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Abstract. In this paper, we elaborate the theory of excep-
tional hereditary curves over arbitrary fields. In particular, we
study the category of equivariant coherent sheaves on a regular
projective curve whose quotient curve has genus zero and prove
existence of a tilting object in this case. We also establish a link
between wallpaper groups and real hereditary curves, providing
details to an old observation made by Helmut Lenzing.

1. Introduction

Let k be an arbitrary field. The categories Coh(X) of coherent sheaves
on a non-commutative projective hereditary curve X = (X,H) (where
X = (X,O) is a commutative regular projective curve over k and H is
a sheaf of hereditary O-orders) provide an important class of k-linear
Ext-finite hereditary categories. In the case when X = P1

k and k = k̄

is algebraically closed, Coh(X) is equivalent to the category of coherent
sheaves on an appropriate weighted projective line of Geigle and Lenzing
and admits a tilting object [16]. In particular, there exist a finite di-
mensional k-algebra Σ (which belongs to the class of so-called canonical
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algebras [43]) and an exact equivalence of derived categories

Db
(
Coh(X)

)
−! Db(Σ−mod). (1)

In the case of an arbitrary base field k, a hereditary projective curve X
is called exceptional if its derived category Db

(
Coh(X)

)
admits a tilting

object. Dropping the assumption k = k̄ makes the theory of such curves
significantly richer. Firstly, the underlying commutative curve X can be
an arbitrary Brauer–Severi curve. Another reason for complications is
caused by the fact that the Brauer group Br

(
k(X)

)
of the function field

k(X) of X is no longer zero and arithmetic phenomena start to play an
important role in the study of the category Coh(X). At this point let us
mention that the Brauer class ηX =

[
Γ(X,K ⊗O H)

]
∈ Br

(
k(X)

)
of an

exceptional hereditary curve X can not take arbitrary values. Moreover,
X is a weighted projective line if and only if X = P1

k and ηX = 0.

The study of exceptional hereditary curves over arbitrary base fields
was initiated by Lenzing in [31]. However, the underlying hereditary
abelian category Coh(X) was defined in an implicit way, without an in-
volvement of sheaves of orders. Quoting for example [19, page 415]:
“Since there is at present no “geometric” definition available for coherent
sheaves on a weighted projective line over an arbitrary field, the formu-
lation of our main result will be somewhat different from the formulation
for an algebraically closed field k.”

A classification of k-linear Ext-finite hereditary abelian categories (see
[18,42] for the case k = k̄ and [19,35] for an arbitrary k) allowed one to
define exceptional hereditary curves in an “axiomatic way” by providing
a list of characterizing properties of the category Coh(X). In this work,
we give a further elaboration of this theory, starting with a ringed space
X = (X,H) itself as a primary object.

The first main result of this paper is Theorem 3.12 which gives a
straightforward construction of a tilting complex in the derived category
Db
(
Coh(X)

)
for a complete hereditary curve X of a special type. This

allows one to prove a generalization of the equivalence (1) in the case of
an arbitrary field k.

A natural class of examples of exceptional heredirary curves arise
from finite group actions. Let Y be a complete regular curve over k and
G ⊂ Autk(Y ) be a finite group such that gcd

(
|G|, char(k)

)
= 1 and the

quotientX = Y/G is a curve of genus zero. Then there exists a hereditary
curve X = Y�G = (X,H) such that CohG(Y ) ≃ Coh(X), where CohG(Y )
is the category of G-equivariant coherent sheaves on Y . This result is
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well-known but we elaborate its proof in Proposition 5.3. Then we show
that all such X are exceptional with ηX = 0 (see Theorem 5.5), extending
results of [39] on the case of an arbitrary base field k; see also [16,23,31].

Wallpaper groups lead to a very interesting class of finite group ac-
tions over R on complex elliptic curves, what allows one to make a link to
the so-called real tubular curves. This striking observation was made by
Lenzing many years ago [33], although the underlying details were never
published. This gap in the literature is filled by Theorem 6.11. Namely,
to any wallpaper group W one can attach a hereditary curve XW and
in 13 cases out of 17 the corresponding derived category Db

(
Coh(XW )

)
admits a tilting object, whose endomorphism algebra ΣW is a tubular
canonical algebra and whose type can be read off the orbifold description
of the group W ; see also Remark 6.12 for a different approach.

2. Hereditary orders

We begin by recalling the notion of a classical order and its properties.

Definition 2.1. Let O be an excellent reduced equidimensional ring of
Krull dimension one and K := Quot(O) be the corresponding total ring
of fractions. An O-algebra A is an O-order if the following conditions
are fulfilled:

� A is a finitely generated torsion free O-module.

� AK := K ⊗O A is a semi-simple K-algebra, having finite length as
a K-module.

Let O be as above, O′ ⊆ O be a subring such that the corresponding
ring extension is finite and A be an O-algebra. Then A is an O-order if
and only if A is an O′-order. Moreover, if K ′ := Quot(O′) then we have:
AK ∼= AK′ ; see for instance [8, Lemma 2.8].

Definition 2.2. Let A be a ring.

