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Abstract. We investigate the differential smoothness of a
certain family of skew Poincaré-Birkhoff-Witt extensions.

Introduction

Ore [44] introduced a kind of noncommutative polynomial rings which

has become one of the most basic and useful constructions in ring theory

and noncommutative algebra. For an associative and unital ring R, an

endomorphism σ of R and a σ-derivation δ of R, the Ore extension or

skew polynomial ring of R is obtained by adding a single generator x to R

subject to the relation xr = σ(r)x+δ(r) for all r ∈ R. This Ore extension

of R is denoted by R[x;σ, δ]. As one can appreciate in the literature, a

lot of papers and books have been published concerning ring-theoretical,

homological, geometrical properties, and applications of these extensions

(e.g. [19, 22,41] and references therein).
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One of the topics of research on Ore extensions has been carried out

by several authors concerning to the ring-theoretical notions of Baer,

quasi-Baer, p.p., p.q., Armendariz and reduced rings (e.g. [23, 26, 31];

for a detailed description of each one of these notions, see the excellent

treatment developed by Birkenmeier et al. [7]). All these properties are

formulated for the ring of coefficients R of the Ore extension R[x;σ, δ]

under certain adequate conditions on the maps σ and δ. The exten-

sion of these theoretical notions from R to R[x;σ, δ] was considered by

Nasr-Isfahani and Moussavi [42]. In their paper, for a ring R with an

automorphism σ and σ-derivation δ where αδ = δα, they considered the

σ-derivation δ on the Ore extension R[x;σ, δ] which, precisely, extends δ.

More exactly, for an element f(x) = r0 + r1x + · · · + rnx
n ∈ R[x;σ, δ]

they defined the automorphism σ and the σ-derivation δ on R[x;σ, δ] as

σ(f(x)) = σ(r0) + σ(r1)x+ · · ·+ σ(rn)x
n

and

δ(f(x)) = δ(r0) + δ(r1)x+ · · ·+ δ(rn)x
n,

respectively. Such an automorphism σ and derivation δ of R[x;σ, δ] are

called extended automorphism and derivation of δ.

Related to the study of transfer of ring-theoretical properties from co-

efficient rings to noncommutative polynomial extensions over these rings,

Kwak et al. [34] extended the reflexive property to the skewed reflexive

property by ring endomorphisms. An endomorphism σ of a ring R is

called right (resp., left) skew reflexive if for a, b ∈ R, aRb = 0 implies

bRσ(a) = 0 (resp., σ(b)Ra = 0), and R is called right (resp., left) σ-skew

reflexive if there exists a right (resp., left) skew reflexive endomorphism

σ of R. R is said to be σ-skew reflexive if it is both right and left

σ-skew reflexive. It is clear that σ-rigid rings are right σ-skew reflexive.

More precisely, a ring R is reduced and right σ-skew reflexive for a

monomorphism σ of R if and only if R is σ-rigid [34, Theorem 2.6]. Bhat-

tacharjee [6] extend the notion of RNP rings (Kheradmand et al. [32],

where RNP means reflexive-nilpotents-property) to ring endomorphisms

σ and introduced the notion of σ-skew RNP rings as a generalization

of σ-skew reflexive rings. An endomorphism σ of a ring R is called

right (resp., left) skew RNP if for a, b ∈ N(R) (the set of nilpotent ele-

ments of R), aRb = 0 implies bRσ(a) = 0 (resp., σ(b)Ra = 0). A

ring R is called right (resp., left) σ-skew RNP if there exists a right
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(resp., left) skew RNP endomorphism σ of R. R is said to be σ-skew

RNP if it is both right and left σ-skew RNP. From [6, Remark 1.2],

we know that reduced rings are σ-skew RNP for any endomorphism σ,

and every right (resp., left) σ-skew reflexive ring is right (resp., left)

σ-skew RNP. By [6, Example 1.3], we have that the notion of σ-skew

RNP ring is not left-right symmetric. However, if R is an RNP ring with

an endomorphism σ, then R is right σ-skew RNP if and only if R is left

σ-skew RNP.

With the aim of generalizing Ore extensions of injective type (that is,

R[x;σ, δ] with σ an injective map) and other families of noncommutative

rings appearing in the literature, Gallego and Lezama [20] defined the

skew Poincaré-Birkhoff-Witt extensions (SPBW extensions for short). A

detailed treatment of these objects can be found in Fajardo et al [18]. In

particular, and due to the relation between Ore extensions and SPBW

extensions in terms of endomorphisms and derivations (Proposition 1),

Reyes and Suárez [49–51] carried out a similar work to the presented

by Nasr-Isfahani and Moussavi [42] but now in the more general setting

of SPBW extensions (see Section 1.1 for all details), while Suárez et

al. [54] studied the reflexive-nilpotents-property for SPBW extensions.

There, they introduced the Σ-skew CN and Σ-skew reflexive (RNP) rings

and under conditions of compatibility, they investigated the transfer of

the reflexive-nilpotents-property from a ring of coefficients to a SPBW

extension over it. Their results extend those corresponding presented by

Bhattacharjee [6] for Ore extensions.

The geometric notion of interest in this paper is the differential

smoothness in the Brzeziński and Sitarz’s sense [15]. Since several authors

have characterized the differential smoothness of different noncommuta-

tive algebras (see Section 1.2), our purpose in this paper is to investigate

the differential smoothness of SPBW extensions considering extended

automorphisms and derivations, from the ring of coefficients, to the

SPBW over this ring. In this way, we contribute to the study of algeb-

raic and geometric properties of the Ore extensions considered by Nasr-

Isfahani and Moussavi [42] and Bhattacharjee [6], and hence continue the

research on the differential smoothness of noncommutative algebras re-

lated to SPBW extensions that have been carried out by the authors

in [48,53].

The article is organized as follows. In Section 1 we review the key

facts on SPBW extensions (Section 1.1) and differential smoothnes of
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algebras (Section 1.2) in order to set up notation and render this paper

self-contained. Section 2 contains the original results of the paper. We

start in Section 2.1 with preliminary facts on the extension of automor-

phisms and derivations of a ring R to a SPBW extension over R. Next,

in Section 2.2 we characterize the differential smoothness of this kind of

SPBW extensions (Theorem 1).

1. Definitions and preliminaries

1.1. Skew Poincaré-Birkhoff-Witt extensions

SPBW extensions generalize several kinds of rings such as Ore extensions
of injective type [44], PBW extensions [5], 3-dimensional skew polyno-
mial algebras [4], diffusion algebras [27, 45], ambiskew polynomial [28],
solvable polynomial rings [29], almost normalizing extensions [41], skew
bi-quadratic algebras, and some families of diskew polynomial rings and
degree-one generalized Weyl algebras [3] or rank-one hyperbolic algeb-
ras [52]. Ring, homological and geometrical properties of SPBW exten-
sions have been investigated (e.g. [1, 24,25,38,43]).

