 11. *Let $\rho, \sigma \in \mathcal{DORI}_n$. If $\rho \in J_\sigma^*$, then $|\text{Im } \rho| \leq |\text{Im } \sigma|$.*

Proof. Let $\rho \in J^*(\sigma)$. Then, according to [5, Lemma 1.7], there exist $\beta_0, \beta_1, \dots, \beta_n \in \mathcal{DORI}_n$, $\gamma_1, \dots, \gamma_n, \tau_1, \dots, \tau_n$ in \mathcal{DORI}_n such that $\rho = \beta_0$, $\sigma = \beta_n$, and $(\beta_i, \gamma_i \beta_{i-1} \tau_i) \in \mathcal{D}^*$ for $i = 1, \dots, n$. Thus,

$$|\text{Im } \beta_i| = |\text{Im } \gamma_i \beta_{i-1} \tau_i| \leq |\text{Im } \beta_{i-1}|,$$

so that

$$|\text{Im } \rho| \leq |\text{Im } \sigma|.$$

The result now follows. \square

Within the semigroup \mathcal{DORI}_n , we establish a relation \mathcal{K} on \mathcal{DORI}_n defined by the condition that $(\rho, \sigma) \in \mathcal{K}$ if and only if $|\text{Im } \rho| = |\text{Im } \sigma|$. It follows that $\mathcal{D} \subseteq \mathcal{K}$. By utilizing Theorem 7 and Lemmas 9–11, and noting that all the maps in \mathcal{DORI}_n are decreasing maps, the next results are the direct corollaries to [25, Lemmas 2.10 & 2.14].

Corollary 3. *For the monoid \mathcal{DORI}_n , it follows that $\mathcal{D}^* = \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^* = \mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^*$.*

Corollary 4. *Let $\rho, \sigma \in \mathcal{DORI}_n$. Then $(\rho, \sigma) \in \mathcal{D}^*$ if and only if $|\text{Im } \rho| = |\text{Im } \sigma|$.*

Corollary 5. *On the monoid \mathcal{DORI}_n , we have $\mathcal{J}^* = \mathcal{D}^*$.*

Now we deduce that:

Lemma 12. *On the semigroups $RQ_n(p)$ and $I(n, p)$, it holds that $\mathcal{D}^* = \mathcal{R}^* \circ \mathcal{L}^* \circ \mathcal{R}^* = \mathcal{L}^* \circ \mathcal{R}^* \circ \mathcal{L}^*$.*

Lemma 13. *If $S \in \{RQ_n(p), I(n, p)\}$, then S is abundant.*

Remark 5. (i) It is evident from Theorem 7(i) and (ii) that for each $1 \leq p \leq n$, the number of \mathcal{L}^* -classes is equal to the number of \mathcal{R}^* -classes in $J_p^* = \{\rho \in \mathcal{DORI}_n : |\text{Im } \rho| = p\}$. This quantity corresponds to the total number of p size subsets contained in $[n]$, given by $\binom{n}{p}$.

- (ii) For S within the set $\{RQ_n(p), I(n, p)\}$, the characterizations of the starred Green's relations found in Theorem 7 are valid in S as well.
- (iii) If S is a semigroup in $\{RQ_n(p), I(n, p)\}$, then S is adequate because $E(S)$ is a semilattice, making it an ample semigroup.

A semigroup S with $\mathbf{0}$ is called $0-^*$ *bisimple* if it has a unique nonzero \mathcal{D}^* -class [23]. Therefore, we have established the following result.

Theorem 9. *Let $RQ_n(p)$ be as defined in (5). Then $RQ_n(p)$ is a non-regular $0-^*$ *bisimple ample semigroup*.*

Thus, the semigroup $I(n, p)$, like \mathcal{DORI}_n is the union of the \mathcal{J}^* classes $J_0^*, J_1^*, \dots, J_p^*$, where

$$J_p^* = \{\rho \in I(n, p) : |\text{Im } \rho| = p\}.$$

Moreover, the ideal $I(n, p)$ has $\binom{n}{p}$ \mathcal{R}^* -classes, and $\binom{n}{p}$ \mathcal{L}^* -classes in each J_p^* . Consequently, the Rees quotient $RQ_n(p)$ has $\binom{n}{p} + 1$ \mathcal{R}^* -classes and $\binom{n}{p} + 1$ \mathcal{L}^* -classes. (The term 1 results from the singleton class containing the zero element in every instance.) We now present the following lemma, which follows from Remark 5.

Lemma 14. *For all $0 \leq p \leq n$, if $J_p^* = \{\rho \in \mathcal{DORI}_n : |\text{Im } \rho| = p\}$, then $|E(J_p^*)| = \binom{n}{p}$.*

It is a known fact from [6, Proposition 14.3.1] that $|E(\mathcal{IC}_n)| = 2^n$, thus since $E(\mathcal{DORI}_n) = E(\mathcal{IC}_n)$, it follows that $|E(\mathcal{DORI}_n)| = 2^n$.

2. Rank properties

Let A be a nonempty subset of a semigroup S . The *smallest subsemigroup* of S that includes A is referred to as the *subsemigroup generated by A* , typically represented by the notation $\langle A \rangle$. If A is a finite subset of S such that $\langle A \rangle = S$, then S is termed a *finitely-generated semigroup*. The *rank* of a finitely generated semigroup S is defined as the smallest size of a subset A for which $\langle A \rangle$ is equal to S . Specifically,

$$\text{rank}(S) = \min\{|A| : \langle A \rangle = S\}.$$

For a more in-depth examination of ranks in semigroup theory, we recommend that readers refer to [12, 13]. Numerous authors have explored the ranks of various classes of transformation semigroups on the finite chain $[n]$. In particular, we would like to highlight the contributions of Gomes and Howie [7–9, 14], Umar [23, 25, 26], and Zubairu *et al.* [31–34] and the references therein. To the best of our knowledge, the monoid \mathcal{DORI}_n seem not to have appeared in the literature and so the rank of the monoid \mathcal{DORI}_n , its Rees quotient $RQ_n(p)$, and its two-sided ideal

$I(n, p)$ have not yet been discussed. In this section, we aim to address these questions.

We will begin our findings by first noting the following definition from [19, Introduction] which also hold for the monoid \mathcal{DORI}_n .

Definition 1. An element $\rho \in \mathcal{DORI}_n$ is called *quasi-idempotent* if ρ^2 is an idempotent. Equivalently, ρ in \mathcal{DORI}_n is *quasi-idempotent* if $\rho^4 = \rho^2$.

Remark 6. (i) On the semigroup \mathcal{DORI}_n , every quasi-idempotent of height p and of shift 1 (shift of an element say α is the cardinal of the set $S(\alpha) = \{x \in [n] : x\alpha \neq x\}$, see [30]) is of the form:

$$\varepsilon = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i & y_{i+1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i \varepsilon & y_{i+1} & \cdots & y_p \end{pmatrix}, \quad (9)$$

where $1 \leq y_1 < \cdots < y_{i-1} < y_i \varepsilon < y_i < \cdots < y_p \leq n$. Notice also that quasi-idempotents of shift 1 are not idempotents.

(ii) Every idempotent element is quasi-idempotent but the converse is not necessarily true.

We now introduce the following definition.

Definition 2. An antitone map $\rho \in \mathcal{DORI}_n$, of height $2 \leq p \leq \lceil \frac{n}{2} \rceil$, is said to be a *vital element* if $\text{Dom } \rho$ is convex and $\min \text{Dom } \rho$ is a fixed point. That is to say ρ is of the form:

$$\rho = \begin{pmatrix} y_p & y_p + 1 & \cdots & y_p + p - 1 \\ y_p & y_{p-1} & \cdots & y_1 \end{pmatrix}, \quad (10)$$

where $1 \leq y_1 < \cdots < y_p \leq n$.

The following lemma can be stated immediately.

Lemma 15. For $2 \leq p \leq \lceil \frac{n}{2} \rceil$, every \mathcal{L}^* -class of an element, say ρ , of height p in the monoid \mathcal{DORI}_n contains a unique vital element in L_ρ^* .