� A is a classical order (or just an order) provided its center O =
Z(A) is a reduced excellent equidimensional ring of Krull dimension
one, and A is an O-order.

� Let K := Quot(O). Then AK := K ⊗O A is called the rational
envelope of A.
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� A ring Ã is called an overorder of A if A ⊆ Ã ⊂ AK and Ã is
finitely generated as (a left) A-module.

� An order A is called maximal if it has no proper overorders.

Note that for any overorder Ã of A, the map K ⊗O Ã −! AK is auto-
matically an isomorphism. Hence, AK = ÃK and Ã is an order over O.

Lemma 2.3. Let H be an order and O = Z(H) be its center. Then the
following results are true.

(a) Assume that H is hereditary (i.e. gl.dim(H) = 1). Then O ∼=
O1 × · · · ×Or, where Oi is a Dedekind domain for all 1 ≤ i ≤ r.

(b) Suppose that O is semilocal. Let J be the Jacobson radical of H and
Ĥ = lim −

k

(
H/Jk

)
be the completions of H. Then H is hereditary if

and only if Ĥ is hereditary.

Proofs of all these results can be for instance found in [40].

Let O be a complete discrete valuation ring, A be a maximal order with
center O and J be the Jacobson radical of A. We chose an element
w ∈ J such that J = Aw = wA; see [40, Theorem 18.7] for the existence
of such w. For any sequence of natural numbers p⃗ =

(
p1, . . . , pr

)
, consider

the O-algebra

H(A, p⃗) :=



A . . . A J . . . J . . . J . . . J

.

.

.
. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
A . . . A J . . . J . . . J . . . J
A . . . A A . . . A . . . J . . . J

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
A . . . A A . . . A . . . J . . . J

.

.

.

.

.

.

.

.

.

.

.

.
.
. .

.

.

.

.

.

.
A . . . A A . . . A . . . A . . . A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .
.

.

.

.
A . . . A A . . . A . . . A . . . A



=


A J . . . J
A A . . . J

.

.

.

.

.

.
.
.
.

.

.

.
A A . . . A


(p1,...,pr)

where the size of the i-th diagonal block is (pi × pi) for each 1 ≤ i ≤ r.

Theorem 2.4. The following results are true.

(i) H(A, p⃗) is a hereditary order, whose center is isomorphic to O.

(ii) Let A′ be another maximal order and p⃗′ ∈ Ns. Then H(A, p⃗) ∼=
H(A′, p⃗′) if and only if A ∼= A′, r = s and p⃗′ is a cyclic shift of p⃗.
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(iii) Let H be a hereditary order, whose center is isomorphic to O. Then
H ∼= H(A, p⃗) for some maximal order A and a vector p⃗ ∈ Nr for
some r ∈ N.

(iv) We have the following description of the Jacobson radical of H =
H(A, p⃗):

rad(H) =


J J . . . J
A J . . . J
...

...
. . .

...
A A . . . J


(p1,...,pr)

.

In particular, we have:

H/rad(H) ∼=Mp1(D)× · · · ×Mpr(D),

where D = A/J is the residue skew field of A.

(v) Let e⃗ := (1, . . . , 1) ∈ Nr. Then the orders H(A, p⃗) and

Hr(A) := H(A, e⃗) =


A J . . . J
A A . . . J
...

...
. . .

...
A A . . . A


are Morita equivalent.

Proofs of all these results can be for instance found in [20,21] as well as
in [40].

Remark 2.5. In what follows, the hereditary order H = H(A, p⃗) will
be called standard. Moreover, the following statements are true.

(i) There are precisely r pairwise non-isomorphic indecomposable pro-
jective left H-modules:

P1 =


A
A
...
A


(p1,...,pr)

P2 =


J
A
...
A


(p1,...,pr)

. . . Pr =


J
J
...
A


(p1,...,pr)

. (2)

(ii) Next, there are exactly r pairwise non-isomorphic simple left
H-modules S1, . . . , Sr, whose minimal projective resolutions are

0 −! Pj+1
εj
−! Pj −! Sj −! 0 for 1 ≤ j ≤ r. (3)
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For 1 ≤ j < r the morphism εj is just the natural inclusion, whereas
Pr+1 = P1 and εr is given by the right multiplication with the
chosen generator w ∈ J .

(iii) Let 1 ≤ i, j ≤ r. It is clear that

HomH(Si, Sj) ∼=
{
D◦ if i = j,
0 otherwise,

where D◦ is the opposite ring of D. Moreover,

Ext1H(Si, Sj)
∼=
{
D◦ if j = i+ 1,
0 otherwise,

(4)

where Sr+1 = S1.

(iv) Let A = kJzK. Then Hr(A) is isomorphic to the arrow completion

k̂
[
C⃗r
]
of the path algebra of the cyclic quiver C⃗r:

r◦
a1

����
��
��
��

◦aroo

1◦

a2
��9

99
99

99
99

... ◦

\\999999999

2◦ // ◦

BB���������

(5)

Let A × A
κ
−! O be the pairing induced by the so-called reduced

trace map A
tr
−! O; see [40, Section 9]. It is symmetric and invariant

(i.e. κ(a, b) = κ(b, a) and κ(ab, c) = κ(a, bc) for any a, b, c ∈ A). More-
over, it defines an isomorphism of (A–A)-bimodules

A −! ΩA := HomO(A,O), a 7! κ(a, − ).

