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par-Functions of square matrices
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Abstract. New functions of square matrices are constructed,
and some of their properties and connections with Hessenberg mat-
rices are investigated.

Introduction

Matrix analysis helps to generalize and unify, systematize, and classify
various mathematical objects. At the same time, it serves as a powerful
analytical tool for mathematical research. Therefore, its further develop-
ment is a relevant task. The main functions of matrices are determinants
and permanents. Pfaffians, which Cayley used to study the properties
of skew-symmetric matrices [1], have had a somewhat lesser impact on
mathematics.

This paper discusses multilinear functions of square matrices that are
constructed based on the following three conditions:

� Each term of the multilinear polynomial function of the matrix is
a product of elements from a transversal of the matrix, meaning a
product of elements taken one from each row and column.

� Each element of the matrix affects the value of its function.

� Half of the terms in the function’s polynomial appear with a posi-
tive sign, while the other half appear with a negative sign.
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Since the determinant and permanent of a square matrix are constructed
based on the set Sn, which consists of all permutations of the first n
positive integers, it is natural to expect that a new multilinear function
of a matrix, built on a subset of Sn, will have some connection with
determinants and permanents.

The goal of this paper is to construct new functions of square matrices
related to ordered partitions of a natural number into natural summands
and linear recursions. We call these functions par−functions, or parti-
tioners. They have a structure similar to the determinant functions of
Hessenberg matrices [2], [3].

1. Construction of par−Functions of Square Matrices

Let a matrix be given by

An =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann


n

, (1)

where its elements belong to some numerical field K.
We construct a bijection between the elements (n1, n2, . . . , nr) ⊢ n

of the set of ordered partitions C(n,+) and the elements (i1, i2, . . . , in)r
(see [4]) of a certain subset CSn ⊂ Sn of all permutations of the first n
natural numbers according to the following rule:

(n1, n2, . . . , nr) ⊢ n←→

(n1, n1− 1, . . . , 1;n1 + n2, n1 + n2− 1, . . . , n1 +1; . . . ;n1 + . . .+ nr, (2)

n1 + . . .+ nr − 1, . . . , n1 + . . .+ nr−1 + 1).

In this bijection, the first component n1 of the partition of n corres-
ponds to the first n1 elements of the permutation. These elements are
separated from the rest of the permutation elements by a semicolon. The
second component corresponds to the next n2 elements of the permuta-
tion, which are also separated by a semicolon, and so on.

For example, the ordered partition (1, 3, 1, 2, 1) of the natural number
8 corresponds to the permutation (1; 4, 3, 2; 5; 7, 6; 8).

It is known that

|C(n,+)| = |CSn| = 2n−1. (3)
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Here is a table showing the correspondence between all partitions in
the set C(4,+) and their corresponding permutations in the set CS4,
constructed according to the correspondence (2):

Partition α Permutation (i1, i2, i3, i4)

(1,1,1,1) ↔ (1; 2; 3; 4)
(2, 1, 1) ↔ (2, 1; 3; 4)
(1, 2, 1) ↔ (1; 3, 2; 4)
(3, 1) ↔ (3, 2, 1; 4)
(1, 1, 2) ↔ (1; 2; 4, 3)
(2, 2) ↔ (2, 1; 4, 3)
(1, 3) ↔ (1; 4, 3, 2)
(4) ↔ (4, 3, 2, 1)

From permutations (i1, i2, . . . , in) ∈ CSn, we transition to the cor-
responding substitutions and then to transversals on square matrices of
order n.

For example, the ordered partition (1, 2, 1) of the natural number 4
corresponds to the transversal

• ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦
◦ ◦ ◦ •

 .

Here, the elements of the transversal are marked with black circles.

To construct a transversal of a matrix corresponding to an ordered
partition

(n1, n2, . . . , nr) ⊢ n,

we select the first superdiagonal parallel to the secondary diagonal that
contains n1 elements and move to a new matrix without the first n1

rows and columns. In this new matrix, we select n2 elements from the
superdiagonal, and so on.