Proof. Let $\rho \in \mathcal{DORI}_n$ with $h(\rho) = p$, where $2 \leq p \leq \lceil \frac{n}{2} \rceil$. Then ρ is either an isotone map or an antitone map. In the former, let ρ be as expressed as in (6); and in the latter, let ρ be as expressed in (8). Consider L_ρ^* , now it is clear that in either case, $a_p = \max(\text{Im } \alpha)$. Moreover, $a_1 < \cdots < a_p < a_p + 1 < \cdots < a_p + p - 1$. Thus, the map

$$\delta = \begin{pmatrix} a_p & a_p + 1 & \cdots & a_p + p - 1 \\ a_p & a_{p-1} & \cdots & a_1 \end{pmatrix}$$

is an antitone map in \mathcal{DORI}_n , where $\text{Im } \rho = \text{Im } \delta$, and so $\delta \in L_\rho^*$. Clearly $\text{Dom } \delta$ is convex, and $a_p = \min(\text{Dom } \delta)$ is a fixed point of δ . Therefore, δ is the unique vital element in L_α^* . \square

The next lemma concerns factorizations of antitone maps with a convex domain in the monoid \mathcal{DORI}_n .

Lemma 16. *Every antitone element $\rho \in \mathcal{DORI}_n$ with a convex domain is a product of quasi-idempotents and the unique vital element that belongs to L_ρ^* .*

Proof. Consider an antitone map of height p with a convex domain, say ρ , in \mathcal{DORI}_n of the form:

$$\rho = \begin{pmatrix} t & t+1 & \cdots & t+p-1 \\ a_p & a_{p-1} & \cdots & a_1 \end{pmatrix},$$

where $2 \leq p \leq \lceil \frac{n}{2} \rceil$ and $1 \leq a_1 < \cdots < a_p \leq t < \cdots < t+p-1 \leq n$ for some $t \in [n]$. Now, for $1 \leq i \leq p$, define:

$$\begin{aligned} \varepsilon_i &= \left(\begin{array}{cccc|c|cccc} a_p & a_p+1 & \cdots & a_p+i-2 & t+i-1 & t+i & \cdots & t+p-1 \\ a_p & a_p+1 & \cdots & a_p+i-2 & a_p+i-1 & t+i & \cdots & t+p-1 \end{array} \right) \\ &\& \delta = \left(\begin{array}{cccc} a_p & a_p+1 & \cdots & a_p+p-1 \\ a_p & a_{p-1} & \cdots & a_1 \end{array} \right). \end{aligned}$$

Notice that $a_p \leq t$ implies $a_p+i-1 \leq t+i-1$ for all $1 \leq i \leq p$, and so ε_i is an isotone idempotent (if $a_p = t$) or quasi-idempotent (if $a_p < t$) element of shift 1 and height p in \mathcal{DORI}_n . Moreover, it is clear that $a_1 < \cdots < a_p < a_p+1 < \cdots < a_p+p-1$. Thus, δ is an antitone map with a convex domain that fixes $a_p = \min \text{Dom } \delta$. Therefore, δ is a vital element. Furthermore, $\text{Im } \rho = \text{Im } \delta$ implies $\delta \in L_\rho^*$, which is unique by Lemma 15.

At this juncture, observe that:

$$\begin{aligned} \varepsilon_1 \varepsilon_2 \cdots \varepsilon_p \delta &= \left(\begin{array}{cccc} t & t+1 & \cdots & t+p-1 \\ a_p & t+1 & \cdots & t+p-1 \end{array} \right) \left(\begin{array}{cccc|c|cccc} a_p & t+1 & t+2 & \cdots & t+p-1 \\ a_p & a_p+1 & t+2 & \cdots & t+p-1 \end{array} \right) \cdots \\ &\quad \left(\begin{array}{cccc|c|cccc} a_p & a_p+1 & \cdots & a_p+p-2 & t+p-1 \\ a_p & a_p+1 & \cdots & a_p+p-2 & a_p+p-1 \end{array} \right) \left(\begin{array}{cccc} a_p & a_p+1 & \cdots & a_p+p-1 \\ a_p & a_{p-1} & \cdots & a_1 \end{array} \right) \\ &= \left(\begin{array}{cccc} t & t+1 & \cdots & t+p-1 \\ a_p & a_{p-1} & \cdots & a_1 \end{array} \right) = \rho, \end{aligned}$$

as postulated. \square

Theorem 10. *The monoid \mathcal{DORI}_n is generated by quasi-idempotents of shift 1 and vital elements.*

Proof. Let $\rho \in \mathcal{DORI}_n$. Then, ρ is either an isotone map or an antitone map.

(i) If ρ is an isotone map, then $\rho \in \mathcal{IC}_n$. Thus, by [1, Lemma 3.3], ρ is quasi-idempotent-generated.

(ii) Now suppose ρ is an antitone map of the form

$$\rho = \begin{pmatrix} x_1 & \cdots & x_p \\ a_p & \cdots & a_1 \end{pmatrix}$$

of height $2 \leq p \leq \lceil \frac{n}{2} \rceil$, where $a_1 < \cdots < a_p < x_1 < \cdots < x_p$. Now suppose $s_{i+1} = x_{i+1} - x_i$ for all $1 \leq i \leq p-1$. Next, observe that:

$$\begin{aligned} x_1 + s_2 + s_3 + \cdots + s_{i+1} &= x_1 + (x_2 - x_1) + (x_3 - x_2) + \cdots \\ &\quad + (x_i - x_{i-1}) + (x_{i+1} - x_i) \\ &= x_{i+1}. \end{aligned}$$

This shows that for each $1 \leq i \leq p-1$, $x_{i+1} = x_1 + s_2 + s_3 + \cdots + s_{i+1} \geq x_1 + i$. So, the map

$$\xi_i = \left(\begin{array}{cccc|ccccc} x_1 & \cdots & x_1 + i - 1 & x_{i+1} & x_{i+2} & \cdots & x_p \\ x_1 & \cdots & x_1 + i - 1 & x_1 + i & x_{i+2} & \cdots & x_p \end{array} \right),$$

is an idempotent if $x_{i+1} = x_1 + i$; and it is quasi-idempotent of shift 1 and height p in \mathcal{DORI}_n if $x_{i+1} > x_1 + i$ for all $1 \leq i \leq p$. Notice also that since $a_p \leq x_1$, it follows that $a_p \leq x_1 < x_1 + 1 < \cdots < x_1 + p - 1$. Therefore, the map σ defined as

$$\sigma = \begin{pmatrix} x_1 & x_1 + 1 & \cdots & x_1 + p - 1 \\ a_p & a_{p-1} & \cdots & a_1 \end{pmatrix}$$

is an antitone map in \mathcal{DORI}_n with convex domain, and so by Lemma 16, σ is generated by quasi-idempotents and the unique vital element in L_σ^* . Now observe that:

$$\begin{aligned} \xi_1 \cdots \xi_p \sigma &= \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_p \\ x_1 & x_1 + 1 & x_3 & \cdots & x_p \end{pmatrix} \begin{pmatrix} x_1 & x_1 + 1 & x_3 & x_4 & \cdots & x_p \\ x_1 & x_1 + 1 & x_1 + 2 & x_4 & \cdots & x_p \end{pmatrix} \\ &\quad \cdots \begin{pmatrix} x_1 & x_1 + 1 & \cdots & x_1 + p - 2 & x_p \\ x_1 & x_1 + 1 & \cdots & x_1 + p - 2 & x_1 + p - 1 \end{pmatrix} \begin{pmatrix} x_1 & x_1 + 1 & \cdots & x_1 + p - 1 \\ a_p & a_{p-1} & \cdots & a_1 \end{pmatrix} \\ &= \begin{pmatrix} x_1 & x_2 & \cdots & x_p \\ a_p & a_{p-1} & \cdots & a_1 \end{pmatrix} = \rho, \end{aligned}$$

as required.

Clearly, $\text{Im } \rho = \text{Im } \sigma$, and so $L_\sigma^* = L_\rho^*$. Hence, ρ is generated by quasi-idempotent and the unique vital element in L_ρ^* . \square

To investigate the minimum generating set of \mathcal{DOI}_n , we first note the following definition from [1].