As a consequence, we have the following isomorphisms of (H–H)-bimo-
dules:

Ω = ΩH := HomO(H,O) ∼= HomA

(
H,HomO(A,O)

) ∼= HomA(H,A).

It follows that

Ω ∼=


A A . . . A
J−1 A . . . A
...

...
. . .

...
J−1 J−1 . . . A


(p1,...,pr)

,
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where J−1 = Aw−1 = w−1A viewed as a subset of the rational hull of A.
Consider the functor τ := Ω⊗H − : H−mod −! H−mod. It is clear

that

τ(P1) ∼=


A
J−1

...
J−1


(p1,...,pr)

∼=


J
A
...
A


(p1,...,pr)

= P2,

where the last isomorphism is given by the right multiplication with w.
In the same vein, we have: τ(Pi) ∼= Pi+1 for all 1 ≤ i ≤ r. Note that Ω is
projective (hence flat) viewed as a right H-module. It follows that τ is
an exact functor. Actually, τ is an auto-equivalence of H−mod; see the
discussion below. It follows from (3) that τ(Si) ∼= Si+1 for all 1 ≤ i ≤ r.

3. Exceptional hereditary curves

Let k be any field and X be a reduced quasi-projective equidimensional
scheme of finite type over k of Krull dimension one. Let X◦ be the set
of closed points of X, O be the structure sheaf of X, K be its sheaf of
rational functions and K := K(X) be the ring of rational functions on X.
We follow the terminology introduced in [9, Section 7].

Definition 3.1. A non-commutative curve over k is a ringed space
X = (X,R), where X is a commutative curve as above and R is a sheaf
of OX -orders (i.e. R(U) is an O(U)-order for any open affine subset
U ⊆ X), which is coherent as a sheaf of OX -modules. Such X is called

(a) central if Ox is the center of Rx,

(b) homogeneous (also called regular in [9]) if the order Rx is maximal,

(c) hereditary if the order Rx is hereditary

for any x ∈ X◦.

Remark 3.2. Without loss of generality one may assume X = (X,R)
to be central; see [9, Remark 2.14]. We call such X complete if X is
complete (i.e. integral and proper (hence, projective)) over k. Then K is
a field and FX := Γ(X,K ⊗O R) is a central simple algebra over K. Let
η := [FX] be the corresponding class in the Brauer group Br(K) of K.

We shall denote by g(X) the genus of X. From now on, if not other-
wise stated, all non-commutative curves over k are assumed to be central



I. Burban 173

and complete and we shall frequently omit the term “non-commutative”
when speaking about such X.

If X = (X,R) is hereditary then X is regular; see Lemma 2.3. Re-
call the following easy but fundamental fact due to Artin and de Jong
[3, Proposition 1.9.1] (see also [46, Proposition 2.9] and [9, Corollary 7.9]).

Theorem 3.3. Let X be a complete regular curve over k. Then for
any η ∈ Br(K) there exists a homogeneous curve X = (X,R) such that[
FX
]
= η. If X′ = (X ′,R′) is another homogeneous curve then the

following statements are equivalent:

(a) The categories of coherent sheaves Coh(X) and Coh(X′) are equiva-
lent.

(b) There exists an isomorphism X
f
−! X ′ such that [FX] = f∗

(
[FX′ ]

)
∈

Br(K).

Remark 3.4. In the above theorem, the ringed spaces X and X′ need
not be isomorphic even if we assume F and F′ to be skew fields; see
[9, Remark 7.11] and references therein.

Let X = (X,H) be a hereditary curve. The full subcategory of finite
length objects of Coh(X) is denoted by Tor(X). Clearly, it splits into a
union of blocks:

Tor(X) =
∨
x∈X◦

Torx(X), (6)

where Torx(X) is equivalent to the category of finite length modules over
the hereditary order Hx for any x ∈ X◦.

We denote by VB(X) the full subcategory of the category Coh(X)
consisting of locally projective objects, i.e. those E ∈ Coh(X) for which
each stalk Ex is projective over Hx for any x ∈ X◦. Similarly to the case
of regular commutative curves, one can show that for any F ∈ Coh(X)
there exist unique E ∈ VB(X) and Z ∈ Tor(X) such that F ∼= E ⊕ Z.

Consider the Serre quotient category Coh(X)/Tor(X). Then the functor

Γ(X,K ⊗H − ) : Coh(X)/Tor(X) −! FX−mod

is an equivalence of categories. For any F ∈ Coh(X) we define its rank
by the formula

rk(F) := lengthFX

(
Γ(X,K ⊗H F)

)
.

Objects of VB(X) of rank one are called line bundles, the corresponding
full subcategory of VB(X) is denoted by Pic(X).
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Theorem 3.5. Let X = (X,H) be a hereditary curve. Then the following
results are true.

