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Abstract. It is shown that the free product of semigroups
defined by (finite) automata over a finite alphabet is defined by
(finite) automata over the same alphabet.

1. Introduction

Automata, especially finite, over finite alphabets give efficient way to
define semigroups and inverse semigroups. Defined in this way they na-
turally act as endomorphisms or partial automorphisms of regular rooted
trees respectively [5,7–9]. One of the natural questions is to understand
which semigroup theoretical operations preserve the property to be de-
fined by automata. Semigroups defined by automata are rich of free sub-
semigroups [11]. They are convenient to generate monogenic free inverse
semigroups [4, 6, 9].

More sophisticated approach to define semigroups by automata is to
generate a semigroups using all states of a given automaton. Semigroups
defined in this way are referred as automaton semigroups. In [1, 2] the
authors show that the class of automaton semigroups is very close to
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be closed under the free product. However, the complete answer is still
under investigation.

The main our result is Theorem 2. We show that for arbitrary semi-
group defined by automata over a finite alphabet their free product is
defined by automata over the same alphabet. Moreover, if the automata
defining initial semigroups are finite then their free product is defined by
finite automata as well. In other words, the finite state wreath power [10]
of the symmetric transformation semigroup is closed under free products.

The paper is organized as follows. In Section 2 we recall basic defini-
tions and notation involving transformations defined by automata over
finite alphabets. For more detailed introduction to the topic one can
refer to [3,5,9]. In Section 1 we prove an auxiliary statement that allows
us to reduce the size of the alphabet. Section 4 contains the proof of the
main result of the paper.

2. Preliminaries

Let X be a finite alphabet with |X| > 1. The set X∗ =
∞
∪
i=0

Xi, consisting of

all finite words over X, including the empty word Λ, forms a free monoid
with basis X under concatenation. The length of a word w = x1 . . . xn ∈
X∗, where x1, . . . , xn ∈ X, is n and is denoted by |w|; i.e., w ∈ X|w|.

The right Cayley graph of the monoid X∗ with respect to the basis
X defines a structure of a regular rooted tree T (X) on X∗ as its vertex
set. Two words u, v ∈ X∗ are joined by an edge if and only if u = vx or
v = ux for some x ∈ X. The empty word Λ serves as the root of T (X).

For every n ≥ 0, the set Xn forms the n-th level of this tree, and the

union X(n) =
n
∪
i=0

Xi represents the vertex set of a regular rooted subtree

of depth n.

An automaton over alphabet X is a triple A = (Q,λ, µ) such that Q
is a non-empty set, the set of states, λ : Q × X → Q is the transition
function, µ : Q × X → Q is the output function. The automaton A is
called finite if the set Q of its states is finite.

The transition function λ and the output function µ can be recursively
extended to the set Q× X∗ using the equalities

λ(q,Λ) = q, λ(q, xw) = λ(λ(q, x), w),

µ(q,Λ) = Λ, µ(q, xw) = µ(q, x)µ(λ(q, x), w),
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where q ∈ Q, x ∈ X, w ∈ X∗. Then at each state q ∈ Q the automaton
A defines a transformation µq on the set X∗ by the following rule

µq(w) = µ(q, w), w ∈ X∗.

We say that a transformation f on X∗ is defined by an automaton
over X if f = µq for some automaton A = (Q,λ, µ) and its state q. All
transformations defined by automata over X form a semigroup SA(X)
under superposition. The semigroup SA(X) is the semigroup of endo-
morphisms of the rooted tree T (X). All transformations on X∗ defined
by finite automata form a countable subsemigroup FSA(X) of SA(X).

For arbitrary transformation f ∈ SA(X) the minimal automaton
Af = (Qf , λf , µf ) such that Af defines f is constructed as follows. Since
f is a length preserving and prefix preserving transformation on X∗ for
each w ∈ X∗ the transformation fw ∈ SA(X) such that

f(wu) = f(w)fw(u), u ∈ X∗,

is well defined. The transformation fw is called the state of f at w. In
particular, fΛ = f . Then the set of states Qf of Af is the set {fw :
w ∈ X∗}. The set Qf is finite iff f ∈ FSA(X). The transition and the
output functions λf , µf are defined by the equalities

λf (fw, x) = fwx, µf (fw, x) = fw(x), w ∈ X∗, x ∈ X.

Then f is defined by Af at its state fΛ.

3. Semigroups defined by automata

We say that a semigroup S is defined by (finite) automata over alphabet
X if S is isomorphic to a subsemigroup of SA(X) (of FSA(X)).

Assume that S is a subsemigroup of SA(X). For each transformation
f ∈ S consider the minimal automaton Af = (Qf , λf , µf ) over X such
that f = µf q for some state q ∈ Qf . For each state q ∈ Qf define a
transformation tq : X → X as follows

tq(x) = µf (q, x), x ∈ X.