Definition 3 ([1, Definition 3.5]). A quasi-idempotent element ε of shift 1 as expressed in (9) is called an *essential element* if $y_i\varepsilon = y_i - 1$, and so essential elements of height p are of the form:

$$\varepsilon = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i & y_{i+1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i - 1 & y_{i+1} & \cdots & y_p \end{pmatrix}. \quad (11)$$

Remark 7. For $1 \leq n \leq 2$, the quasi-idempotent elements in \mathcal{DOI}_n are all essential elements. However, for $n \geq 3$, not every quasi-idempotent element of shift 1 is an essential element. For example, the element

$$\alpha = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 2 & 5 \end{pmatrix} \in \mathcal{DOI}_5$$

is a quasi-idempotent of shift 1, but since $4\alpha = 2 \neq 3$, then it is not an essential element. Moreover, every quasi-idempotent of height $n - 1$ is necessarily essential.

At this juncture, we introduce the following definition.

Definition 4. A vital element δ is called *convex* if $\text{Im } \delta$ is convex, i.e., if δ is of the form

$$\delta = \begin{pmatrix} y_p & y_p + 1 & \cdots & y_p + p - 1 \\ y_p & y_p - 1 & \cdots & y_p - p + 1 \end{pmatrix},$$

where $1 \leq y_p - p + 1 < \cdots < y_p + p - 1 \leq n$.

Remark 8. Every convex vital element of height $2 \leq p \leq \lceil \frac{n}{2} \rceil$ is of the form:

$$\delta_i = \begin{pmatrix} i & i + 1 & \cdots & i + p - 1 \\ i & i - 1 & \cdots & i - p + 1 \end{pmatrix}, \quad (12)$$

where $p \leq i \leq n - p + 1$. Moreover, it is worth noticing that since every vital element is an antitone map, and there are no antitone map of height $p > \lceil \frac{n}{2} \rceil$ by the contrapositive of Lemma 1, then there are no convex vital elements of height $p > \lceil \frac{n}{2} \rceil$.

We now have the following lemma.

Lemma 17. *Every non-convex vital element in \mathcal{DOI}_n is a product of a convex vital element and essential elements.*

Proof. Let δ be a non-convex vital element of height $2 \leq p \leq \lceil \frac{n}{2} \rceil$, as expressed in (10). This means that there exists $0 \leq i \leq p-2$ such that $\{y_{p-i}, y_{p-i+1}, \dots, y_p\}$ is convex and $y_{p-(i+1)} - y_{p-i} > 1$. That is to say,

$$\{y_{p-i}, y_{p-i+1}, \dots, y_{p-1}, y_p\} = \{y_{p-i}, y_{p-i+1}, \dots, y_{p-1}, y_p\},$$

so that δ is of the form

$$\delta = \left(\begin{array}{cccccc|ccccc} y_p & y_p + 1 & \cdots & y_p + i - 1 & y_p + i & y_p + i + 1 & \cdots & y_p + p - 1 \\ y_p & y_p - 1 & \cdots & y_p - i + 1 & y_p - i & y_{p-(i+1)} & \cdots & y_1 \end{array} \right).$$

This means that the subset (of $\text{Im } \delta$) $\{y_1, \dots, y_{p-(i+1)}\}$ needs not be convex. Notice that

$$\{y_{p-i} - 1, y_{p-i} - 2, \dots, y_{p-i} - (p-i-2), y_{p-i} - (p-i-1)\}$$

is a convex set consisting of translates of y_{p-i} , which can be replaced with $y_p - i$ (since $y_{p-i} = y_p - i$) as follows:

$$\{y_p - i - 1, y_p - i - 2, \dots, y_p - p + 2, y_p - p + 1\}.$$

Thus, the set $\{y_p - p + 1, y_p - p + 2, \dots, y_p - i - 1, y_p - i, y_p - i + 1, \dots, y_p - 1, y_p\}$ is convex. Therefore, the map δ^* defined as:

$$\delta^* = \left(\begin{array}{cccccc|ccccc} y_p & y_p + 1 & \cdots & y_p + i - 1 & y_p + i & y_p + i + 1 & \cdots & y_p + p - 1 \\ y_p & y_p - 1 & \cdots & y_p - i + 1 & y_p - i & y_p - i - 1 & \cdots & y_p - p + 1 \end{array} \right)$$

is a convex vital element. Additionally, the map γ defined as

$$\gamma = \left(\begin{array}{ccccccccc} y_p - p + 1 & y_p - p + 2 & \cdots & y_p - i - 1 & y_p - i & y_p - i + 1 & \cdots & y_p - 1 & y_p \\ y_1 & y_2 & \cdots & y_{p-i-1} & y_{p-i} & y_{p-i+1} & \cdots & y_{p-1} & y_p \end{array} \right)$$

is a decreasing isotone map which is generated by essential elements by [1, Theorem 3.7]. Now, clearly, $\delta^* \gamma = \delta$. The result now follows. \square

We now give and prove a key result of this section.

Theorem 11. *The monoid \mathcal{DORI}_n is generated by essential and convex vital elements.*

Proof. Notice from Theorem 10, \mathcal{DORI}_n is generated by quasi-idempotents of shift 1 and vital elements. Now we need to show that quasi-idempotent elements of shift 1 can be generated by essential elements, and the vital elements can be generated by the convex vital elements. Now let $\varepsilon \in \mathcal{DORI}_n$ as expressed in (9) be a quasi-idempotent. Since

$y_i > y_i\varepsilon$, we can let $s = y_i - y_i\varepsilon$, so clearly $y_i\varepsilon + j - 1 < y_i\varepsilon + j$ for all $1 \leq j \leq s$ and also $y_i = y_i\varepsilon + s$. Now for $1 \leq j \leq s$ define ε_j as:

$$\varepsilon_j = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i\varepsilon + j & y_{i+1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i\varepsilon + j - 1 & y_{i+1} & \cdots & y_p \end{pmatrix}.$$

Notice that $y_{i-1} < y_i\varepsilon < y_i\varepsilon + 1 < \cdots < y_i\varepsilon + s = y_i < y_{i+1}$, and so for each j , we can easily see that ε_j is an essential element. Moreover, it is not difficult to see that

$$\varepsilon_s \varepsilon_{s-1} \cdots \varepsilon_1 = \varepsilon.$$

Furthermore, by Lemma 17 the vital elements can be generated by convex vital elements. The result follows. \square

Lemma 18. *Every element in $S \in \{RQ_n(p), I(n, p)\}$ of height p can be expressed as a product of essential and convex vital elements in S , each of height p .*

Proof. Let $\alpha \in S \in \{RQ_n(p), I(n, p)\}$. Then clearly α is of height p , and so since in the proofs of Lemma 17 and Theorem 10, $h(\rho) = h(\xi_i) = h(\delta) = h(\delta^*) = h(\sigma) = p$ for all $i \in \{1, \dots, p\}$, then the result easily follows. \square

Now, for $2 \leq p \leq \lceil \frac{n}{2} \rceil$, let $O(p)$ be the collection of all convex vital elements in $RQ_n(p)$, and let $E(RQ_n(p) \setminus \{0\})$ be the collection of all nonzero idempotents in $RQ_n(p)$ and $M(p)$ be the collection of all essential elements in $RQ_n(p)$. It is important to note from definition that no essential element is an idempotent and vice-versa. Similarly, no essential is a convex vital element. Thus, $O(p) \cap M(p) = \emptyset$, $O(p) \cap E(RQ_n(p) \setminus \{0\}) = \emptyset$ and $M(p) \cap E(RQ_n(p) \setminus \{0\}) = \emptyset$. Then, we present the following lemma.

Lemma 19. (i) For $2 \leq p \leq \lceil \frac{n}{2} \rceil$, $|O(p)| = n - 2p + 2$.

(ii) For each $1 \leq p \leq n$, we have $|E(RQ_n(p) \setminus \{0\})| = \binom{n}{p}$.

(iii) $|M(p)| = (n - 1) \binom{n-2}{p-1}$.

Proof. (i) Notice that by Remark 8, the domain of each convex vital element of height $2 \leq p \leq \lceil \frac{n}{2} \rceil$ is of the form $\{i, i+1, \dots, i+p-1\}$, where $p \leq i \leq n-p+1$. Clearly the domain set has its minimum element, i , within the range $p \leq i \leq n-p+1$. This number is equivalent to

counting all the possible minimum elements (which are within the range $p \leq i \leq n - p + 1$) of the possible domains set.