(a) Coh(X) is an Ext-finite noetherian hereditary k-linear abelian cate-
gory.

(b) Let Ω = ΩX := HomX

(
H,ΩX

)
, where ΩX is the dualizing sheaf

of X. Then

τ := Ω ⊗H − : Coh(X) −! Coh(X) (7)

is an auto-equivalence of Coh(X). It restricts to auto-equivalences
of its full subcategories VB(X), Tor(X) as well as Torx(X) for any
x ∈ X.

(c) Moreover, for any F ,G ∈ Coh(X) there are bifunctorial isomor-
phisms

HomX(F ,G) ∼= Ext1X
(
G, τ(F)

)∗
. (8)

Comment to the proof. Properties of the functor τ follow from much
more general results about dualizing complexes and Serre functors; see
for example [38, Theorem A.4] and [47, Proposition 6.14].

Remark 3.6. The category of coherent sheaves Coh(X) on a hereditary
curve X is essentially characterized by the properties listed in Theo-
rem 3.5 above; see [42, Theorem IV.5.2] for the case of an algebraically
closed field k and [28,35] for further elaborations in the case of an arbit-
rary k.

Definition 3.7. Let X be a complete regular curve over k. We say that
X◦

ρ
−! N is a weight function if ρ(x) = 1 for all but finitely many points

x ∈ X◦.

Theorem 3.8. Let X be a complete regular curve over k, η ∈ Br(K) be

any Brauer class and X◦
ρ
−! N be any weight function. Consider a ho-

mogeneous curve X = (X,R) defined by η (see Theorem 3.3). Then there
exists a hereditary curve E = E(X, η, ρ) = (X,H) having the following
properties.

(a) For any x ∈ X◦, the order Ĥx is Morita equivalent to the order
Hρ(x)(Rx).

(b) We have: [FX] = η.
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Let (X ′, η′, ρ′) be another datum as above and E′ be a hereditary curve
attached to it. Then the categories Coh(E) and Coh(E′) are equivalent if

and only if there exists an isomorphism X
f
−! X ′ such that f∗(η′) = η ∈

Br(K) and ρ′f = ρ.

Proof can be found in [46, Proposition 2.9]; see also [9, Corollary 7.9].

Definition 3.9. A complete non-commutative curve X over a field k
is called exceptional if its bounded derived category of coherent sheaves
Db
(
Coh(X)

)
admits a tilting object. Equivalently, there exists a finite-

dimensional k-algebra T and an exact equivalence of triangulated cate-
gories Db

(
Coh(X)

)
−! Db(T−mod).

Remark 3.10. The concept of an exceptional hereditary non-commuta-
tive curve was introduced for the first time by Lenzing in [32, Sec-
tion 2.5], following an axiomatic characterization of such categories. At
this place let us mention that there are various classes of exceptional non-
commutative curves which are not hereditary; see for instance [7, 8, 12].

Theorem 3.11. Let X = (X,R) be an exceptional homogeneous curve.
Then there exists a tilting object F ∈ VB(X) such that

Λ :=
(
EndX(F)

)◦ ∼= ( f w

0 g

)
, (9)

where f and g are finite dimensional division algebras over k and w is a
tame (f–g)-bimodule (this means that dimf(w) · dimg(w) = 4; see [13]).
Moreover, g(X) = 0.

Comment to the proof. The first part of this theorem is due to Lenzing
[32, Theorem 4.5]. The statement g(X) = 0 can be deduced from results
of [3, Section 4.1]; see also [27].

Let (X, η, ρ) be a datum as in Theorem 3.8 with g(X) = 0 and
η ∈ Br(K) be exceptional. The latter condition means that homogeneous
curve X = (X,R) determined by η is exceptional. Let F ∈ VB(X) be
a tilting object from Theorem 3.11 and T be the corresponding tilted
algebra (9). Then we have an exact equivalence

T := RHomX(F , − ) : Db
(
Coh(X)

)
−! Db(Λ−mod).

Let Eρ :=
{
x ∈ X◦

∣∣ ρ(x) ≥ 2
}
=
{
x1, . . . , xt

}
be the special locus of ρ.

For any 1 ≤ i ≤ t, let Si be the unique (up to isomorphisms) simple object
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of the category Torxi(X) and Ui := HomX(F ,Si) ∈ Λ−mod be the cor-
responding regular left Λ-module. Of course, we have: T

(
Si[0]

) ∼= Ui[0],
where

Λ−mod −! Db(Λ−mod),M 7!M [0] =
(
. . . −! 0 −!M −! 0 −! . . .

)
is the standard embedding. For any 1 ≤ i ≤ t, let Ai := R̂xi and
Di = Ai/rad(Ai). Then

D◦
i
∼= EndX(Si) ∼= EndΛ(Ui).

Recall that the duality functor Homk(− ,k) : Λ−mod −! mod−Λ is a
contravariant equivalence of categories. For any 1 ≤ i ≤ t, consider a
(Di–Λ)-bimodule Vi := Homk(Ui,k). In this notation, we put:

Π :=



D1 . . . D1 0 . . . 0 V1
...