The set of transformations {tq | q ∈ Qf , f ∈ S} generates a subsemigroup
in the symmetric transformation semigroup on X. We call this semigroup
the base transformation semigroup associated with S and denote it by
TS . The following theorem allows for to reduce the size of the alphabet X.
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Theorem 1. Let X, Y be finite alphabets, S be a semigroup defined by (fi-
nite) automata over alphabet X and TS be the base semigroup associated
with S. If there exists m ≥ 1 such that TS is isomorphic as a trans-
formation semigroup on X to a subsemigroup of the mth wreath power
of the symmetric transformation semigroup T (Y) acting on Ym then the
semigroup S is defined by (finite) automata over alphabet Y.

Proof. Denote by φ an isomorphic embedding of TS into the mth wreath
power ≀mi=1T (Y)

(i), T (Y)(i) ≃ T (Y), 1 ≤ i ≤ m, and by ψ an injection
from X to Ym such that

ψ(xt) = (ψ(x))φ(t), x ∈ X, t ∈ TS .

Let Y1 be the image of X under ψ. Then (TS ,X) is isomorphic as a
transformation semigroup to (φ(TS),Y1). Recall that the wreath product
≀mi=1T (Y)

(i) acts on Y(m). This action is length preserving and prefix
preserving. Hence, φ(TS) acts on the set Y2 that consists of all prefixes
of all words from Y1.

Let f ∈ S and Af = (Q,λ, µ) be the minimal automaton over X
such that f = µqf for some state qf ∈ Q. We define the automaton
B = (Q1, λ1, µ1) over Y. The set of sates Q1 of B is the Cartesian product
Q× Y(m−1). The transition function λ1 is defined by the equality

λ1((q, w), y) =


(q, wy), if |w| < m− 1 and wy ∈ Y2,

(λ(q, ψ−1(wy)),Λ), if |w| = m− 1 and wy ∈ Y1,

(q, w), otherwise.

Since ψ is injective the definition is correct. The output function µ1 is
defined by the equality

µ1((q, w), y) =

{
y1, if wy ∈ Y2 and (wy)φ(µq) = (w)φ(µq)y1,

y, otherwise.

Since φ(µq), q ∈ Q, is length preserving and prefix preserving on Y2 the
definition is correct.

To complete the proof we show that the mapping µqf 7→ µ1(qf ,Λ),
f ∈ S, defines an isomorphism.

Consider the monoid monomorphism Ψ : X∗ → Y∗ that extends in-
jection ψ. Then the image Ψ(X∗) is a free monoid with basis Y1. Hence,
Ψ(X∗) = Y∗

1.
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For arbitrary q ∈ Q, x ∈ X and w ∈ X∗ we have the equalities

Ψ(xw)µ1(q,Λ) = (ψ(x)Ψ(w))µ1(q,Λ) =

(ψ(x))µ1(q,Λ)Ψ(w)µ1(λ(q,x),Λ) = ψ(xµq)Ψ(w)µ1(λ(q,x),Λ) .

Since ψ(x) ∈ Y1 the last equality follows from the definition of the output
function µ1. Therefore, transformation semigroup (S,X∗) is isomorphic
to a transformation semigroup on Y∗

1.

Consider an arbitrary w ∈ Y∗. Then there exist unique w1 ∈ Y∗
1,

w2 ∈ Y2 \ Y1, w3 ∈ Y∗ such that w = w1w2w3 and the word w2 is the
longest prefix of w2w3 from Y2. Let q ∈ Q. Then

wµ1(q,Λ) = w
µ1(q,Λ)

1 w4w3

for some w4 ∈ Y2 \ Y1 such that for arbitrary w1w2u ∈ Y∗
1, u ∈ Y∗,

the word w
µ1(q,Λ)

1 w4 is a prefix of (w1w2u)
µ1(q,Λ) . Hence, the action of

µ1(q,Λ) on Y∗ is completely defined by its action on Y∗
1. The proof is

complete.

4. Actions of free products

Theorem 2. Let X be a finite alphabets, |X| > 1, S1, S2 be semigroups
defined by (finite) automata over X. Then the free product S1 ∗ S2 is
defined by (finite) automata over X.

Proof. Let X = {x0, x1, . . . , xn}, n ≥ 1. Consider a disjoint alphabet
Y = {y0, y1, . . . , yn} of the same size n + 1. Assume that S1 and S2
are defined by (finite) automata over X and Y correspondingly. For the
alphabet

Z = X ∪ Y ∪ ({0, . . . , n} × {0, . . . , n})

of size n2+4n+3 we construct a subsemigroup S of SA(Z) (of FSA(Z))
isomorphic to the free product S1 ∗ S2. Then we apply Theorem 1 to
reduce the size of the alphabet and complete the proof.