Definition 1 ([20, Definition 1]). Let R and A be rings. We say that A is
a SPBW extension over R if the following conditions hold:

(i) R is a subring of A sharing the same identity element.

(ii) There exist elements x1, . . . , xn ∈ A \ R such that A is a left free
R-module with basis given by the set Mon(A) := {xα = xα1

1 · · ·xαn
n |

α = (α1, . . . , αn) ∈ Nn}.

(iii) For each 1 ≤ i ≤ n and any r ∈ R \ {0}, there exists an element
ci,r ∈ R \ {0} such that xir − ci,rxi ∈ R.

(iv) For 1 ≤ i, j ≤ n, there exists an element di,j ∈ R \ {0} such that

xjxi − di,jxixj ∈ R+Rx1 + · · ·+Rxn,

i.e., there exist elements r
(i,j)
0 , r

(i,j)
1 , . . . , r

(i,j)
n ∈ R with

xjxi − di,jxixj = r
(i,j)
0 +

n∑
k=1

r
(i,j)
k xk.
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We use freely the notation A = σ(R)⟨x1, . . . , xn⟩ to denote a SPBW
extension A over a ring R in the indeterminates x1, . . . , xn. R is called
the ring of coefficients of the extension A. Since Mon(A) is a left
R-basis of A, the elements ci,r and di,j in Definition 1 are unique. Every

element f ∈ A \ {0} has a unique representation as f =
t∑

i=0
riXi, with

ri ∈ R \ {0} and Xi ∈ Mon(A) for 0 ≤ i ≤ t with X0 = 1. When

necessary, we use the notation f =
t∑

i=0
riYi. For X = xα ∈ Mon(A),

exp(X) := α and deg(X) := |α|. If f is an element as in (v), then
deg(f) := max{deg(Xi)}ti=1 [20, Remark 2 and Definition 6].

The following proposition shows explicitly the relation between Ore
extensions and SPBW extensions.

Proposition 1 ([20, Proposition 3]). If A= σ(R)⟨x1, . . . , xn⟩ is a SPBW
extension over R, then for each 1 ≤ i ≤ n, there exist an injective
endomorphism σi : R → R and a σi-derivation δi : R → R such that
xir = σi(r)xi + δi(r) for each r ∈ R.

We use the notation Σ := {σ1, . . . , σn} and ∆ := {δ1, . . . , δn} and say
that the pair (Σ,∆) is a system of endomorphisms and Σ-derivations of
R with respect to A. For α = (α1, . . . , αn) ∈ Nn, σα := σα1

1 ◦ · · · ◦ σαn
n ,

δα := δα1
1 ◦· · ·◦δαn

n , where ◦ denotes the classical composition of functions.
The system Σ is commutative if σi ◦ σj = σj ◦ σi for every 1 ≤ i, j ≤ n.
The commutativity for ∆ is defined as expected. The system (Σ,∆) is
commutative if both Σ and ∆ are commutative [37, Definition 2.1].

1.2. Differential smoothness

We follow Brzeziński and Sitarz’s presentation on differential smoothness
carried out in [15, Section 2] (c.f. [8, 10]).

Definition 2 ([15, Section 2.1]). (i) A differential graded algebra is a
non-negatively graded algebra Ω with the product denoted by ∧
together with a degree-one linear map d : Ω• → Ω•+1 that satisfies
the graded Leibniz rule and is such that d ◦ d = 0.

(ii) A differential graded algebra (Ω, d) is a calculus over an algebra
A if Ω0A = A and ΩnA = A dA ∧ dA ∧ · · · ∧ dA (dA appears
n-times) for all n ∈ N (this last is called the density condition).
We write (ΩA, d) with ΩA =

⊕
n∈N

ΩnA. By using the Leibniz rule,
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it follows that ΩnA = dA∧ dA∧ · · · ∧ dA A. A differential calculus
ΩA is said to be connected if ker(d |Ω0A) = k.

(iii) A calculus (ΩA, d) is said to have dimension n if ΩnA ̸= 0 and
ΩmA = 0 for all m > n. An n-dimensional calculus ΩA admits a
volume form if ΩnA is isomorphic to A as a left and right A-module.

The existence of a right A-module isomorphism means that there is a
free generator, say ω, of ΩnA (as a right A-module), i.e. ω ∈ ΩnA, such
that all elements of ΩnA can be uniquely expressed as ωa with a ∈ A. If
ω is also a free generator of ΩnA as a left A-module, this is said to be a
volume form on ΩA.

The right A-module isomorphism ΩnA → A corresponding to a volu-
me form ω is denoted by πω, i.e.

πω(ωa) = a for all a ∈ A. (1)

By using that ΩnA is also isomorphic to A as a left A-module, any
free generator ω induces an algebra endomorphism νω of A by the formula

aω = ωνω(a). (2)

Note that if ω is a volume form, then νω is an algebra automorphism.
Now, we proceed to recall the key ingredients of the integral calculus

on A as dual to its differential calculus. For more details, see Brzezinski
et al. [8, 13].

Let (ΩA, d) be a differential calculus on A. The space of n-forms ΩnA
is an A-bimodule. Consider InA the right dual of ΩnA, the space of all
right A-linear maps ΩnA → A, that is, InA := HomA(Ω

nA,A). Notice
that each of the InA is an A-bimodule with the actions

(a · ϕ · b)(ω) = aϕ(bω) for all ϕ ∈ InA, ω ∈ ΩnA and a, b ∈ A.

The direct sum of all the InA, that is, IA =
⊕
n
InA, is a right

ΩA-module with action given by

(ϕ · ω)(ω′) = ϕ(ω ∧ ω′) (3)

for all ϕ ∈ In+mA, ω ∈ ΩnA and ω′ ∈ ΩmA.

Definition 3 ([8, Definition 2.1]).A divergence (or hom-connection) on A
is a linear map ∇ : I1A → A such that

∇(ϕ · a) = ∇(ϕ)a+ ϕ(da) (4)

for all ϕ ∈ I1A and a ∈ A.
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Note that a divergence can be extended to the whole of IA,

∇n : In+1A → InA,

by considering

∇n(ϕ)(ω) = ∇(ϕ · ω) + (−1)n+1ϕ(dω) (5)

for all ϕ ∈ In+1(A) and ω ∈ ΩnA. By putting together (4) and (5), we
get the Leibniz rule

∇n(ϕ · ω) = ∇m+n(ϕ) · ω + (−1)m+nϕ · dω (6)

for all elements ϕ ∈ Im+n+1A and ω ∈ ΩmA [8, Lemma 3.2]. In the case
n = 0, if HomA(A,M) is canonically identified with M , then ∇0 reduces
to the classical Leibniz rule.