. . .
...

...
. . .

...
...

0 . . . D1 0 . . . 0 V1
...

...
. . .

...
...

...

0 . . . 0 Dt . . . Dt Vt
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . Dt Vt
0 . . . 0 0 . . . 0 Λ


, (10)

where each Di occurs precisely mi := ρ(xi)− 1 times on the diagonal.

Theorem 3.12. Let X be a complete regular curve over k of genus
zero, η ∈ Br(K) be an exceptional class, X◦

ρ
−! N a weight function and

E = E(X, η, ρ) = (X,H) be a hereditary curve attached to this datum
(see Theorem 3.8). Then there exists an exact equivalence

Db
(
Coh(E)

)
≃ Db(Π−mod), (11)

where Π is the k-algebra given by (10). In other words, the curve E is
exceptional.

Proof. Consider a homogeneous curve X = (X,R) determined by η ∈
Br(K). Without loss of generality one may assume that F := Γ(X,K⊗O
R) is a skew field. Then there exists m ∈ N such that Γ(X,K ⊗O H) ∼=
Mm(F).
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For any 1 ≤ i ≤ t we have an isomorphism of k-algebras Hi := Ĥxi
∼=

H(Ai, p⃗i), where Ai = R̂xi and p⃗i ∈ Nρ(xi) is some vector. In particular,
there are precisely ρ(xi) = mi + 1 pairwise non-isomorphic simple left

Hi–modules S
(0)
i , S

(1)
i , . . . , S

(mi)
i with a cyclic ordering such that

τ(S
(j)
i ) ∼= S

(j+1)
i for all 1 ≤ i ≤ t and 0 ≤ j ≤ mi. (12)

Let P
(j)
i be an indecomposable projective left Hi–module defined by (2)

such that
HomHi

(
P

(j)
i , S

(j)
i

)
̸= 0.

According to [9, Theorem 6.2] there exists P ∈ Pic(E) such that P̂xi ∼=
P

(0)
i for all 1 ≤ i ≤ t. Let A :=

(
EndX(P)

)◦
. It is clear that Âx

∼= R̂x

for all x ∈ X and Γ(X,K ⊗O A) ∼= F. It follows that Y := (X,A)
is a complete homogeneous curve over k and by Theorem 3.3 we have:
Coh(Y) ≃ Coh(X). In particular, the curve Y is exceptional.

Following the terminology of [11, Definition 4.1], the homogeneous
curve Y is a minor of the hereditary curve E. We have the following
functors:

� G := HomH(P, − ) from Coh(E) to Coh(Y).

� F := P ⊗A − from Coh(Y) to Coh(E).

Note that (F,G) is an adjoint pair and both functors F and G are exact.
The general theory of minors developed in [11, Section 4] leads to the
following results.

First note that F is fully faithful. Next, denote by DG and DF the
corresponding derived functors between the bounded derived categories
of coherent sheaves Db

(
Coh(E)

)
and Db

(
Coh(Y)

)
. Then (DF,DG) is

again an adjoint pair and DF is fully faithful.
Consider the sheaf I = IP of two-sided ideals in H defined as follows:

I := Im
(
P ⊗A P∨ ev

−! H
)
,

where ev is the evaluation morphism. It is clear that Ix = Hx for all
x ∈ X◦ \ Eρ and H := H/I is supported at Eρ. One can check that for
any 1 ≤ i ≤ t we have:

Îxi =


Ai Ji . . . Ji
Ai Ji . . . Ji
...

...
. . .

...
Ai Ji . . . Ji


(p

(i)
0 ,...,p

(i)
mi

)

,
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where
(
p
(i)
0 , . . . , p

(i)
mi

)
= p⃗i. Let L := Γ

(
X,H

)
. Then we have: L ∼=

L1 × · · · × Lt, where

Li ∼= Hxi
∼=


Di 0 . . . 0
Di Di . . . 0
...

...
. . .

...
Di Di . . . Di


(p

(i)
1 ,...,p

(i)
mi

)

for all 1 ≤ i ≤ t. It is clear, that Li is Morita equivalent to the algebra
Di 0 . . . 0
Di Di . . . 0
...

...
. . .

...
Di Di . . . Di

 ⊂Mmi(Di).

For any E• ∈ Db
(
Coh(E)

)
we have a distinguished triangle

(DF ◦ DG)(E•)
ξE•
−! E• −! C• −! (DF ◦ DG)(E•)[1],

where DF ◦ DG ξ
−! Id is the counit of the adjoint pair (DF,DG). Since

DF is fully faithful, the morphism DG(ξE•) is an isomorphism and, as a
consequence, DG(C•) = 0. The kernel Ker(DG) of the functor DG consists
of those complexes, whose cohomology is annihilated by the sheaf of
ideals I. Note that for any 1 ≤ i ≤ t the ideal Îxi is projective (hence,
flat), viewed as a right Ĥxi-module. It implies that Ker(DG) can be
identified with the derived category Db(L−mod); see [11, Theorem 4.6].