(ii) Notice that since every idempotent element is an injective map, and to form an idempotent of height p is to select p elements out of the domain $[n]$, then fix each of these elements to form an idempotent element. This number is equivalent to $\binom{n}{p}$ \mathcal{R}^* -classes in J_p^* .

(iii) Notice that for $1 \leq i \leq n - 1$, the element $i + 1$ can be paired with i (which is equivalent to mapping $i + 1$ to i) in $n - 1$ ways. Now, from the remaining $n - 2$ elements (i.e., elements of $[n] \setminus \{i, i + 1\}$), we can select $p - 1$ elements as our fixed points to form an essential element in $\binom{n-2}{p-1}$ ways. Hence we have altogether $(n - 1)\binom{n-2}{p-1}$ essential elements, as required. \square

Now, let

$$G(p) = \begin{cases} E(RQ_n(p) \setminus \{0\}) \cup M(p), & \text{if } p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}; \\ M(p) \cup E(RQ_n(p) \setminus \{0\}) \cup O(p), & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

Consequently, we have the following result.

Corollary 6. *On the Rees quotient semigroup $RQ_n(p)$, we have:*

$$|G(p)| = \begin{cases} \binom{n}{p} + (n - 1)\binom{n-2}{p-1}, & \text{if } p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}; \\ \binom{n}{p} + (n - 1)\binom{n-2}{p-1} + n - 2p + 2, & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

Proof. The result follows directly from Lemma 19. \square

The forthcoming result establishes that $G(p)$ is the minimum generating set of $RQ_n(p) \setminus \{0\}$.

Lemma 20. *Let ρ, σ be elements in $RQ_n(p) \setminus \{0\}$ ($1 \leq p \leq n$). Then $\rho\sigma \in G(p)$ if and only if $\rho, \sigma \in G(p)$ and $\rho\sigma = \rho$ or $\rho\sigma = \sigma$.*

Proof. Suppose $\rho\sigma \in G(p)$. Thus either $\rho\sigma \in E(RQ_n(p) \setminus \{0\})$ or $\rho\sigma \in M(p)$ or $\rho\sigma \in O(p)$. We consider the three cases separately.

Case i. If $\rho\sigma \in E(RQ_n(p) \setminus \{0\})$. Then

$$p = f(\rho\sigma) \leq f(\rho) \leq |\text{Im } \rho| = p,$$

$$p = f(\rho\sigma) \leq f(\sigma) \leq |\text{Im } \sigma| = p.$$

This ensures that

$$F(\rho) = F(\rho\sigma) = F(\sigma),$$

and so $\rho, \sigma \in E(RQ_n(p) \setminus \{0\})$ and $\rho\sigma = \rho$.

Case ii. Now suppose $\rho\sigma \in M(p)$. Thus $\rho\sigma$ is an essential. Thus $\rho\sigma$ is an essential element which can be expressed as in (11), that is:

$$\rho\sigma = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i & y_{i-1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i - 1 & y_{i+1} & \cdots & y_p \end{pmatrix}.$$

This means that $\text{Dom } \rho = \text{Dom } \rho\sigma$, $\text{Im } \sigma = \text{Im } \rho\sigma$, and $\text{Im } \rho = \text{Dom } \sigma$. Thus,

$$\rho = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i & y_{i+1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i\rho & y_{i+1} & \cdots & y_p \end{pmatrix}$$

and

$$\sigma = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i\rho & y_{i+1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i - 1 & y_{i+1} & \cdots & y_p \end{pmatrix}.$$

Notice that since ρ and σ are decreasing maps, we must have $y_i\rho \leq y_i$ and $y_i - 1 \leq y_i\rho$, and so $y_i - 1 \leq y_i\rho \leq y_i$. However, the fact that $\rho\sigma$ is an essential element, implies either $y_i\rho = y_i - 1$ or $y_i\rho = y_i$. We consider the two subcases separately.

Subcase a. If $y_i\rho = y_i - 1$, then ρ and σ are obviously essential and idempotent elements, respectively, and so $\rho\sigma = \rho$ and $\sigma \in E(RIC_n(p) \setminus \{0\})$.

Subcase b. If $y_i\rho = y_i$, then ρ and σ are clearly idempotent and essential elements, respectively. Thus, it follows easily that $\rho\sigma = \sigma$ and $\rho \in E(RIC_n(p) \setminus \{0\})$. In either of the subcases, we see that $\rho, \sigma \in G(p)$ and either $\rho\sigma = \sigma$ or $\rho\sigma = \rho$.

Case iii. Now suppose $\rho\sigma \in O(p)$. Thus, $\rho\sigma$ is a convex vital element, which has the form

$$\rho\sigma = \begin{pmatrix} i & i+1 & \cdots & i+p-1 \\ i & i-1 & \cdots & i-p+1 \end{pmatrix},$$

where $p \leq i \leq n - p + 1$. This means that $\text{Dom } \rho = \text{Dom } \rho\sigma$, $\text{Im } \sigma = \text{Im } \rho\sigma$, and $\text{Im } \rho = \text{Dom } \sigma$. Thus,

$$\rho = \begin{pmatrix} i & i+1 & \cdots & i+p-1 \\ i\rho & (i+1)\rho & \cdots & (i+p-1)\rho \end{pmatrix}$$

and

$$\sigma = \begin{pmatrix} i\rho & (i+1)\rho & \cdots & (i+p-1)\rho \\ i & i-1 & \cdots & i-p+1 \end{pmatrix}.$$

The claim here is that ρ must be an idempotent. Notice that ρ and σ are decreasing maps. Thus, $i\rho \leq i$ and $i = (i\rho)\sigma \leq i\rho$. This ensures that $i\rho = i$. Moreover, for any $i - p + 1 \leq j \leq i - 1$ we see that $j \leq (j+2)\rho \leq j+2$. This means that either $(j+2)\rho = j$ or $(j+2)\rho = j+1$ or $(j+2)\rho = j+2$.

Notice that if $(j+2)\rho = j$, then in particular, if $j = i - 2$, we see that $(i-2+2)\rho = i-2$, that is, $i\rho = i-2$, which contradicts the fact that $i\rho = i$.

Now, if $(j+2)\rho = j+1$ for all j , then in particular, if $j = i-1$, we have $(i-1+2)\rho = i-1+1$, that is, $(i+1)\rho = i$, which also contradicts the fact that $i\rho = i$. Hence, we conclude that $(j+2)\rho = j+2$ for all j .

This ensures that

$$\rho = \begin{pmatrix} i & i+1 & \cdots & i+p-1 \\ i & i+1 & \cdots & i+p-1 \end{pmatrix} \text{ and } \sigma = \begin{pmatrix} i & i+1 & \cdots & i+p-1 \\ i & i-1 & \cdots & i-p+1 \end{pmatrix}.$$

Therefore, $\sigma \in O(p) \subset G(p)$ and $\rho \in E(RQ_n(p) \setminus \{0\}) \subset G(p)$, and also $\rho\sigma = \sigma$.

The converse follows easily. \square

Thus, we state one of the main results in this section.

Theorem 12. *Let $RQ_n(p)$ be as defined in (5). Then*

$$\text{rank } RQ_n(p) = \begin{cases} \binom{n}{p} + (n-1)\binom{n-2}{p-1}, & \text{if } p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}; \\ \binom{n}{p} + (n-1)\binom{n-2}{p-1} + n - 2p + 2, & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

Proof. By Lemma 20, we know that $G(p)$ is the minimal generating set of $RQ_n(p)$, and Corollary 6 provides its order. \square

For $1 \leq p \leq n-1$ let

$$J_p^* = \{\rho \in \mathcal{DORI}_n : |\text{Im } \rho| = p\},$$

and, for $2 \leq p \leq \lceil \frac{n}{2} \rceil$ let $O(p)$ and $M(p)$ be the collection of all convex vital and essential elements in J_p^* , and let

$$G(p) = \begin{cases} E(J_p^*) \cup M(p), & \text{if } p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}; \\ M(p) \cup E(J_p^*) \cup O(p), & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

The following lemma is needed in the quest to determine the ranks of the monoid \mathcal{DORI}_n and its two-sided ideal $I(n, p)$.