Definition 4 ([8, Definition 3.4]). The right A-module map

F = ∇0 ◦ ∇1 : HomA(Ω
2A,M) → M

is called a curvature of a hom-connection (M,∇0). (M,∇0) is said to be
flat if its curvature is the zero map, that is, if ∇◦∇1 = 0. This condition
implies that ∇n ◦ ∇n+1 = 0 for all n ∈ N.

IA and ∇n form a chain complex called the complex of integral forms
over A. The cokernel map of ∇, that is, Λ : A → Coker∇ = A/Im∇ is
said to be the integral on A associated to IA.

Given a left A-module X with action a · x for all a ∈ A, x ∈ X, and
an algebra automorphism ν of A, the notation νX stands for X with the
A-module structure twisted by ν, i.e. with the A-action a⊗x 7→ ν(a) ·x.

The following definition of an integrable differential calculus seeks
to portray a version of Hodge star isomorphisms between the complex
of differential forms of a differentiable manifold and a complex of dual
modules of it [11, p. 112].

Definition 5 ([15, Definition 2.1]). An n-dimensional differential calcu-
lus (ΩA, d) is said to be integrable if (ΩA, d) admits a complex of integral
forms (IA,∇) for which there exist an algebra automorphism ν of A and
A-bimodule isomorphisms Θk : ΩkA →ν In−kA, k = 0, . . . , n, rendering
commmutative the following diagram:

A Ω1A Ω2A · · · Ωn−1A ΩnA

νInA νIn−1A
νIn−2A · · · νI1A νA

d

Θ0 Θ1

d

Θ2

d d

Θn−1

d

Θn

∇n−1 ∇n−2 ∇n−3 ∇1 ∇

The n-form ω := Θ−1
n (1) ∈ ΩnA is called an integrating volume form.
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The algebra of complex matrices Mn(C) with the n-dimensional cal-
culus generated by derivations presented by Dubois-Violette et al. [16,17],
the quantum group SUq(2) with the three-dimensional left covariant cal-
culus developed by Woronowicz [55] and the quantum standard sphere
with the restriction of the above calculus, are examples of algebras ad-
mitting integrable calculi. For more details on the subject, see Brzeziński
et al. [13].

The following proposition shows that the integrability of a differential
calculus can be defined without explicit reference to integral forms.

Proposition 2 ([15, Theorem 2.2]). Let (ΩA, d) be an n-dimensional dif-
ferential calculus over an algebra A. The following assertions are equiva-
lent:

(1) (ΩA, d) is an integrable differential calculus.

(2) There exists an algebra automorphism ν of A and A-bimodule iso-
morphisms Θk : ΩkA → νIn−kA, k = 0, . . . , n, such that, for all
ω′ ∈ ΩkA and ω′′ ∈ ΩmA,

Θk+m(ω′ ∧ ω′′) = (−1)(n−1)mΘk(ω
′) · ω′′.

(3) There exists an algebra automorphism ν of A and an A-bimodule
map ϑ : ΩnA → νA such that all left multiplication maps

ℓkϑ : ΩkA → In−kA,

ω′ 7→ ϑ · ω′, k = 0, 1, . . . , n,

where the actions · are defined by (3), are bijective.

(4) (ΩA, d) has a volume form ω such that all left multiplication maps

ℓkπω
: ΩkA → In−kA,

ω′ 7→ πω · ω′, k = 0, 1, . . . , n− 1,

where πω is defined by (1), are bijective.

A volume form ω ∈ ΩnA is an integrating form if and only if it satisfies
condition (4) of Proposition 2 [15, Remark 2.3].

The most interesting cases of differential calculi are those where ΩkA
are finitely generated and projective right or left (or both) A-modules [9].
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Proposition 3. (1) [15, Lemma 2.6] Consider (ΩA, d) an integrable
and n-dimensional calculus over A with integrating form ω. Then
ΩkA is a finitely generated projective right A-module if there exist
a finite number of forms ωi ∈ ΩkA and ωi ∈ Ωn−kA such that, for
all ω′ ∈ ΩkA, we have that

ω′ =
∑
i

ωiπω(ωi ∧ ω′).

(2) [15, Lemma 2.7] Let (ΩA, d) be an n-dimensional calculus over A
admitting a volume form ω. Assume that for all k = 1, . . . , n − 1,
there exists a finite number of forms ωk

i , ω
k
i ∈ ΩkA such that for

all ω′ ∈ ΩkA, we have that

ω′ =
∑
i

ωk
i πω(ω

n−k
i ∧ ω′) =

∑
i

ν−1
ω (πω(ω

′ ∧ ωn−k
i ))ωk

i ,

where πω and νω are defined by (1) and (2), respectively. Then
ω is an integral form and all the ΩkA are finitely generated and
projective as left and right A-modules.

Brzeziński and Sitarz [15, p. 421] asserted that to connect the inte-
grability of the differential graded algebra (ΩA, d) with the algebra A, it
is necessary to relate the dimension of the differential calculus ΩA with
that of A, and since we are dealing with algebras that are deformations
of coordinate algebras of affine varieties, the Gelfand-Kirillov dimension
introduced by Gelfand and Kirillov [21] seems to be the best suited.
Briefly, given an affine k-algebra A, the Gelfand-Kirillov dimension of
A, denoted by GKdim(A), is given by

GKdim(A) := lim sup
n→∞

log(dim V n)

log n
,

where V is a finite-dimensional subspace of A (1 ∈ V ) that generates A
as an algebra. A generating space containing 1 is called a frame.

This definition is independent of the choice of V . If A is not affine,
then its Gelfand-Kirillov dimension is defined to be the supremum of the
Gelfand-Kirillov dimensions of all affine subalgebras of A. An affine do-
main of Gelfand-Kirillov dimension zero is precisely a division ring that
is finite-dimensional over its center. In the case of an affine domain of
Gelfand-Kirillov dimension one over k, this is precisely a finite module
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over its center, and thus polynomial identity. In some sense, this dimen-
sion measures the deviation of the algebra A from finite dimensionality.
For more details, see the excellent treatment developed by Krause and
Lenagan [36].

After preliminaries above, we arrive to the key notion of this paper.

Definition 6 ([15, Definition 2.4]). An affine algebra A with integer
Gelfand-Kirillov dimension n is said to be differentially smooth if it ad-
mits an n-dimensional connected integrable differential calculus (ΩA, d).

Following [15, p. 413], “The idea behind the differential smoothness
of algebras is rooted in the observation that a classical smooth orientable
manifold, in addition to de Rham complex of differential forms, admits
also the complex of integral forms isomorphic to the de Rham complex
[40, Section 4.5]. The de Rham differential can be understood as a special
left connection, while the boundary operator in the complex of integral
forms is an example of a right connection”.

The differential smoothness of different families of algebras has been
characterized in several papers such as [12, 15, 17, 30, 47], and references
therein.