For each s ∈ Si, i = 1, 2, consider the minimal automaton As =
(Q,λ, µ) over X or Y correspondingly such that s is defined by As at
some state qs ∈ Q. Define an automaton Bs = (Q1, λ1, µ1) over Z. The
set of statesQ1 is obtained fromQ by adding 4 new states qsI , qsT , qs0, qs1.
Without loss of generality we assume that i = 1, i.e. As is an automaton
over X. Then the functions λ1, µ1 are extentions of the functions λ, µ from
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Q× X to Q1 × Z defined for q ∈ Q1, z ∈ Z by the following equations:

λ1(q, z) =



qs, q = qsI , z = x0,

qsI , q = qsI , z ∈ X, z ̸= x0 or q = qs0, qs1, z ∈ Y,

qs0, q ∈ Q, z = (k, l), 0 ≤ k, l ≤ n, and µ(q, xk) ̸= xl,

qs1, q ∈ Q, z = (k, l), 0 ≤ k, l ≤ n, and µ(q, xk) = xl,

qsT , otherwise,

µ1(q, z) =

{
y0, q = qs1, z = y1,

z, otherwise.

In case i = 2, i.e. As is an automaton over Y in this definition letters
from X are replaced by letters from Y and vice versa. Denote by ŝ the
transformation of Z∗ defined by Bs at qsI .

Let S be the semigroup generated by the set {ŝ : s ∈ S1 ∪ S2}. We
will show that S splits into the free product S1 ∗ S2.

Each non-empty word w over Z can be uniquely decomposed as a
product

w = w1w2 . . . wk

such that each word w1, w2, . . . , wk is a word over one of the alphabets
X, Y or {0, . . . , n} × {0, . . . , n}. Then for arbitrary s ∈ S1 the image wŝ

has the form

wŝ = ws1
1 w

s2
2 . . . wsk

k ,

where for each i, 1 ≤ i ≤ k, the transformation si is the identity except
the following two cases. Let w0 = Λ.

1. If λ1(qsI , w0w1 . . . wi−1) = qs and wi = x0u for some u ∈ X∗ then
wsi
i = x0u

s.

2. If i > 2, λ1(qsI , w0w1 . . . wi−3) = qsI , wi−2 = x0u for some u ∈ X∗,
wi−1 = (k, l) for some k, l, 0 ≤ k, l ≤ n, such that µ(λ(qs, u), xk) =
xl, wi = y1v for some v ∈ Y∗, then wsi

i = y0v.

It immediately implies that the mapping s 7→ ŝ, s ∈ S1, is an isomor-
phism. Similarly, the mapping s 7→ ŝ, s ∈ S2, is an isomorphism as
well.

Now consider two distinct words

W1 = s11 . . . s1m1 ,W2 = s21 . . . s2m2 , 1 ≤ m1 ≤ m2,
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such that sij , sij+1, 1 ≤ j < mi, i = 1, 2, belong to different semigroups
S1, S2. We need to show that W1 and W2 define distinct transformations
on Z∗. It is sufficient to find a word over Z with distinct images under
W1 and W2.

Without loss of generality we may assume that s21 ∈ S1. For each k,
1 ≤ k ≤ m2, let

zk = (k, lk),

where µs2k(qs2k , tk) = tlk and (tk, tlk) equals (xk, xlk) or (yk, ylk) depen-
ding on s2k ∈ S2 or s2k ∈ S1. Define a word

u = x0z1y1z2x1 . . . zm2t1

of length 2m2 + 1. Consider 3 cases.

Case 1. The length of the wordW1 is less than the length of the word
W2, i.e. m1 < m2. Then W2 transforms the word u to the word with the
last symbol x0 or y0 correspondingly. On the other hand W1 preserves
the last symbol of the word u.

Case 2. Words W1 and W2 have the same length, i.e. m1 = m2,
and the first letters of W1 and W2 belong to different semigroups S1, S2.
Under our assumptions it means that s11 ∈ S2. Then W1 preserves the
last symbol x1 of the word u as above.

Case 3. Words W1 and W2 have the same length m2 and s11 ∈ S1.
Let j be the smallest index such that s1j ̸= s2j . Then 1 ≤ j ≤ m2 and
both elements s1j , s2j belong to the same semigroup S1, S2. Without loss
of generality we suppose that they belong to S1. Choose a word v ∈ X∗ of
the shortest length such that the images of v under s1j , s2j are distinct.
Then the last letters of these images are distinct. Let the last letters
of v and it image under s2j be xj1 , xj2 , 0 ≤ j1, j2 ≤ n, correspondingly.
Consider z = (j1, j2). Then

λ1(qs1 , vz) = qs10, λ1(qs2 , vz) = qs21.

Define a word

u1 = x0z1y1z2x1 . . . zj−1xj−1vzy1zj+1 . . . zm2t1

of length 2m2 + |v|+ 1. Then the last symbol of u1 under the action of
W2 is x0 or y0 but W1 preserves the last symbol of u1.

Hence, the semigroup S is isomorphic to the free product S1 ∗ S2.
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The base semigroup TS associated with S is a subsemigroup of the
direct sum of T (X), T (Y) and the trivial semigroups. Hence TS is isomor-
phic as a transformation semigroup to the third wreath power of T (X).
Applying Theorem 1 we complete the proof.
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