Definition 1.1. The par−function of the square matrix (1) is defined
as the multilinear polynomial

par(An) =
n∑

r=1

∑
(i1,i2,...,in)r∈CSn

(−1)n−ra1i1a2i2 · · · anin . (4)
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Note that due to (3), the multilinear polynomial of the par−function
of an n-th order matrix contains 2n−1 terms. The first five values of the
par−functions for matrices Ai, i = 1, 2, 3, 4, 5 are given below:

par(A1) = a11;

par(A2) = a11a22 − a12a21;

par(A3) = a11a22a33 − a12a21a33 − a11a23a32 + a13a22a31;

par(A4) = a11a22a33a44 − a12a21a33a44 − a11a23a32a44+

a13a22a31a44−a11a22a34a43+a12a21a34a43+a11a24a33a42−a14a23a32a41;

par(A5) = a11a22a33a44a55 − a11a22a33a45a54 − a11a22a34a43a55+

a11a22a35a44a53 − a11a23a32a44a55 + a11a23a32a45a54+

a11a24a33a42a55 − a11a25a34a43a52 − a12a21a33a44a55+

a12a21a33a45a54 + a12a21a34a43a55 − a12a21a35a44a53+

a13a22a31a44a55 − a13a22a31a45a54 − a14a23a32a41a55+

a15a24a33a42a51.

Example 1.1. We illustrate the one-to-one correspondence between all
ordered partitions of the number 4 and the terms of the par-function of
a fourth-order matrix using the following schemes:

• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ •

◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ •

• ◦ ◦ ◦
◦ ◦ • ◦
◦ • ◦ ◦
◦ ◦ ◦ •

◦ ◦ • ◦
◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ •

(1, 1, 1, 1) (2, 1, 1) (1, 2, 1) (3, 1)

• ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦

◦ • ◦ ◦
• ◦ ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦

• ◦ ◦ ◦
◦ ◦ ◦ •
◦ ◦ • ◦
◦ • ◦ ◦

◦ ◦ ◦ •
◦ ◦ • ◦
◦ • ◦ ◦
• ◦ ◦ ◦

(1, 1, 2) (2, 2) (1, 3) (4)

Img. 1.1.
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Theorem 1.1. The following identity holds:

par(An) =
n∑

i=1

i−1∏
j=0

(−1)i−1an−j,n−i+j+1par(An−i), (5)

where p(A0) = 1 and p(A<0) = 0.

Proof. An ordered partition of a natural number n into natural sum-
mands can be represented as

n = (n− i) + i, i = 1, 2, . . . , n,

that is, each ordered partition can be written as an ordered partition of
(n − i) with an additional summand i. Thus, there are exactly c(n − i)
ordered partitions of n with the last summand i. Here, we assume that
c(0) = 1.

We associate the last summand i of the ordered partition of n with the
product of all i elements lying on a diagonal parallel to the secondary
diagonal. Thus, the i elements of the transversals are uniquely deter-
mined. The remaining (n − i) elements of the transversals are selected
according to the ordered partitions of (n− i) in the first (n− i) rows and
the first (n− i) columns of the matrix.

By the definition of the partitioner (1.1), the sign of each term in its
multilinear polynomial depends on the matrix order n and the number
of components in the ordered partition r, and it is determined by the
factor (−1)n−r. Previously, we considered the partition (n − i) + i ⊢ n,
where the component i contributes the factor (−1)i−1 to the sign of the
r-partition. The factor (−1)n−i−(r−1) corresponding to the component
(n − i) is included in the partitioner parAn−i. Thus, the equality (5)
holds.

We now write the values of the decompositions of the par-functions
of the matrices (An) for n = 1, 2, 3, 4, 5 :

par(A1) = a11;

par(A2) = a22par(A1)− a21a12;

par(A3) = a33par(A2)− a32a23par(A1) + a31a22a13;

par(A4) = a44par(A3)−a43a34par(A2)+a42a33a24par(A1)−a41a32a23a14;

par(A5) = a55par(A4)− a54a45par(A3) + a53a44a35par(A2)−
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−a52a43a34a25par(A1) + a51a42a33a24a15.

We establish the connection between par-functions of square matrices
and Hessenberg matrices.

Theorem 1.2. The following identity holds for all elements aij , i, j =
1, 2, . . . , n, belonging to some numerical field:

det(Hn) =∣∣∣∣∣∣∣∣∣∣∣∣

h11 1 0 · · · 0 0
h21 h22 1 · · · 0 0
h31 h32 h33 · · · 0 0
· · · · · · · · · · · · · · · · · ·

hn−1,1 hn−1,2 hn−1,3 · · · hn−1,n−1 1
hn1 hn2 hn3 · · · hn,n−1 hnn

∣∣∣∣∣∣∣∣∣∣∣∣
= par


a11 a12 · · · a1n
a21 a22 · · · a2n
...