Lemma 21. *In each J_p^* , we have:*

$$|G(p)| = \begin{cases} \binom{n}{p} + (n-1)\binom{n-2}{p-1}, & \text{if } p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}; \\ \binom{n}{p} + (n-1)\binom{n-2}{p-1} + n - 2p + 2, & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

Proof. It is important to note that $J_p^* = RQ_n(p) \setminus \{\mathbf{0}\}$, and so $G(p)$ defined on J_p^* and $RQ_n(p)$ are equal. Thus, the result follows from Corollary 6. \square

Let us recall from (12) that, for $2 \leq p \leq \lceil \frac{n}{2} \rceil$ and any $p \leq i \leq n-p+1$ the convex vital element of height p has the form:

$$\delta_i = \begin{pmatrix} i & i+1 & \cdots & i+p-1 \\ i & i-1 & \cdots & i-p+1 \end{pmatrix}.$$

We now give the following definition.

Definition 5. A convex vital element δ_i ($p \leq i \leq n-p+1$) is called *extreme* if the union of its domain and image set contains 1 or n , i.e., if $n \in \text{Dom } \delta_i \cup \text{Im } \delta_i$ or $1 \in \text{Dom } \delta_i \cup \text{Im } \delta_i$.

For the purpose of illustrations, consider the following convex vital elements of height 3 in \mathcal{DORI}_7 : $\delta_1 = \begin{pmatrix} 3 & 4 & 5 \\ 3 & 2 & 1 \end{pmatrix}$, $\delta_2 = \begin{pmatrix} 4 & 5 & 6 \\ 4 & 3 & 2 \end{pmatrix}$, and $\delta_3 = \begin{pmatrix} 5 & 6 & 7 \\ 5 & 4 & 3 \end{pmatrix}$. Clearly, δ_1 and δ_2 are extreme vital elements. However, δ_2 is not.

Considering the convex vital element δ_i ($p \leq i \leq n-p+1$) defined as in (12), its two extreme cases are when $i = p$ and $i = n-p+1$, i.e.,

$$\delta_p = \begin{pmatrix} p & p+1 & \cdots & 2p-1 \\ p & p-1 & \cdots & 1 \end{pmatrix}$$

and

$$\delta_{n-p+1} = \begin{pmatrix} n-p+1 & n-p+2 & \cdots & n-1 & n \\ n-p+1 & n-p & \cdots & n-2p+1 & n-2p+2 \end{pmatrix},$$

respectively. These elements have the following property:

If n is odd and $p = \lceil \frac{n}{2} \rceil = \frac{n+1}{2}$. Then,

$$n-p+1 = n - \frac{n+1}{2} + 1 = \frac{n+1}{2} = \lceil \frac{n}{2} \rceil = p.$$

Hence, if n is odd, $n > 1$ and $p = \lceil \frac{n}{2} \rceil$, then it is easy to see that there is only one extreme convex vital element which is $\delta_{\lceil \frac{n}{2} \rceil}$.

However, if n is even, $n > 2$ and $p = \lceil \frac{n}{2} \rceil$, then there are two extreme convex vital elements: $\delta_{\frac{n}{2}}$ and $\delta_{\frac{n+2}{2}}$.

We now have the following lemma.

Lemma 22. *Let $2 \leq p \leq \lceil \frac{n}{2} \rceil - 1$. Then, for $p+1 \leq i \leq n-p$, the convex vital element δ_i in J_p^* as expressed in (12), can be expressed as a product of a convex vital element and idempotent elements in J_{p+1}^* .*

Proof. Let $\delta_{p,i}$ be a convex vital element in J_p^* as expressed in (12), where $p+1 \leq i \leq n-p$. Notice that adding and subtracting p to the range $p+1 \leq i \leq n-p$ implies $2p+1 \leq i+p \leq n$ and $1 \leq i-p \leq n-2p$, respectively. Thus, we see that $i+p \leq n$ and $i-p \geq 1$, which ensures that the map defined as

$$\delta'_{p,i} = \begin{pmatrix} i & i+1 & \cdots & i+p-1 & i+p \\ i & i-1 & \cdots & i-p+1 & i-p \end{pmatrix}$$

is a convex vital element in J_{p+1}^* . Notice that the map ϵ defined as

$$\epsilon = \begin{pmatrix} i-p+1 & i-p+2 & \cdots & i & i+1 \\ i-p+1 & i-p+2 & \cdots & i & i+1 \end{pmatrix}$$

is in $E(J_{p+1}^*)$. Now it is easy to see that

$$\begin{aligned} \delta'_{p,i} \epsilon &= \begin{pmatrix} i & i+1 & \cdots & i+p-1 & i+p \\ i & i-1 & \cdots & i-p+1 & i-p \end{pmatrix} \begin{pmatrix} i-p+1 & i-p+2 & \cdots & i & i+1 \\ i-p+1 & i-p+2 & \cdots & i & i+1 \end{pmatrix} \\ &= \begin{pmatrix} i & i+1 & \cdots & i+p-1 \\ i & i-1 & \cdots & i-p+1 \end{pmatrix} = \delta_{p,i} \end{aligned}$$

as required. \square

Remark 9. It is crucial to highlight that there is no convex vital element and idempotent of height greater than p that can generate the extreme convex vital elements of height p , δ_p and δ_{n-p+1} .

We now present the following lemma.

Lemma 23.

$$J_p^* \subset \begin{cases} \langle J_{p+1}^* \rangle, & \text{if } p \in \{0, 1, \lceil \frac{n}{2} \rceil + 1, \dots, n-2\}; \\ \langle J_{p+1}^* \cup \{\delta_p, \delta_{n-p+1}\} \rangle, & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

Proof. (i) If $\lceil \frac{n}{2} \rceil + 1 \leq p \leq n - 2$ or $p = 0, 1$ then using Theorem 10, it is enough to establish that every element in $G(p)$ can be written as a product of elements in $G(p + 1)$. That is to say, every essential or idempotent element of height p can be written as a product of essential or idempotent elements of height $p + 1$. Thus, we consider the elements of $E(J_p^*)$ and $M(p)$ separately.

a. (1) The elements in $E(J_p^*)$:

Let $\epsilon \in E(J_p^*)$ be expressed as:

$$\epsilon = \begin{pmatrix} y_1 & \cdots & y_p \\ y_1 & \cdots & y_p \end{pmatrix},$$

where $1 \leq y_1 < \cdots < y_p \leq n$. Since $p \leq n - 2$, it follows that $(\text{Dom } \epsilon)'$ contains at least two elements, say c and d . Without loss of generality, suppose $c < d$. Let $A = \text{Dom } \epsilon \cup \{c\}$ and $B = \text{Dom } \epsilon \cup \{d\}$, and define ϵ_1 and ϵ_2 as follows:

For $x \in A$ and $y \in B$

$$x\epsilon_1 = \begin{cases} x, & \text{if } x \neq c; \\ c, & \text{if } x = c \end{cases} \quad \text{and} \quad y\epsilon_2 = \begin{cases} y, & \text{if } y \neq d; \\ d, & \text{if } y = d. \end{cases}$$

Clearly, ϵ_1 and ϵ_2 are idempotents in $E(J_{p+1}^*)$, and one can easily show that $\epsilon = \epsilon_1\epsilon_2$.

(2) The elements in $M(p)$:

Let ε be an essential element of height p as expressed in (11), which has the form:

$$\varepsilon = \begin{pmatrix} y_1 & \cdots & y_{i-1} & y_i & y_{i+1} & \cdots & y_p \\ y_1 & \cdots & y_{i-1} & y_i - 1 & y_{i+1} & \cdots & y_p \end{pmatrix}.$$

Now, since $p \leq n - 2$, it follows that $(\text{Dom } \varepsilon \cup \text{Im } \varepsilon)'$ contains at least one element, say d . Notice that $y_i - 1 \notin \text{Dom } \varepsilon$. Now let $A = \text{Dom } \varepsilon \cup \{d\}$ and $B = \text{Dom } \varepsilon \cup \{y_i - 1\}$, and define ε' and ϵ as follows:

For $x \in A$ and $y \in B$

$$x\varepsilon' = \begin{cases} x\varepsilon, & \text{if } x \neq d; \\ d, & \text{if } x = d \end{cases} \quad \text{and} \quad y\epsilon = y.$$

Notice that $\epsilon \in E(J_{p+1}^*) \subset G(p + 1)$, and it is not difficult to see that ε' is an essential element in $M(p + 1) \subset G(p + 1)$. One can now easily show

that $\varepsilon = \varepsilon' \epsilon$.

b. Now suppose $2 \leq p \leq \lceil \frac{n}{2} \rceil$. The essential and idempotent elements in $G(p)$ within this range have been addressed by (i) above. So it is sufficient to show that every convex vital element in $G(p)$ can be expressed as a product of elements in $G(p+1) \cup \{\delta_p, \delta_{n-p+1}\}$.