Let Db
(
L−mod

) I
−! Db

(
Coh(E)

)
be the corresponding fully faithful

embedding, whose essential image is Ker(DG). Then we get a semi-
orthogonal decomposition

Db
(
Coh(E)

)
=
〈
Im(I), Im(DF)

〉
=
〈
Db
(
L−mod), Db

(
Coh(Y)

)〉
, (13)

see [11, Theorem 4.5]. For any 1 ≤ i ≤ t and 1 ≤ j ≤ mi consider the

following Li-modules Z
(j)
i given in terms of their projective resolutions

0 −! P
(0)
i −! P

(1)
i −! Z

(1)
i −! 0,

0 −! P
(mi)
i −! P

(1)
i −! Z

(2)
i −! 0,

...

0 −! P
(2)
i −! P

(1)
i −! Z

(mi)
i −! 0.
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Note that Zi :=
mi⊕
j=1

Z
(j)
i is an injective cogenerator of the category

Li−mod. Let Z :=
t⊕
i=1

Zi and Z[0] := I(Z), then we have: Z ∈ Tor(X).

Next, we set F̃ := F(F) ∈ VB(E), where F ∈ VB(Y) is a tilting object
from Theorem 3.11. We claim that

X • := Z[−1]⊕ F̃ [0] (14)

is a tilting object in the derived category Db
(
Coh(E)

)
.

The statement that X • generates Db
(
Coh(E)

)
follows from existence

of a semi-orthogonal decomposition (13) and the facts that Z generates
Db
(
L−mod

)
and F generates Db

(
Coh(Y)

)
. Since both functors I and DF

are fully faithful and Z and F are tilting objects in the corresponding
derived categories, we have:

ExtiE(Z,Z) = 0 = ExtiE(F̃ , F̃)

for all i ≥ 1. Since the functor DF is left adjoint to DG and DG(Z) = 0,
we have:

ExtiE(F̃ ,Z) ∼= HomDb(E)
(
DF(F),Z[i]

) ∼= HomDb(Y)
(
F ,DG(Z)[i]

)
= 0

for all i ∈ Z.
This vanishing is also a consequence of the semi-orthogonal decompo-

sition (13). Finally, for any i ∈ Z we have: ExtiE(Z, F̃) ∼= Γ
(
X,ExtiH(Z, F̃)

)
.

Since Z is torsion and F̃ is locally projective, we have: HomH(Z, F̃) = 0.
As E is hereditary, we also have: ExtiH(Z, F̃) = 0 for all i ≥ 2. Therefore,
HomDb(E)

(
X •,X •[i]

)
= 0 for i ̸= 0. We have shown that X • is a tilting

object in Db
(
Coh(E)

)
. Put

Π :=
(
EndDb(E)(X •)

)◦ ∼= ( (
EndE(Z)

)◦
Ext1E(Z, F̃)

0
(
EndE(F̃)

)◦
)
. (15)

Then the triangulated categories Db
(
Coh(E)

)
and Db(Π−mod) are equi-

valent; see [22].

Note that
(
EndE(F̃)

)◦ ∼=
(
EndY(F)

)◦
= Λ and EndE(Z) ∼= EndL(Z) ∼=

t∏
i=1

EndLi(Zi). An easy computation shows that

(
EndLi(Zi)

)◦ ∼=

Di Di . . . Di

0 Di . . . Di
...

...
. . .

...
0 0 . . . Di

 ⊂Mmi(Di).
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Finally, using the Auslander–Reiten duality formula (8) and the fact that
(F,G) is an adjoint pair, we get binatural isomorphisms

Ext1E
(
Z, F̃

) ∼= HomE
(
F(F), τ−1(Z)

)∗ ∼= HomY
(
F ,G

(
τ−1(Z)

))∗
.

Next, we have: G
(
τ−1(Z)

) ∼= t⊕
i=1

S⊕mi
i where Si is the unique (up to iso-

morphism) simple object of the category Torxi(Y). Hence, we get isomor-
phisms

HomY
(
F ,G

(
τ−1(Z)

)) ∼= t⊕
i=1

HomY
(
F ,Si

)⊕mi ∼=
t⊕
i=1

U⊕mi
i .

Taking the duals over k, we get a bimodule isomorphism Ext1E
(
Z, F̃

) ∼=
t⊕
i=1

V ⊕mi
i . This implies that the k-algebras given by (10) and (15) are

isomorphic.

Remark 3.13. Let k be an algebraically closed field and X = P1
k. We

chose homogeneous coordinates (u : v) on X. Then F := O(−1) ⊕
O ∈ VB(X) is a tilting bundle u and v can be viewed as elements of a
distinguished basis of HomX

(
O(−1),O

)
. Hence, Λ :=

(
EndX(F)

)◦
can

be identified with the path algebra of the Kronecker quiver •

u
''

v
77 •

and we have an exact equivalence T := RHom(F , − ) : Db
(
Coh(X)

)
−!

Db(Λ−mod).