Example 1. (i) The polynomial algebra k[x1, . . . , xn] has Gelfand-
Kirillov dimension n and the usual exterior algebra is an n-
dimensional integrable calculus, whence k[x1, . . . , xn] is differen-
tially smooth.

(ii) Brzeziński [11] characterized the differential smoothness of skew
polynomial rings of the form k[t][x;σq,r, δp(t)], where σq,r(t) = qt+r,
with q, r ∈ k, q ̸= 0, and the σq,r−derivation δp(t) is defined as

δp(t)(f(t)) =
f(σq,r(t))− f(t)

σq,r(t)− t
p(t) (7)

for an element p(t) ∈ k[t]. δp(t)(f(t)) is a suitable limit when q = 1
and r = 0, that is, when σq,r is the identity map of k[t].

For the maps

νt(t) = t, νt(x) = qx+ p′(t)

and

νx(t) = σ−1
q,r (t), νx(x) = x,

(8)
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with p′(t) the classical t-derivative of p(t), Brzeziński [11, Lem-
ma 3.1] showed that all of them simultaneously extend to algebra
automorphisms νt and νx of k[t][x;σq,r, δp(t)] only in the following
three cases:

(a) q = 1, r = 0 with no restriction on p(t);

(b) q = 1, r ̸= 0 and p(t) = c, c ∈ k;

(c) q ̸= 1, p(t) = c
(
t+ r

q−1

)
, c ∈ k with no restriction on r.

In any of the cases (a)–(c) we have that νx ◦ νt = νt ◦ νx. If the
Ore extension k[t][x;σq,r, δp(t)] satisfies one of these three condi-
tions, Brzeziński proved that it is differentially smooth [11, Propo-
sition 3.3].

From Brzeziński’s result we get that the algebras

� The polynomial algebra k[x1, x2].

� The Weyl algebra A1(k) = k{x1, x2}/⟨x1x2 − x2x1 − 1⟩.

� The universal enveloping algebra of the Lie algebra

n2 = ⟨x1, x2 | [x2, x1] = x1⟩,

that is, U(n2) = k{x1, x2}/⟨x2x1 − x1x2 − x1⟩, and

� The quantum plane (Manin’s plane)

Oq(k) = k{x1, x2}/⟨x2x1 − qx1x2⟩,

where q ∈ k \ {0, 1}, and

� Jordan’s plane J (k) with the relation given by xt = tx+ t2,

are differentially smooth.

Remark 1. There are examples of algebras that are not differentially
smooth. Consider the commutative algebra A = C[x, y]/⟨xy⟩. A proof
by contradiction shows that for this algebra there are no one-dimensional
connected integrable calculi over A, so it cannot be differentially smooth
[15, Example 2.5].
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2. Differential smoothness of SPBW extensions

2.1. Extension of automorphisms and derivations

With the aim of setting up notation and render this paper self-contained,
next we present the details of extended derivations over SPBW exten-
sions on one (this is the case of the classical Ore extensions), two and n
generators (Propositions 4 and 6, respectively).

We start with the following well-known result.

Lemma 1 ([35, Section 2]). Let A = σ(R)⟨x⟩ be a SPBW extension over
R, that is, A = R[x;σ, δ]. For any n ∈ N, we have that

xnr =

n∑
k=0

∑
fk∈Cn−k,k

fk(r)x
n−k,

where Cn−k,k is the set of all possible compositions between n−k σ’s and
k δ’s. In addition, if σ ◦ δ = δ ◦ σ, we get that

xnr =

n∑
k=0

(
n

k

)
σn−k ◦ δk(r)xn−k.

The importance of extending endomorphisms and derivations of the
ring R (Proposition 1) to the extension A over R can be appreciated
in works such as [42, 49] for the study of ring-theoretical properties. In
particular, the following result appears without proof in [42, p. 514].

Proposition 4. Let A = σ(R)⟨x⟩ be a SPBW extension over R of auto-
morphism type. Consider the automorphism σ̃ : A→A given by σ̃(x) = x
and σ̃(r) = σ(r) for each r ∈ R. If σ ◦ δ = δ ◦σ, then the map δ̃ : A → A
with δ̃(f(x)) = δ̃(a0 + a1x+ · · ·+ anx

n) = δ(a0) + δ(a1)x+ · · ·+ δ(an)x
n

for all ai ∈ R, 0 ≤ i ≤ n is a σ̃-derivation of A.

Proof. Let p(x) =
n∑

i=0
rix

i ∈ A. Then

σ̃(p(x)) = σ̃

(
n∑

i=0

rix
i

)
=

n∑
i=0

σ̃(rix
i) =

n∑
i=0

σ̃(ri)x
i =

n∑
i=0

σ(ri)x
i.

It is clear that the bijectivity of σ̃ is inherited by σ.
Now, for p(x) = rxk, we have that

δ̃(p(x)) = δ̃(rxk) = σ̃(r)δ̃(xk) + xδ̃(r)xk = σ(r)δ̃(xk) + δ(r)xk.
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Let r(x) = rxi and s(x) = sxj for some i, j ∈ N. The idea is to
satisfy the relation given by

δ̃(r(x)s(x)) = σ̃(r(x))δ̃(s(x)) + δ̃(r(x))s(x).

With this aim, note that

δ̃(r(x)s(x)) = δ̃(rxisxj)

= δ̃

r

i∑
k=0

∑
fk∈Ci−k,k

fk(s)x
i−kxj


= δ̃

 i∑
k=0

∑
fk∈Ci−k,k

rfk(s)x
i−k+j


=

i∑
k=0

∑
fk∈Ci−k,k

δ̃
(
rfk(s)x

i−k+j
)

=

i∑
k=0

∑
fk∈Ci−k,k

(
σ(rfk(s))δ̃(x

i−k+j) + δ(rfk(s))x
i−k+j

)

=
i∑

k=0

∑
fk∈Ci−k,k

(
σ(r)σ(fk(s))δ̃(x

i−k+j) + (σ(r)δ(fk(s))

+ δ(r)fk(s))x
i−k+j

)
(9)

=
i∑

k=0

∑
fk∈Ci−k,k

(
σ(r)σ(fk(s))

(
xi−kδ̃(xj) + δ̃(xi−k)xj

)
+ (σ(r)δ(fk(s)) + δ(r)fk(s))x

i−k+j
)
. (10)

On the other hand,

σ̃(r(x))δ̃(s(x))+δ̃(r(x))s(x)

= σ̃(rxi)δ̃(sxj) + δ̃(rxi)sxj

= σ(r)xi
(
σ(s)δ̃(xj) + δ(s)xj

)
(11)

+
(
σ(r)δ̃(xi) + δ(r)xi

)
sxj

= σ(r)xiσ(s)δ̃(xj) + σ(r)xiδ(s)xj (12)

+ σ(r)δ̃(xi)sxj + δ(r)xisxj
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= σ(r)

 i∑
k=0

∑
fk∈Ci−k,k

fk(σ(s))x
i−k

 δ̃(xj) (13)

+ σ(r)

 i∑
k=0

∑
fk∈Ci−k,k

fk(δ(s))x
i−k

xj

+ σ(r)δ̃(xi)sxj (14)

+ δ(r)

 i∑
k=0

∑
fk∈Ci−k,k

fk(s)x
i−k

xj

=
i∑

k=0

∑
fk∈Ci−k,k

(
σ(r)fk(σ(s))x

i−kδ̃(xj) (15)

+ σ(r)fk(δ(s))x
i−k+j + δ(r)fk(s)x

i−k+j
)

(16)

+ σ(r)δ̃(xi)sxj . (17)

If we compare (10) and (17), we get that

i∑
k=0

∑
fk∈Ci−k,k

(
(σ(fk(s))− fk(σ(s)))x

i−kδ̃(xj)

+ (δ(fk(s))− fk(δ(s)))x
i−k+j + σ(fk(s))δ̃(x

i−k)xj
)

− δ̃(xi)sxj = 0.