Let δ_i be a convex vital element of height p in $G(p)$, as expressed in (12). It follows from Lemma 22 that for all $p+1 \leq i \leq n-p$, δ_i is a product of a convex vital element and an idempotent element, each of height $p+1$. Notice that the remaining convex vital elements δ_p and δ_{n-p+1} in $G(p)$, which by Remark 9 are not expressible as products of elements in $G(p+1)$, as such, every convex vital element in $G(p)$ can be expressed as a product of elements in $G(p+1) \cup \{\delta_p, \delta_{n-p+1}\}$. We have now finalized the proof of the lemma. \square

Remark 10. It becomes clear from the above lemma that for $2 \leq p \leq \lceil \frac{n}{2} \rceil$, any minimum generating set of $I(n, p)$ must contain all the extreme convex vital elements of height below p , i.e., the elements δ_i and δ_{n-i+1} for all $2 \leq i \leq p-1$.

Now, on $I(n, p)$ let

$$W(p) = \begin{cases} G(p), & \text{if } p = 0, 1; \\ G(p) \cup O(\lceil \frac{n}{2} \rceil) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\}, & \text{if } p \in \{\lceil \frac{n}{2} \rceil + 1, \dots, n-1\}; \\ G(p) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p-1\}, & \text{if } 2 \leq p \leq \lceil \frac{n}{2} \rceil. \end{cases}$$

We now present the following lemmas.

Lemma 24. For $0 \leq p \leq n-1$, $W(p)$ is the minimum generating set of $I(n, p)$.

Proof. The result follows from the fact that $G(p)$ is the minimum generating set $\langle J_p^* \rangle$ by Lemma 20, and also from the fact that each minimum generating set of the ideal $I(n, p)$ must contain all the extreme convex vital elements below height p , as stated in Remark 10. \square

Lemma 25. For $1 \leq p \leq n-1$, we have $|W(p)| = (n-2) + \binom{n}{p} + (n-1) \binom{n-2}{p-1}$.

$$|W(p)| = \begin{cases} 1, & \text{if } p = 0; \\ (n-2) + \binom{n}{p} + (n-1) \binom{n-2}{p-1}, & \text{if } 1 \leq p \leq n-1. \end{cases}$$

Proof. If $p = 0$, the result is trivial. Now, if $p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n - 1\}$, we see that

$$|W(p)| = |E(J_p^*)| + |O\left(\lceil \frac{n}{2} \rceil\right)| + |\{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\}|.$$

Thus, by Lemma 21, it follows that

$$\begin{aligned} |W(p)| &= 2\left(\lceil \frac{n}{2} \rceil - 2\right) + \left(n - 2\left(\lceil \frac{n}{2} \rceil\right) + 2\right) + \binom{n}{p} + (n-1)\binom{n-2}{p-1} \\ &= (n-2) + \binom{n}{p} + (n-1)\binom{n-2}{p-1}. \end{aligned}$$

Similarly, if $2 \leq p \leq \lceil \frac{n}{2} \rceil$, then

$$|W(p)| = |G(p)| + |\{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p-1\}|.$$

Thus, by Lemma 21, we see that

$$\begin{aligned} |W(p)| &= 2(p-2) + (n-2p+2) + \binom{n}{p} + (n-1)\binom{n-2}{p-1} \\ &= (n-2) + \binom{n}{p} + (n-1)\binom{n-2}{p-1}. \end{aligned}$$

The result now follows. \square

Therefore, we have the following result.

Theorem 13. *Let $I(n, p)$ be as defined in (4). Then,*

$$\text{rank } I(n, p) = \begin{cases} 1, & \text{if } p = 0; \\ (n-2) + \binom{n}{p} + (n-1)\binom{n-2}{p-1}, & \text{if } 1 \leq p \leq n-1. \end{cases}$$

Proof. If $p = 0$, the result is trivial. Now, observe that by Lemma 23, $\langle J_p^* \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p-1\} \rangle = I(n, p)$ for all $1 \leq p \leq n-1$. Notice that if $2 \leq p \leq \lceil \frac{n}{2} \rceil$, then $\langle G(p) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p-1\} \rangle = \langle J_p^* \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p-1\} \rangle$; and if $\lceil \frac{n}{2} \rceil + 1 \leq p \leq n-1$, then $\langle E(J_p^*) \cup O(\lceil \frac{n}{2} \rceil) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\} \rangle = \langle J_p^* \cup O(\lceil \frac{n}{2} \rceil) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\} \rangle$. In either case, the result follows from Lemmas 24 and 25. \square

We now present the following result.

Theorem 14. *Let \mathcal{DOI}_n be as defined in (3). Then, the rank $\mathcal{DOI}_n = 3n - 2$.*

Proof. Notice that for any $\rho \in W(n-1)$, $\rho \text{id}_{[n]} = \text{id}_{[n]} \rho = \rho$. This means that the product of identity element and any other element of $W(n-1)$ does not generate any new element apart from elements in $W(n-1)$. Notice also that $\langle W(n-1) \rangle = I(n, n-1)$ and $I(n, n-1) \cup \{\text{id}_{[n]}\} = \mathcal{DORI}_n$. Since $I(n, n-1)$ and $\{\text{id}_{[n]}\}$ are disjoint, it follows that

$$\text{rank } \mathcal{DORI}_n = \text{rank } I(n, n-1) + \text{rank } |\{\text{id}_{[n]}\}|.$$

Thus, using Theorem 13 we see that

$$\begin{aligned} \text{rank } \mathcal{DORI}_n &= (n-2) + \binom{n}{n-1} + (n-1) \binom{n-2}{n-2} + 1 \\ &= 3n-2, \end{aligned}$$

as required. \square

3. The maximal subsemigroups of the Rees quotient $RQ_n(p)$, the two-sided ideal $I(n, p)$ and the monoid $DORI_n$

A subsemigroup $M \subseteq S$ is called *maximal* provided that $M \neq S$ and for any subsemigroup $X \subseteq S$, the inclusion $M \subseteq X$ implies $M = X$ or $X = S$. That is, a proper non-empty subsemigroup M of a semigroup S , is maximal if $M \subseteq T \subseteq S$ for some subsemigroup T of S , we have $M = T$ or $T = S$ [6, 10]. In other words, a proper subsemigroup of a semigroup S is considered maximal if it is not contained in any other proper subsemigroup of S . We would like to highlight [16, Table 1], which presents a list of different transformation semigroups along with the number of their maximal subsemigroups. An element $a \in S$ is said to be *indecomposable* if there are no elements $b, c \in S \setminus \{a\}$ such that $a = bc$. Now let $\text{Base}(S)$ denote the collection of all indecomposable elements of S , usually known as *base* of the semigroup S , i.e.,

$$\text{Base}(S) = S \setminus S^2 = \{x \in S \mid \forall y, z \in S : x \neq yz\}.$$

We now prove a more general result.

Proposition 1. *Let S be a semigroup and $\text{Base}(S)$ be the base of S . Then for any $a \in \text{Base}(S)$, $S \setminus \{a\}$ is a maximal subsemigroup of S .*

Proof. Let $x, y \in S \setminus \{a\}$, where $a \in \text{Base}(S)$. Thus, $xy \neq a$ and so $xy \in S \setminus \{a\}$, which implies that $S \setminus \{a\}$ is a subsemigroup of S . Now to

show that $S \setminus \{a\}$ is maximal, let M be any subsemigroup of S containing $S \setminus \{a\}$, i.e.,

$$S \setminus \{a\} \subseteq M \subseteq S.$$

(i) If $a \in M$ then it follows easily that $M = S$, which will implies that $S \setminus \{a\}$ is maximal.