Let X◦
ρ
−! N be any weight function and Eρ = {x1, . . . , xt} be the

corresponding special locus. We write xi = (αi : βi) for all 1 ≤ i ≤ t. Let
Si ∈ Torxi(X) be the simple object and Ui ∈ Λ−mod be its image under

the equivalence T (i.e. T
(
Si[0]

) ∼= Ui[0]). Then Ui = k

αi
((

βi

66 k and

EndΛ(Ui) ∼= k for all 1 ≤ i ≤ t. Let ρ(xi) = mi + 1. Then the algebra Π
defined by (10) is isomorphic to the path algebra of the following quiver

• // • . . . •
c
(m1)
1 // •

•

u
''

v
77 •

c
(1)
i //

c
(1)
1

??~~~~~~~~

c
(1)
t ��@

@@
@@

@@
@ • // • . . . •

c
(mi)
i // •

• // • . . . •
c
(mt)
t // •

(16)
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subject to the relations c
(1)
i (βiu−αiv) = 0 for all 1 ≤ i ≤ t. This is a so-

called squid algebra (see [4, Section IV.6] and [44, Section 4]). The cano-
nical algebra Σ attached to the same datum

(
(x1,m1+1), . . . , (xt,mt+1)

)
is the path algebra of the quiver

•
d
(2)
1 // • // . . . // •

d
(m1)
1

%%KK
KKK

KKK
KKK

KK

•
d
(2)
2 // • // . . . // • d

(m2)
2

**UUU
UUUU

UUUU
U

•

d
(1)
1

99sssssssssssss

d
(1)
2 44iiiiiiiiiiii

d
(1)
t

""E
EE

EE
EE

EE
EE

EE
EE

u
--

v

11 •

... ... ...

•
d
(2)
t // • // . . . // •

d
(mt)
t

<<yyyyyyyyyyyyyyy

(17)

modulo the relations

d
(mi)
i . . . d

(1)
i = βiu− αiv for 1 ≤ i ≤ t, (18)

see [43]. Then there exists an exact equivalence of triangulated categories

Db
(
Π−mod

)
≃ Db

(
Σ−mod

)
, (19)

see [43, 44]. For t ≥ 3 one may without loss of generality assume that
x1 = (1 : 0), x2 = (0 : 1) and x3 = (1 : 1). Suppose that t = 3.
If li = ρ(xi) then we use the notation Π(l1,l2,l3) and Σ(l1,l2,l3) for the
corresponding squid and canonical algebras, respectively.

In the case of an arbitrary field k, the algebra Π given by (10) is a
variation of a squid algebra introduced by Ringel in [44, Section 4].

Remark 3.14. Let us mention that Theorem 3.12 is not entirely original;
see e.g. [19, Theorem 2.8 and Theorem 3.4] as well as [27, 34]. However,
that works are based on the “axiomatic approach” to non-commutative
hereditary curves and analogues of the derived equivalence (11) serve
rather as a definition of E than as its property.

4. Generalities on skew group products

Let A be a ring, G be a finite group and G
ϕ
−! Aut(A) be a group

homomorphism. For any g ∈ G, let A
ϕg
−! A be the corresponding ring



182 Exceptional curves and real curve orbifolds

automorphism of A. The associated skew group ring A
[
G,ϕ

]
is a free

left A–module of rank |G|

A
[
G,ϕ

]
=
{∑
g∈G

ag[g]
∣∣ag ∈ A

}
(20)

equipped with the product given by the rule

a[f ] · b[g] := aϕf (b)[fg] for any a, b ∈ A and f, g ∈ G.

Then A
[
G,ϕ

]
is a unital ring, whose multiplicative unit element is 1[e],

where 1 is the unit in A and e is the neutral element of G. Let

AG :=
{
a ∈ A

∣∣ϕg(a) = a for all g ∈ G
}

be the ring of invariants. If A is commutative then AG is the center of
A
[
G,ϕ

]
. In what follows, we put n = |G|.

Lemma 4.1. Let L be a field, G
ϕ
−! Aut(A) be injective and K = LG.

Then we have an isomorphism of K-algebras

L
[
G,ϕ

] ∼=Mn(K). (21)

Proof. By Artin’s Theorem (see e.g. [30, Theorem VI.1.8]) L/K is a finite
Galois extension and G ∼= Gal(L/K). Next, we have a group isomorphism

H2(G,L∗)
∼=−! Br(L/K), [ω] 7! L[G, (ϕ, ω)] (22)

see e.g. [14, Theorem 5.6.6]. Here, L[G, (ϕ, ω)] is the crossed product
of L and G with respect to the two-cocycle G × G

ω
−! L∗; see [41]. If

ω is the trivial cocycle then L[G, (ϕ, ω)] = L[G,ϕ]. Hence, we have an
isomorphism of K-algebras L[G,ϕ] ∼= Mm(K) for some m ∈ N. From
the dimension reasons it follows that m = n.

Lemma 4.2. Let A = A1 × · · · × At, where Ai is a connected ring
for all 1 ≤ i ≤ t. Let ei := (0, . . . , 0, 1, 0, . . . , 0) be the i-th central
idempotent of A. Assume that G acts transitively on the set

{
e1, . . . , et

}
.