Let δ̃(xi) =
n∑

l=0

alx
l, δ̃(xj) =

n∑
l=0

blx
l and δ̃(xi−k) =

n∑
l=0

clx
l. Then,

i∑
k=0

∑
fk∈Ci−k,k

(
(σ(fk(s))− fk(σ(s)))x

i−k
n∑

l=0

blx
l

+(δ(fk(s))− fk(δ(s)))x
i−k+j + σ(fk(s))

n∑
l=0

clx
lxj

)

−
n∑

l=0

alx
lsxj = 0.

i∑
k=0

∑
fk∈Ci−k,k

(σ(fk(s))− fk(σ(s)))

n∑
l=0

i−k∑
p=0

∑
hp∈Ci−k−p,p

hp(bl)x
i−k−p

xl
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+ (δ(fk(s))− fk(δ(s)))x
i−k+j + σ(fk(s))

n∑
l=0

clx
lxj

)

−
n∑

l=0

al

 l∑
k=0

∑
gk∈Cl−k,k

gk(s)x
l−k

xj = 0.

i∑
k=0

∑
fk∈Ci−k,k

(σ(fk(s))− fk(σ(s)))

n∑
l=0

i−k∑
p=0

∑
hp∈Ci−k−p,p

hp(bl)x
i−k−p+l

(18)

+ (δ(fk(s))− fk(δ(s)))x
i−k+j + σ(fk(s))

n∑
l=0

clx
l+j

)

−
n∑

l=0

l∑
k=0

∑
gk∈Cl−k,k

algk(s)x
l−k+j = 0.

When k = 0, we put attention on the monomial
∑

f0∈Ci,0

(δ(f0(s)) −

f0(δ(s)))x
i+j . This is the monomial of the highest degree and since it is

equal to zero, it follows that
∑

f0∈Ci,0

(δ(f0(s))− f0(δ(s))) = 0. Since the

power i is arbitrary, it can be seen that δ(σ(s)) = σ(δ(s)). In the same
way, the value of s is arbitrary, which means that δσ = σδ.

Now, expression (18) can be written as

i∑
k=0

∑
fk∈Ci−k,k

(
σ(fk(s))

n∑
l=0

clt
l+j

)
−

n∑
l=0

l∑
k=0

∑
gk∈Cl−k,k

algk(s)x
l−k+j = 0,

or equivalently,

n∑
l=0

 i∑
k=0

∑
fk∈Ci−k,k

σ(fk(s))clx
l −

l∑
k=0

∑
gk∈Cl−k,k

algk(s)x
l−k

 = 0.

Since this equality holds for all s ∈ R, any automorphism σ and every
σ-derivation δ of R, necessarily al = cl = 0 for all 0 ≤ l ≤ n. By changing
the values of i with j we obtain that bl = 0. Then δ̃(x) = 0. This means
that δ̃(f(x)) = δ̃(a0+a1x+· · ·+anx

n) = δ(a0)+δ(a1)x+· · ·+δ(an)x
n.



A. Rubiano, A. Reyes 241

Lemma 2. Let A = σ(R)⟨x1, x2⟩ be a SPBW extension over R such that
σi commutes with δi for i = 1, 2. Then for any m ∈ N we have that

xmi r =

m∑
k=0

(
m

k

)
σm−k
i ◦ δki (r)xm−k

i for i = 1, 2.

Proof. This result can be proven in a completely analogous way to the
Lemma 1; it is enough to apply induction on x1 and then on x2. It must
also be taken into account that σi commutes with δi for i = 1, 2.

Proposition 5. Let A = σ(R)⟨x1, x2⟩ be a SPBW extension over R
of automorphism type. Consider the endomorphisms σ̃i : A → A and
δ̃i : A → A defined as

σ̃i

(∑
rkx

α1,k

1 x
α2,k

2

)
=
∑

σi(rk)x
α1,k

1 x
α2,k

2 ,

δ̃i

(∑
rkx

α1,k

1 x
α2,k

2

)
=
∑

δi(rk)x
α1,k

1 x
α2,k

2

for i = 1, 2, and such that σi and δi commute, δi ◦ δj = δj ◦ δi, δi ◦ σj =
σj ◦ δi and δk(di,j) = δk(r

(i,j)
l ) = 0 for i, j, k, l = 1, 2. Then σ̃ is an

automorphism of A and δ̃ is a σ̃i-derivation of A.

Proof. Let f =

m∑
k=0

rkx
α1,k

1 x
α2,k

2 , where rk ∈ R and α1,k, α2,k ∈ N for

1 ≤ k ≤ m. Then

σ̃i(f) = σ̃i

(
m∑

k=0

rkx
α1,k

1 x
α2,k

2

)
=

m∑
k=0

σ̃i

(
rkx

α1,k

1 x
α2,k

2

)
=

m∑
k=0

σ̃i (rk)x
α1,k

1 x
α2,k

2 .

The bijectivity of σ̃i is inherited by σi for i = 1, 2.
Now, for p = rxα1

1 xα2
2 , we have that

δ̃i(p) = δ̃i(rx
α1
1 xα2

2 ) = σ̃i(r)δ̃i(x
α1
1 xα2

2 ) + δ̃i(r)x
α1
1 xα2

2

= σi(r)
(
δ̃i(x

α1
1 )xα2

2 + xα1
1 δ̃i(x

α2
2 )
)
+ δi(r)x

α1
1 xα2

2

= δi(r)x
α1
1 xα2

2 .