(ii) Now suppose $a \notin M$, then $M \setminus \{a\} = M$ and so,

$$S \setminus \{a\} \subseteq M \setminus \{a\} \subseteq S.$$

Notice that $M \subseteq S$ implies $M \setminus \{a\} \subseteq S \setminus \{a\}$. Thus,

$$S \setminus \{a\} \subseteq M \setminus \{a\} \subseteq S \setminus \{a\},$$

which implies that $S \setminus \{a\} = M \setminus \{a\} = M$, i.e., $S \setminus \{a\} = M$. Hence $S \setminus \{a\}$ is maximal. \square

We start our findings by first referring back to Lemmas 20 and 24, which state that the sets $G(p)$ and $W(p)$ are the minimum generating sets of $RQ_n(p)$ and the two-sided ideal $I(n, p)$. Moreover, in particular, the set $W(n-1) \cup \{\text{id}_{[n]}\}$ is the minimum generating set of \mathcal{DORI}_n . We now present the following lemma.

Lemma 26. *An element $\rho \in RQ_n(p)$ is indecomposable if and only if $\rho \in G(p)$.*

Proof. Let $\rho \in RQ_n(p)$ be an indecomposable element. Clearly, ρ must be included in any generating set of $RQ_n(p)$ because it cannot be generated by any other elements, and so $\rho \in G(p)$. Conversely, suppose $\rho \in G(p)$. Notice that $G(p)$ is the minimum generating set of $RQ_n(p)$ by Lemma 20, so that for any $\sigma, \delta \in G(p) \setminus \{\rho\}$, we either have $\sigma\delta = \sigma$ or $\sigma\delta = \delta$, and so $\sigma\delta \neq \rho$. Hence ρ is not decomposable, as required. \square

The following result now follows.

Corollary 7. *An element $\rho \in I(n, p)$ is indecomposable if and only if $\rho \in W(p)$. In particular, an element $\rho \in \mathcal{DORI}_n$ is indecomposable if and only if $\rho \in W(n-1) \cup \{\text{id}_{[n]}\}$.*

Recall also that in the semigroup \mathcal{DORI}_n , the set $W(n-1)$ consists of the essential elements, the idempotent elements of J_{n-1}^* , the convex vital elements of height $\lceil \frac{n}{2} \rceil$, and all the extreme convex vital elements of height below $\lceil \frac{n}{2} \rceil$. We now state and prove the following result.

Theorem 15. Let $RQ_n(p)$ be as defined in (5). Then,

- (a) For $p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}$, a subsemigroup M of $RQ_n(p)$ is maximal if and only if M belongs to one of the following two types:
 - (i) $M_\epsilon = RQ_n(p) \setminus \{\epsilon\}$, where $\epsilon \in E(RQ_n(p))$;
 - (ii) $M_\epsilon = RQ_n(p) \setminus \{\varepsilon\}$, where $\varepsilon \in M(p)$.
- (b) For $p \in \{2, \dots, \lceil \frac{n}{2} \rceil\}$, a subsemigroup M of $RQ_n(p)$ is maximal if and only if M belongs to one of the following three types:
 - (i) $M_\epsilon = RQ_n(p) \setminus \{\epsilon\}$, where $\epsilon \in E(RQ_n(p))$;
 - (ii) $M_\varepsilon = RQ_n(p) \setminus \{\varepsilon\}$, where $\varepsilon \in M(p)$;
 - (iii) $M_\delta = RQ_n(p) \setminus \{\delta\}$, where $\delta \in O(p)$.

Proof. (a) If $p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}$, then by Proposition 1 the result follows from the fact that $G(p) = E(RQ_n(p)) \cup M(p)$ is the minimum generating set by Lemma 20, consisting of all the indecomposable elements of $RQ_n(p)$ by Lemma 26.

(b) Now, if $p \in \{2, \dots, \lceil \frac{n}{2} \rceil\}$, then the result follows from the fact that $G(p) = E(RQ_n(p)) \cup M(p) \cup O(p)$ is the minimum generating set by Lemma 20 consisting of all the indecomposable elements of $RQ_n(p)$ by Lemma 26. \square

Remark 11. Note that if the generating set is only minimal, the statement in Lemma 26 and Corollary 7 may not be true. To see this, consider the cyclic group $C_{12} = \langle x : x^{12} = e \rangle$. Then $\langle x^3, x^4 \rangle = C_{12}$. However, $\langle \{x^3, x^4\} \setminus \{x^3\} \rangle = \langle x^4 \rangle = C_3 \subset C_6 \subset C_{12}$, is not maximal.

We now have the following corollary.

Corollary 8. If $p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}$, then the semigroup $RQ_n(p)$ contains exactly $\binom{n}{p} + (n-1)\binom{n-2}{p-1}$ maximal subsemigroups; and if $p \in \{2, \dots, \lceil \frac{n}{2} \rceil\}$ then the semigroup $RQ_n(p)$ contains exactly $\binom{n}{p} + (n-1)\binom{n-2}{p-1} + n - 2p + 2$ maximal subsemigroups.

Proof. The result follows from counting all the maximal subsemigroups as stated in Theorem 15. \square

The next result characterizes the maximal subsemigroups of the two-side ideal $I(n, p)$.

Theorem 16. Let $I(n, p)$ be as defined in (4). Then,

(a) For $p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n\}$, a subsemigroup M of $I(n, p)$ is maximal if and only if M belongs to one of the following four types:

- (i) $M_\epsilon = I(n, p) \setminus \{\epsilon\}$, where $\epsilon \in E(J_p^*)$;
- (ii) $M_\varepsilon = I(n, p) \setminus \{\varepsilon\}$, where $\varepsilon \in M(p)$;
- (iii) $M_\delta = I(n, p) \setminus \{\delta\}$, where $\delta \in O(\lceil \frac{n}{2} \rceil)$;
- (iv) $M_{\delta'} = I(n, p) \setminus \{\delta'\}$, where $\delta' \in \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\}$.

(b) For $p \in \{2, \dots, \lceil \frac{n}{2} \rceil\}$, a subsemigroup M of $I(n, p)$ is maximal if and only if M belongs to one of the following four types:

- (i) $M_\epsilon = I(n, p) \setminus \{\epsilon\}$ where $\epsilon \in E(J_p^*)$;
- (ii) $M_\varepsilon = I(n, p) \setminus \{\varepsilon\}$, where $\varepsilon \in M(p)$;
- (iii) $M_\delta = I(n, p) \setminus \{\delta\}$, where $\delta \in O(p)$;
- (iv) $M_{\delta'} = I(n, p) \setminus \{\delta'\}$, where $\delta' \in \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p - 1\}$.

Proof. (a) If $p \in \{1, \lceil \frac{n}{2} \rceil + 1, \dots, n - 1\}$, the result follows from the fact that $W(p) = G(p) \cup O(\lceil \frac{n}{2} \rceil) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\}$ is the minimum generating set by Lemma 24, consisting of all the indecomposable elements of $I(n, p)$ by Corollary 7.

(b) Now, if $p \in \{2, \dots, \lceil \frac{n}{2} \rceil\}$, then the result also follows from the fact that $W(p) = G(p) \cup \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq p - 1\}$ is the minimum generating set by Lemma 24, consisting of all the indecomposable elements of $I(n, p)$ by Corollary 7. \square

We now have the following corollary.

Corollary 9. For $1 \leq p \leq n - 1$, the semigroup $I(n, p)$ contains exactly $(n - 2) + \binom{n}{p} + (n - 1) \binom{n-2}{p-1}$ maximal subsemigroups.

Proof. The result follows from counting all the maximal subsemigroups as stated in Theorem 16. \square

In conclusion, we wrap up the paper with the following results without proof.

Theorem 17. Let \mathcal{DORI}_n be as defined in (3). Then, a subsemigroup M of \mathcal{DORI}_n is maximal if and only if M belongs to one of the following five types:

- (i) $M_{id_{[n]}} = \mathcal{DORI}_n \setminus \{id_{[n]}\}$;

- (ii) $M_\epsilon = \mathcal{DOI}_n \setminus \{\epsilon\}$, where $\epsilon \in E(J_{n-1}^*)$;
- (iii) $M_\varepsilon = \mathcal{DOI}_n \setminus \{\varepsilon\}$, where $\varepsilon \in M(p)$;
- (iv) $M_\delta = \mathcal{DOI}_n \setminus \{\delta\}$, where $\delta \in O(\lceil \frac{n}{2} \rceil)$;
- (v) $M_{\delta'} = \mathcal{DOI}_n \setminus \{\delta'\}$, where $\delta' \in \{\delta_i, \delta_{n-i+1} : 2 \leq i \leq \lceil \frac{n}{2} \rceil - 1\}$.

