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Abstract. Let G be a finite undirected connected graph.
The minimum number of edges that must be removed to make the
graph acyclic is called the circuit rank of G. If such edges are fixed,
the graph that remains is called a spanning tree of G. In this paper
we study scanning trees of the Hasse diagrams of connected posets
with positive Tits quadratic form.

Introduction

This paper is related to the posets with positive Tits quadratic forms,
which are analogues of the Dynkin diagrams.

The Tits quadratic form was first introduced by P. Gabriel [18] for
finite quivers (directed graphs). Namely, if Q = (Q0, Q1) is a quiver with
the set of vertices Q0 and the set of arrows Q1, then its Tits quadratic
form qQ : Zn → Z, n = |Q0|, is given by the equality

qQ(z) =
∑
i∈Q0

z2i −
∑

{i→j}∈Q1

zizj .

The Tits quadratic form of posets, the closest structure to quivers, was
first considered by Yu. A. Drozd in [17]. By definition, the Tits quadratic
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form qS : Z1+n → Z of a poset S ̸∋ 0 of order n has the form

qS(z) = z20 +
∑
i∈S

z2i +
∑

i<j,i,j∈S
zizj − z0

∑
i∈S

zi.

The main results of the mentioned papers inspired the study of posets
with positive Tits quadratic form as analogues of the Dynkin diagrams
(in more details, see [12, Introduction]). Such posets, which are simply
called positive, were studied by the authors from different points of view
in many papers (see, e.g. [4–7, 10, 11, 14, 15]).

In particular, in [5] the authors described all positive posets, using
analogous result on posets of width 2 obtained a little earlier in [4] (see
also [12, Theorem 1] and [14, Section 4] for serial and non-serial positive
posets, respectively). In the same paper, the authors also described all
minimal posets with non-positive Tits form [5], calling them P -critical
(see also [13] and [15]).

Note that the paper [5] has been often cited, but is today virtually
inaccessible. The main ideas and many results of this paper are published
(in a translation from Russian) in [3, Sections 1–3].

The main method in the above-mentioned papers of the authors is
a method based on the notion of (min, max)-equivalence (later called
minimax equivalence) of posets, which was introduced by the first author
in [2]. This equivalence preserves Z-equivalence of the corresponding
Tits quadratic forms. The minimax equivalence method has been used
to solving many other problems (see, e.g. [8, 9, 16, 19]).

In this paper we study the Hasse diagrams of connected positive
posets with respect to the circuit rank, scanning trees, etc.

1. The main results

Through the paper, by a graph we mean any finite undirected graph
and by a poset any finite poset without an element denoted as 0. By a
subgraph of a graph G = (G0, G1), with the set of vertices G0 and the
set of edges G1, we mean any graph G′ = (G′

0, G
′
1) with G′

0 ⊆ G0 and
G′

1 ⊆ G1. By a subposet S′ of a poset S we always mean a full one (i.e.
with the order relation induced by a given order relation on S).

A poset S = (A,≤) is usually represented by a quiver Q = (Q0, Q1),
whereQ0 = A andQ1 consists of the arrows (x, y) : x → y with x < y and
y to be neighboring (i.e. there is no z satisfying x < z < y). We denote

the quiver Q by
−→
H (S), but mean by the Hasse diagram of S instead of
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this quiver its underlying undirected graph H(S). In this case, the Hasse
diagram in the plane is represented in such way that an edge (x, y) with
x < y always goes upward from x to y. For a subgraph F of H(S), we
denote by F≤ the corresponding subposet of S (then H(F≤) = F ).

We call a graph G positive if so is the Tits quadratic form of a quiver
whose underlying undirected graph coincides with G. As already said
above, a poset is called positive if so is its Tits quadratic form. Such
a poset S is called serial if there is an infinite increasing sequence S ⊂
S(1) ⊂ S(2) ⊂ . . . with positive terms, and non-serial if otherwise.

Let G be a connected graph (for us it is enough to consider only
simple graphs, i.e. without loops and multiple edges). The minimum
number cr(G) of edges that must be removed to break all its cycles is
called the circuit or cycle rank of G. If such edges are fixed, the graph
that remains is called a spanning tree of G. The circuit rank can be easily
computed by the formula cr(G) = m− n+ 1 with m and n the number
of edges and vertices of G, respectively, and is equal to the number of
independent cycles in G. For more details on this topic see [1, 20].

Let us proceed directly to the formulation of the main theorems.
A poset S is called connected if so is its Hasse diagram. An element

of a poset S is said to be nodal if it is comparable with all other elements.
For simplicity,we write cr(S) instead of cr[H(S)].

Theorem 1. For any connected non-serial positive poset S, cr(S) < 3.
If cr(S) = 2, then S has such a nodal element x that cr(S \ x) = 1.

Theorem 2. Let S be a connected non-serial positive poset. Then the
Hasse graph H(S) has such scanning trees F that

(1) the graph F is positive;
(2) the poset F≤ is positive.

By a result of P. Gabriel [18], (1) is eqquivalent to the following
condition: F is a simply faced Dynkin diagram (i.e. An, Dm, E6, E7, E8).

It is easy to see that the theorems follow from the classification Tab-
le A attached below (as a part of the general classification Tables 4.1,
4.2 and 4.3 [14]) together with additional information for each Hasse
diagram numbered by p.q in the upper left corner. Namely,

(a) if a graph p.q is acyclic, it is isomorphic to a Dynkin diagram
which is indicated in the upper right corner;

(b) if a graph p.q has a cycle, the top row p.q → s.t means that the
graph s.t is a scanning tree for the graph p.q after removing the edges
highlighted by arrows (the directed edges).

One must also use the mentioned result of P. Gabriel.
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Table A of the connected non-serial positive posets up to iso-
morphism and duality (with additional information).
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Note that in proving we do not consider the posets dual to those
located in the table (except for self-dual market as sd), since all the
properties of posets that we study are closed under duality.
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