Consider p = rxα1
1 xα2

2 and s = sxβ1
1 xβ2

2 for some α1, α2, β1, β2 ∈ N.
Then,

δ̃i(ps) = δ̃(rxα1
1 xα2

2 sxβ1
1 xβ2

2 )
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= δ̃i

rxα1
1

α2∑
k2=0

(
α2

k2

)
σα2−k2
2 ◦ δk22 (s)xα2−k2

2 xβ1
1 xβ2

2


= δ̃i

 α2∑
k2=0

(
α2

k2

)
rxα1

1 σα2−k2
2 ◦ δk22 (s)xα2−k2

2 xβ1
1 xβ2

2


= δ̃i

 α2∑
k2=0

(
α2

k2

)
r

α1∑
k1=0

(
α1

k1

)
σα1−k1
1 ◦ δk11

(
σα2−k2
2 ◦ δk22 (s)

)

xα1−k1
1 xα2−k2

2 xβ1
1 xβ2

2

)

=

α1∑
k1=0

α2∑
k2=0

(
α1

k1

)(
α2

k2

)
δi

(
rσα1−k1

1 ◦ δk11
(
σα2−k2
2 ◦ δk22 (s)

))
xα1−k1
1 xα2−k2

2 xβ1
1 xβ2

2 . (19)

On the other hand,

σ̃i(p)δ̃i(s)+δ̃i(p)s = σ̃i(rx
α1
1 xα2

2 )δ̃i(sx
β1
1 xβ2

2 ) + δ̃i(rx
α1
1 xα2

2 )sxβ1
1 xβ2

2

= σi(r)x
α1
1 xα2

2 δi(s)x
β1
1 xβ2

2 + δi(r)x
α1
1 xα2

2 sxβ1
1 xβ2

2

=

α1∑
k1=0

α2∑
k2=0

(
α1

k1

)(
α2

k2

)
σi(r)σ

α1−k1
1 ◦ δk11

(
σα2−k2
2 ◦ δk22 (δi(s))

)
xα1−k1
1 xα2−k2

2 xβ1
1 xβ2

2

+

α1∑
k1=0

α2∑
k2=0

(
α1

k1

)(
α2

k2

)
δi(r)σ

α1−k1
1 ◦ δk11

(
σα2−k2
2 ◦ δk22 (s)

)
xα1−k1
1 xα2−k2

2 xβ1
1 xβ2

2 . (20)

We focus on the monomial xα2−k2
2 xβ1

1 . With the aim of comparing
the terms, necessarily the commutation rule of the ring must be ap-

plied: there, the elements d1,2, r
(1,2)
k , 0 ≤ k ≤ 2, appear. As expected,

these must be eliminated except r
(1,2)
0 . For this reason, we assume that

δk(di,j) = δk(r
(i,j)
l ) = 0 for i, j, k, l = 1, 2. If we compare (19) with (20),

then we get that

σi(r)δi

(
σα1−k1
1 ◦ δk1

1

(
σα2−k2
2 ◦ δk2

2 (s)
))

+ δi(r)σ
α1−k1
1 ◦ δk1

1

(
σα2−k2
2 ◦ δk2

2 (s)
)

= σi(r)σ
α1−k1
1 ◦ δk1

1

(
σα2−k2
2 ◦ δk2

2 (δi(s))
)
+ δi(r)σ

α1−k1
1 ◦ δk1

1

(
σα2−k2
2 ◦ δk2

2 (s)
)
,
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and

σi(r)
(
δi

(
σα1−k1
1 ◦ δk1

1

(
σα2−k2
2 ◦ δk2

2 (s)
))

−σα1−k1
1 ◦ δk1

1

(
σα2−k2
2 ◦ δk2

2 (δi(s))
))

=0.

Since δi commute with σj and δj for j = 1, 2, this last equality holds,

whence δ̃i is a σ̃i-derivation.

Lemma 3. Let A = σ(R)⟨x1, . . . , xn⟩ be a SPBW extension over R such
that σi commutes with δi, 1 ≤ i ≤ n for all i. Then, for any m ∈ N we
have that

xmi r =

m∑
k=0

(
m

k

)
σm−k
i ◦ δki (r)xm−k

i for all 1 ≤ i ≤ n.

Proof. The proof of this lemma, similar to the previous Lemmas 1 and 2,
is done by induction on each xi, 1 ≤ i ≤ n.

Proposition 6. Let A = σ(R)⟨x1, . . . , xn⟩ be a SPBW extension over
R of automorphism type. Consider the endomorphisms σ̃i : A → A and
δ̃i : A → A defined as

σ̃i

(∑
rkx

α1,k

1 · · ·xαn,k
n

)
=
∑

σi(rk)x
α1,k

1 · · ·xαn,k
n ,

δ̃i

(∑
rkx

α1,k

1 · · ·xαn,k
n

)
=
∑

δi(rk)x
α1,k

1 · · ·xαn,k
n

for 1 ≤ i ≤ n, and such that σi and δi commute, δi ◦ δj = δj ◦ δi,

δi ◦ σj = σj ◦ δi and δk(di,j) = δk(r
(i,j)
l ) = 0 for 1 ≤ i, j, k, l ≤ n. Then σ̃

is an automorphism of A and δ̃ is a σ̃i-derivation of A.

Proof. Let f=
m∑
k=0

ckx
α1,k

1 · · ·xαn,k
n , where α1,k, . . . , αn,k ∈ N for 1≤k≤m.

Then

σ̃i(a) = σ̃i

(
m∑
k=0

ckx
α1,k

1 · · ·xαn,k
n

)

=

m∑
k=0

σ̃i
(
ckx

α1,k

1 · · ·xαn,k
n

)
=

m∑
k=0

σ̃i (ck)x
α1,k

1 · · ·xαn,k
n .

With the above, the bijectivity of σ̃i is inherited by σi for 1 ≤ i ≤ n.
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For p = rxα1
1 · · ·xαn

n , we have that

δ̃i(p) = δ̃i(rx
α1
1 · · ·xαn

n )

= σ̃i(r)δ̃i(x
α1
1 · · ·xαn

n ) + δ̃i(r)x
α1
1 · · ·xαn

n

= σi(r)
(
δ̃i(x

α1
1 )xα2

2 · · ·xαn
n + · · ·+ xα1

1 · · · δ̃i(xαn
n )
)
+ δi(r)x

α1
1 · · ·xαn

n

= δi(r)x
α1
1 · · ·xαn

n .

Consider p = rxα1
1 · · ·xαn

n and s = sxβ1
1 · · ·xβn

n for some α1, . . . , αn ∈ N
and β1, . . . , βn ∈ N. Then

δ̃i(ps) = δ̃(rxα1
1 · · ·xαn

n sxβ1

1 · · ·xβn
n )

= δ̃i

 α1∑
k1=0

· · ·
αn∑

kn=0

 n∏
j=1

(
lj
kj

) rσα1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δkn
n (s) · · ·

)
xα1−k1
1 · · · x

ln−1−kn−1

n−1 xαn−kn
n xβ1

1 · · ·xβn
n

)

=

α1∑
k1=0

· · ·
αn∑

kn=0

 n∏
j=1

(
lj
kj

) δi

(
rσα1−k1

1 ◦ δα1−k1
1

(
· · ·σαn−kn

n ◦ δkn
n (s) · · ·

))
xα1−k1
1 · · ·xln−1−kn−1

n−1 xαn−kn
n xβ1

1 · · ·xβn
n .