Corollary 10. *The monoid \mathcal{DOI}_n contains exactly $3n - 2$ maximal subsemigroups.*

References

- [1] Al-Kharousi, F.S., Umar, A., Zubairu, M.M.: On the injective partial Catalan monoid. Preprint at <https://doi.org/10.48550/arXiv.2501.00285> (2024)
- [2] El-Qallali, A., Fountain, J.B.: Idempotent-connected abundant semigroups. Proc. Roy. Soc. Edinburgh Sect. A: Math. **91**(1-2), 79–90 (1981). <https://doi.org/10.1017/S0308210500012646>
- [3] Fernandes, V.H., Gomes, G.M.S., Jesus, M.M.: Congruences on monoids of order-preserving or order-reversing transformations on a finite chain. Glasg. Math. J. **47**(2), 413–424 (2005). <https://doi.org/10.1017/S0017089505002648>
- [4] Fountain, J.B.: Adequate semigroups. Proc. Edinburgh Math. Soc. **22**(2), 113–125 (1979). <https://doi.org/10.1017/S0013091500016230>
- [5] Fountain, J.: Abundant semigroups. Proc. London Math. Soc. **s3-44**(1), 103–129 (1982). <https://doi.org/10.1112/plms/s3-44.1.103>
- [6] Ganyushkin, O., Mazorchuk, V.: Classical finite transformation semigroups. In: An Introduction. Algebra Appl., vol. **9**. Springer, London (2009). <https://doi.org/10.1007/978-1-84800-281-4>
- [7] Gomes, G.M.S., Howie, J.M.: On the ranks of certain semigroups of order preserving transformations. Semigroup Forum **45**, 272–282 (1992). <https://doi.org/10.1007/BF03025769>
- [8] Gomes, G.M.S., Howie, J.M.: Nilpotents in finite symmetric inverse semigroup. Proc. Edinburgh Math. Soc. **30**(3), 383–395 (1987). <https://doi.org/10.1017/S0013091500026778>
- [9] Gomes, G.M.S., Howie, J.M.: On the ranks of certain finite semigroups of transformations. Math. Proc. Cambridge Phil. Soc. **101**(3), 395–403 (1987). <https://doi.org/10.1017/S0305004100066780>
- [10] Graham, N., Graham, R., Rhodes, J.: Maximal subsemigroups of finite semigroups. J. Comb. Theory **4**(3), 203–209 (1968). [https://doi.org/10.1016/S0021-9800\(68\)80001-8](https://doi.org/10.1016/S0021-9800(68)80001-8)
- [11] Howie, J.M.: Fundamentals of Semigroup Theory. London Math. Soc. New series **12**. The Clarendon Press, Oxford (1995)
- [12] Howie, J.M., Marques Ribeiro, M.I.: Rank properties in finite semigroups. Comm. Algebra **27**(11), 5333–5347 (1999). <https://doi.org/10.1080/00927879908826758>

[13] Howie, J.M., Marques Ribeiro, M.I.: Rank properties in finite semigroups II: The small rank and the large rank. *Southeast Asian Bull. Math.* **24**, 231–237 (2000). <https://doi.org/10.1007/s100120070007>

[14] Howie, J.M., McFadden, R.B.: Idempotent rank in finite full transformation semigroups. *Proc. Roy. Soc. Edinburg. Sect. A: Math.* **114**(3-4), 161–167 (1990). <https://doi.org/10.1017/S0308210500024355>

[15] Higgins, P.M.: Techniques of semigroup theory. Oxford University Press, Oxford (1992). <https://doi.org/10.1093/oso/9780198535775.001.0001>

[16] James, E., Jitender, K., James D.M., Wilf A.W.: Maximal subsemigroups of finite transformation and diagram monoids. *J. Algebra* **504**, 176–216 (2018). <https://doi.org/10.1016/j.jalgebra.2018.01.048>

[17] Laradji, A., Umar, A.: Combinatorial results for semigroups of order-preserving or order-reversing subpermutations. *J. Diff. Equations Appl.* **21**(3), 269–283 (2015). <https://doi.org/10.1080/10236198.2015.1005080>

[18] Laradji, A., Umar, A.: On certain finite semigroups of order-decreasing transformations I. *Semigroup Forum* **69**, 184–200 (2004). <https://doi.org/10.1007/s00233-004-0101-9>

[19] Laradji, A., Umar, A.: Combinatorial results for semigroups of order-decreasing partial transformations. *J. Int. Seq.* **7**, 04.3.8 (2004)

[20] Ping, Z., Vitor, H.F.: The ranks of ideals in various transformation monoids. *Comm. Algebra* **43**(2), 674–692 (2015). <https://doi.org/10.1080/00927872.2013.847946>

[21] Riordan, J.: Combinatorial Identities. John Wiley and Sons, New York (1968)

[22] Umar, A.: Some combinatorial problems in the theory of symmetric inverse semigroups. *Algebra Discrete Math.* **9**(2), 115–126 (2010).

[23] Umar, A.: Semigroups of order-decreasing transformations. PhD thesis. University St. Andrews (1992)

[24] Umar, A.: A class of quasi-adequate transformation semigroups. *Portugaliae Math.* **51**(4), 553–570 (1994)

[25] Umar, A.: On the semigroups of order-decreasing finite full transformations. *Proc. Roy. Soc. Edinburgh Sect. A: Math.* **120**(1-2), 129–142 (1992). <https://doi.org/10.1017/S0308210500015031>

[26] Umar, A.: On certain infinite semigroups of order-decreasing transformations I. *Comm. Algebra* **25**(9), 2987–2999 (1997). <https://doi.org/10.1080/00927879708826035>

[27] Umar, A.: On the ranks of certain finite semigroups of order-decreasing transformations. *Portugaliae Math.* **53**(1), 23–34 (1996)

[28] Umar, A., Zubairu, M.M.: On certain semigroups of contraction mappings of a finite chain. *Algebra Discrete Math.* **32**(2), 299–320 (2021). <http://dx.doi.org/10.12958/adm1816>

[29] Umar, A.: Presentations for subsemigroups of \mathcal{PD}_n . *Czechoslovak Math. J.* **69**(2), 417–426 (2019). <https://doi.org/10.21136/CMJ.2018.0343-17>

[30] Umar, A.: On the semigroups of partial one-one order-decreasing finite transformations. Proc. Roy. Soc. Edinburgh Sect. A: Math. **123**(2), 355–363 (1993). <https://doi.org/10.1017/S0308210500025737>

[31] Zubairu, M.M., Umar, A., Al-Kharousi, F.S.: On the algebraic structure of the Schröder monoids. Preprint at <https://doi.org/10.48550/arXiv.2412.13675> (2024)

[32] Zubairu, M.M., Umar, A., Al-Kharousi, F.S.: On the small Schröder semigroup \mathcal{SS}'_n (Submitted)

[33] Zubairu, M.M., Umar, A., Al-Kharousi, F.S.: On the monoid of monotone and decreasing partial transformations on a finite chain (Submitted)

[34] Zubairu, M.M., Umar, A., Aliyu, J.A.: On certain semigroups of order-decreasing full contraction mappings of a finite chain. In: Leung, H.H., Sivaraj, R., Kamalov, F. (eds) Recent Developments in Algebra and Analysis. ICRDM 2022. Trends in Mathematics, pp. 35–45. Birkhäuser, Cham (2024) https://doi.org/10.1007/978-3-031-37538-5_4

CONTACT INFORMATION

M. M. Zubairu

Department of Mathematics,
Bayero University Kano, P.M.B. 3011,
Kano, Nigeria
E-Mail: mmzubairu.mth@buk.edu.ng

A. Umar

Department of Mathematical Sciences,
Khalifa University, P.O.Box 127788,
Sas al Nakhl, Abu Dhabi, UAE
E-Mail: abdullahi.umar@ku.ac.ae

F. S. Al-Kharousi

Department of Mathematics, College of
Science, Sultan Qaboos University,
P.O.Box 36, Al Khod, PC123,
Sultanate of Oman
E-Mail: fatma9@squ.edu.om

Received by the editors: 09.03.2025
and in final form 02.12.2025.