... · · ·
...

an1 an2 · · · ann

 , (6)

where

hij =

i−j∏
k=0

ai−k,j+k. (7)

Proof. For par-functions of matrices, according to Theorem 1.1, the re-
cursion (5) holds. For Hessenberg matrices, a similar recursion holds:

det(Hn) = hnndet(Hn−1)−hn,n−1det(Hn−2)+ . . .+(−1)n−1hn1det(H0),

where det(H0) = 1. Therefore, when equality (7) holds, the determinant
values of the Hessenberg matrix coincide with the values of the par-
functions of the corresponding matrices.

Alongside par-functions of square matrices, we can also consider par+-
functions of matrices, where all 2n−1 terms are positive, i.e.,

par+(An) =

n∑
r=1

∑
(i1,i2,...,in)r∈CSn

a1i1a2i2 · · · anin .

For par+-functions, the following recurrence relation holds:

par+(An) =
n∑

i=1

i−1∏
j=0

an−j,n−i+j+1par
+(An−i),
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where par+(A0) = 1, par+(A<0) = 0.
The validity of this recurrence relation is proved similarly to the proof

of the recurrence relation in Theorem 1.1, the equality (5).
For the classical determinant and permanent functions of a square

matrix, an important problem is Polya’s problem (see [5, 6]) about a
transformation of the matrix that allows computing the permanent by
calculating the determinant of a transformed matrix. For partitioners,
such a matrix transformation is possible.

Theorem 1.3. Let

A
′
n =


a11 −a12 a13 · · · a1,n−1 a1n
a21 a22 −a23 · · · a1,n−1 a1n
· · · · · · · · · · · · · · · · · ·

an−1,1 an−1,2 an−1,3 · · · an−1,n−1 −an−1,n

an1 an2 an3 · · · an,n−1 ann


and

An =


a11 a12 a13 · · · a1,n−1 a1n
a21 a22 a23 · · · a1,n−1 a1n
· · · · · · · · · · · · · · · · · ·

an−1,1 an−1,2 an−1,3 · · · an−1,n−1 an−1,n

an1 an2 an3 · · · an,n−1 ann

 .

Then, the following identity holds:

par(A
′
n) = par+(An).

Proof. By Theorem 1.1, the equality (5) holds. We apply this theorem
to the expansion of the partitioner of the matrix A

′
n. In this matrix, all

elements ai,i+1, i = 1, 2, . . . , n − 1 have a negative sign. These elements
have the property that the difference between their column and row in-
dices is equal to one. The coefficient of a general term in the expansion
of matrix A

′
n in terms of the elements of the last row has the form:

(−1)n−j
n−j∏
r=0

an−r,j+r.

We analyze under which conditions a negative element of matrix A
′
n

appears in the product
n−j∏
r=0

an−r,j+r.
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The difference between the column and row indices of elements in this
product is (j − n) + 2r, and the parity of this difference depends on the
parity of (j − n). Thus, a negative element of matrix A

′
n will be a factor

of this product if and only if (j − n) takes an odd value, which proves
the theorem.

Assertion 1.1. Let the elements ai,i+1, i = 1, 2, . . . , n− 1 in the matrix
(1) be zeros, then the following equality holds:

par(An) = par+(An). (8)

Proof. In the expansion of the par-function of the given matrix by the
elements of the last row, it is evident that only terms with a positive sign
remain on both sides of the equality (see the proof of Theorem 1.3).

Example 1.2. Let the given matrix be

An =



1 1 1 · · · 1 1 1
1 1 1 · · · 1 1 1
0 1 1 · · · 1 1 1
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 1 1
0 0 0 · · · 0 1 1


n

We compute par+(An).
Expanding the par+-function of this matrix by the elements of the last

row:
par+(An) = par+(An−1) + par+(An−2).

However,
par+(A1) = 1 = F2, par+(A2) = 2 = F3.

Thus,
par+(An) = Fn+1,

where Fn is the n-th Fibonacci number.
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