On the other hand,

σ̃i(p)δ̃i(s) + δ̃i(p)s

= σ̃i(rx
α1
1 · · ·xαn

n )δ̃i(sx
β1

1 · · ·xβn
n ) + δ̃i(rx

α1
1 · · ·xαn

n )sxβ1

1 · · ·xβn
n

= σi(r)x
α1
1 · · ·xαn

n δi(s)x
β1

1 · · ·xβn
n + δi(r)x

α1
1 · · ·xαn

n sxβ1

1 · · ·xβn
n

=

α1∑
k1=0

· · ·
αn∑

kn=0

 n∏
j=1

(
lj
kj

)σi(r)σ
α1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δkn
n (δi(s)) · · ·

)
xα1−k1
1 · · ·xln−1−kn−1

n−1 xαn−kn
n xβ1

1 · · ·xβn
n

+

α1∑
k1=0

· · ·
αn∑

kn=0

 n∏
j=1

(
lj
kj

) δi(r)σ
α1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δkn
n (s) · · ·

)
xα1−k1
1 · · ·xln−1−kn−1

n−1 xαn−kn
n xβ1

1 · · ·xβn
n .

For the same reason as in Proposition 5, when the elements di,j , r
(i,j)
k ,

1 ≤ i < j ≤ n, 0 ≤ k ≤ n, appear, these must cancel out when the terms

are equalized, except r
(i,j)
0 , 1 ≤ i < j ≤ n. For this reason, we assume
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that δk(di,j) = δk(r
(i,j)
l ) = 0 for 0 ≤ i, j, k, l ≤ n. In this way,

σi(r)δi

(
σα1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δknn (s) · · ·
))

+ δi(r)σ
α1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δknn (s) · · ·
)

= σi(r)σ
α1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δknn (δi(s)) · · ·
)

+ δi(r)σ
α1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δknn (s) · · ·
)

= σi(r)
(
δi

(
σα1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δknn (s) · · ·
))

− σα1−k1
1 ◦ δα1−k1

1

(
· · ·σαn−kn

n ◦ δknn (δi(s)) · · ·
))

= 0.

By using that δi commute with σj and δj , for 1 ≤ j ≤ n, the previous

equation holds. Therefore, δ̃i is a σ̃i-derivation.

Remark 2. The commutativity of the maps σ’s and δ’s, that is, of the
system of endomorphisms Σ and Σ-derivations ∆ of R as in Proposi-
tion 6, was considered by Lezama et al. [37] to characterize prime ideals
of SPBW extensions.

2.2. Differential smoothness

Since we consider SPBW extensions over associative and unital rings
R, we need some natural conditions to compute the Gelfand-Kirillov di-
mension of a SPBW extension A over R. Having in mind that Lezama
and Venegas [39] generalized the classical notion of Gelfand-Kirillov di-
mension [21] considered by Brzeziński in his definition of differential
smoothness (Section 1.2), throughout this section we follow this more
general setting: we assume that R is an S-algebra (S a commutative
domain) with a generator frame V and the rank of R is understood as
rank(R) = dimQ(Q ⊗ R) < ∞ where Q is the field of fractions of S
(see [39, Theorem 2.1] for more details).

The following theorem is the most important result of the paper.

Theorem 1. Let A = σ(R)⟨x1, . . . , xn⟩ be a bijective SPBW extension
such that σi and δi are S-linear, σi(V ) ⊆ V for all 1 ≤ i ≤ n, and

di,j = 1, r
(i,j)
k = 0 for 1 ≤ k ≤ n, 1 ≤ i, j,≤ n (Definition 1(iv)).

Consider σ̃i and δ̃i as in Proposition 6 for 1 ≤ i ≤ n. If σi ◦ σj = σj ◦ σi
for all 1 ≤ i < j ≤ n, then A is differentially smooth.
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Proof. From [39, Theorem 2.1], we get that GKdim(σ(R)⟨x1, . . . , xn⟩) =
n. Hence, we proceed to construct an n-dimensional integrable calculus.

Consider Ω1(σ(R)⟨x1, . . . , xn⟩) a free right σ(R)⟨x1, . . . , xn⟩-module
of rank n with generators dx1, . . . , dxn. Define a left σ(R)⟨x1, . . . , xn⟩-
module structure by

fdxi = dxiσ̃i(f) for all 1 ≤ i ≤ n, f ∈ σ(R)⟨x1, . . . , xn⟩. (21)

Notice that the relations in Ω1(σ(R)⟨x1, . . . , xn⟩) are given by

xidxj = dxjxi for all 1 ≤ i < j ≤ n. (22)

We want to extend the assignments xi 7→ dxi and 1 ≤ i ≤ n to a map

d : σ(R)⟨x1, . . . , xn⟩ → Ω1(σ(R)⟨x1, . . . , xn⟩)

satisfying the Leibniz’s rule. As expected, this is possible if we guarantee
its compatibility with the non-trivial relations (1), i.e. if

dxjxi + xjdxi = di,jdxixj + di,jxidxj +
n∑

k=1

r
(i,j)
k dxk for i < j.

Define S-linear maps

∂xi : σ(R)⟨x1, . . . , xn⟩ → σ(R)⟨x1, . . . , xn⟩

such that

d(f) =

n∑
i=1

dxi∂xi(f) for all f ∈ σ(R)⟨x1, . . . , xn⟩.

Since the elements dxi (1 ≤ i ≤ n) are free generators of the right
σ(R)⟨x1, . . . , xn⟩-module Ω1(σ(R)⟨x1, . . . , xn⟩), these maps are well-de-
fined. In this way, d(f) = 0 if and only if ∂xi(f) = 0 for 1 ≤ i ≤ n. Using
relations (21) and definitions of the maps σ̃i for 1 ≤ i ≤ n, we find that

∂xi(x
α1
1 · · ·xαn

n ) = lix
α1
1 · · ·xli−1

i x
li+1

i+1 · · ·x
αn
n .

Then d(f) = 0 if and only if f is a scalar multiple of the identity.
This shows that (Ω(σ(R)⟨x1, . . . , xn⟩), d) is connected, where

Ω(σ(R)⟨x1, . . . , xn⟩) =
n⊕

i=0

Ωi (σ(R)⟨x1, . . . , xn⟩) .
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The universal extension of d to higher forms compatible with (22)
gives the following rules for Ωl(σ(R)⟨x1, . . . , xn⟩) for 2 ≤ l ≤ n− 1,

l∧
k=1

dxq(k) = (−1)♯
l∧

k=1

dxp(k), (23)

where q : {1, . . . , l} → {1, . . . , n} is an injective map, p : {1, . . . , l} →
Im(q) is an increasing injective map and ♯ is the number of 2-permutation
needed to transform q into p.

By assumption the automorphisms σ̃i’s commute with each other,
which implies that there are no additional relations to the previous ones.
Then

Ωn−1(σ(R)⟨x1, . . . , xn⟩)= [dx1 ∧ dx2 ∧· · ·∧ dxn−1 ⊕ dx1 ∧ dx3 ∧· · ·∧ dxn

⊕ · · · ⊕ dx2 ∧ · · · ∧ dxn]σ(R)⟨x1, . . . , xn⟩.

Since

Ωn(σ(R)⟨x1, . . . , xn⟩) = ωσ(R)⟨x1, . . . , xn⟩ ∼= σ(R)⟨x1, . . . , xn⟩

as a right and left σ(R)⟨x1, . . . , xn⟩-module, with ω = dx1 ∧ · · · ∧ dxn,
where σ̃ω = σ̃1 ◦ · · · ◦ σ̃n, it follows that ω is a volume form of the SPBW
extension σ(R)⟨x1, . . . , xn⟩. From Proposition 3(2), we get that ω is an
integral form by setting

ωj
i =

j∧
k=1

dxpi,j(k) for 1 ≤ i ≤
(
n

j

)
, and

ω̄n−j
i = (−1)♯i

n∧
k=j+1

dxp̄i,j(k) for 1 ≤ i ≤
(
n

j

)
,

where pi,j : {1, . . . , j} → {1, . . . , n} is an increasing injective map, p̄i,j :
{j+1, . . . , n} → (Im(pi,j))

c is also an increasing injective map and ♯i,j is
the number of 2-permutation needed to transform {p̄i,j(j+1), . . . , p̄i,j(n),
pi,j(1), . . . , pi,j(j)} into {1, . . . , n}.

Let ω′ ∈ Ωj(σ(R)⟨x1, . . . , xn⟩). Then:

ω′ =

(nj)∑
i=1

j∧
k=1

dxpi,j(k)ai, with ai ∈ R.
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This implies that we have the equalities given by

(nj)∑
i=1

ωj
i πω(ω̄

n−j
i ∧ ω′)=

(nj)∑
i=1

j∧
k=1

dxpi,j(k)πω

ai(−1)♯i,j
n∧

k=j+1

dxp̄i,j(k) ∧
j∧

k=1

dxpi,j(k)


=

(nj)∑
i=1

j∧
k=1

dxpi,j(k)ai

= ω′,

and finally, by Proposition 3(2), we conclude that σ(R)⟨x1, . . . , xn⟩ is
differentially smooth.

Example 2. Consider the skew polynomial ring R[x;σ, δ] studied by
Nasr-Isfahani and Moussavi [42]. As we saw in the Introduction, σ is
an automorphism of R, δ is a σ-derivation such that αδ = δα, and the
extended automorphism σ and the σ-derivation δ on R[x;σ, δ] are given
by

σ(f(x)) = σ(r0) + σ(r1)x+ · · ·+ σ(rn)x
n

and

δ(f(x)) = δ(r0) + δ(r1)x+ · · ·+ δ(rn)x
n,

respectively. As it is clear, these assumptions satisfy those corresponding
in Proposition 6, and hence Theorem 1 shows that R[x;σ, δ] is differen-
tially smooth when GKdim(R) = 0.

By using a similar reasoning, and under the natural assumptions, ite-
rated Ore extensions R[x1;σ1, δ1][x2;σ2, δ2] . . . R[x1;σn, δn] are also dif-
ferentially smooth.

Example 3. Artamonov et al. [2] studied extended modules, Vaser-

stein’s, Quillen’s patching, Horrock’s, and Quillen-Suslin’s theorems for

a special class of Ore extensions. They assumed that for a ring R, A

denotes the Ore extension A := R[x1, . . . , xn;σ] for which σ is an auto-

morphism of R, xixj = xjxi and xir = σi(r)xi for every 1 ≤ i, k ≤ n.

As it is clear, this kind of Ore extensions satisfies the assumptions in

Theorem 1.

Remark 3. Related to Ore extensions, and under some mild and geo-

metrically natural assumptions, Brzeziński and Lomp proved that if R

and S are differentially smooth algebras with respect to calculi which are
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finitely generated projective as right modules, then the tensor product

algebra R⊗ S is differentially smooth [14, Corollary 3.2].

They also proved that if R is an algebra with an integrable differen-

tial calculus (ΩR, d) such that ΩR is a finitely generated right R-module,

for any automorphism σ of R that extends to a degree-preserving auto-

morphism of ΩR, which commutes with d, there exists an integrable

differential calculus (ΩA, d) on the skew polynomial ring R[x;σ] and the

Laurent skew polynomial ring R[x±1;σ]. If R is differentially smooth

with respect to (ΩR, d) and GKdim(A) = GKdim(R) + 1, then A is also

differentially smooth [14, Theorem 4.1]. The following examples illus-

trates this situation.

For any non-zero q ∈ k∗, let Aq be the algebra generated by the

indeterminates x, y, z and relations xy = yx, xz = qzy, yz = zx, and

let Bq be the algebra generated by x, y and invertible z subject to the

same relations. Since Aq = k[x, y][z;σ] and Bq = k[x, y][z±1;σ] with

σ(x) = y and σ(y) = qx, then Aq and Bq are differentially smooth

[14, Example 4.6]. Let us see the details.

Note that the polynomial algebra k[x, y] is differentially smooth with

the usual commutative differential calculus Ω(k[x, y]), i.e.,

xdx = dxx, xdy = dyx, ydx = dxy,

ydy = dyy, dxdy = − dydx, (dx)2 = (dy)2 = 0.

The automorphism σ extends to an automorphism of Ω(k[x, y]) by

requesting it commute with d, that is, σ(dx) = dy and σ(dy) = qdx.

Note that Ω(k[x, y]) is finitely generated as a right k[x, y]-module and

GKdim(Aq) = GKdim(Bq) = 3 = GKdim(k[x, y]) + 1,

whence Aq and Bq are differentially smooth.

Using a similar reasoning [14, Corollary 4.9], it can be seen that

the coordinate ring of the so called quantum affine n-space, that is, the

algebra generated by the indeterminates x1, . . . , xn subject to the rela-

tions xjxi = qijxixj for all i < j with qij ∈ k∗, is differentially smooth

(c.f. [30, Corollary 6 and Theorem 9]).

The results appearing in Remark 3 motivate us to formulate the fol-

lowing question:

Question. Let A be a SPBW extension over a differential smooth al-
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gebra R. Under which conditions does the differential smooth property

pass from R to A?
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[9] Brzeziński, T.: Divergences on projective modules and non-commutative integ-

rals. Int. J. Geom. Methods Mod. Phys. 8(4), 885–896 (2011). https://doi.org/10.

1142/S0219887811005440
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