Let A⋄ = A1, G⋄ be the stabilizer of e1 and G⋄
ϕ⋄
−! Aut(A⋄) be the

restricted action. Then the skew group rings A
[
G,ϕ

]
and A⋄

[
G⋄, ϕ⋄

]
are

Morita equivalent.
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Proof. By the transitivity assumption, for any 1 ≤ i, j ≤ t there exists
g ∈ G such that ϕg(ei) = ej . Then we have: ej = [g]ei[g]

−1. Since
1A[G,ϕ] = e1+· · ·+et and the idempotents

{
e1, . . . , et

}
are orthogonal and

pairwise conjugate, the rings A[G,ϕ] and e1A[G,ϕ]e1 are Morita equiva-
lent. Now we prove that e1A[G,ϕ]e1 ∼= A⋄

[
G⋄, ϕ⋄

]
. Let

{
g1, . . . , gs

}
⊂ G

be such that g1 = e and G = g1G⋄ ⊔ · · · ⊔ gsG⋄. Consider an arbitrary
element A ∋ a = (a1, . . . , at) = a1 + · · ·+ at, where ai ∈ Ai for 1 ≤ i ≤ t
as well as an arbitrary element g ∈ G. First note that e1a = a1. Next,
there exist unique 1 ≤ j ≤ s and h ∈ G⋄ such that g = gjh. Then we
have: ϕh(e1) = e1 and

e1 · a[g]e1 = a1[gjh]e1 = a1ϕgj (e1)[gjh] =

{
a1[h] if j = 1,
0 otherwise.

Hence, e1A[G,ϕ]e1 ∼= A⋄
[
G⋄, ϕ⋄

]
, as asserted.

From now on, let k be a field such that gcd
(
n, char(k)

)
= 1, A be a

k-algebra and G
ϕ
−! Autk(A) be a group homomorphism. Then the

skew product A[G,ϕ] is a k-algebra.

Theorem 4.3. Let A be a commutative connected Dedekind k-algebra,
O = AG and H = A[G,ϕ]. Then the following statements are true.

(i) O is again a Dedekind k-algebra and O ⊆ A is a finite extension.

(ii) H is a hereditary order, whose center is O and whose rational hull
is Mn(K), where K is the quotient field of O.

Proof. For the first statement, see for instance [6, Theorem 4.1]. We
conclude that O ⊆ H is finite and H is a torsion free module over O. It
follows from Lemma 4.1 that the rational hull of H is Mn(K). Hence H
is an order, whose center is O. Finally, it follows from [41, Theorem 1.3]
that H is hereditary; see also [10, Corollary 2.7].

Lemma 4.4. Let k be algebraically closed, A = kJzK and G ϕ
−! Autk(A)

be an injective group homomorphism. Then the following statement are
true:

(i) The group G is cyclic, i.e. G ∼= Zn.

(ii) We have: A[G,ϕ] ∼= Hn(O), where O = kJznK.
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Proof. Let m = (z) be the maximal ideal in A. For any g ∈ G, let

m /m2 ϕ̄g
−! m /m2 be the induced automorphism. We identify k with

m /m2 sending 1 to [z]. Then ϕ̄g([z]) = ξg[z] for some ξg ∈ k∗. Clearly,
ξe = 1 and ξg1g2 = ξg1ξg2 for all g1, g2 ∈ G. Next, for any g ∈ G consider
the automorphism of k-algebras

A
ψg
−! A, f(z) 7! f(ξgz).

We define τ ∈ Autk(A) by the rule τ(z) = 1
n

∑
g∈G

ψ−1
g ϕg(z). It is easy to see

that ψe = id, ψg1g2 = ψg1ψg2 and ψgτ = τϕg for all g1, g2, g ∈ G. Hence,

τ can be extended to an isomorphism of k-algebras A[G,ϕ]
τ
−! A[G,ψ].

Since ϕ is injective, G
ψ
−! Autk(A) is injective, too. It follows that

G −! k∗, g 7! ξg is an injective group homomorphism. Moreover, ξng = 1
for all g ∈ G. This implies that G is a cyclic group of order n.

Let h be a generator of G. Then ξ = ξh is a primitive n-th root of 1
in k. For 1 ≤ k ≤ n, let ζk := ξk and

εk :=
1

n

n−1∑
j=0

ζjk[h]
j ∈ A[G,ψ]. (23)

Then we have: {
1 = ε1 + · · ·+ εn,

εk · εl = δklεk, 1 ≤ k, l ≤ n.

In other words,
{
ε1, . . . , εn

}
is a complete set of primitive idempotents

of A[G,ψ]. An isomorphism A[G,ψ]
µ
−! k̂

[
C⃗n
]
is given by the rule:{

εk
µ
7! ek,

εk+1zεk
µ
7! ak,

(24)

where k̂
[
C⃗n
]
is the complete path algebra of a cyclic quiver C⃗n (see (5))

and ek ∈ k̂
[
C⃗n
]
is the idempotent corresponding to the vertex 1 ≤ k ≤ r.

This gives us the desired isomorphisms A[G,ϕ] ∼= A[G,ψ] ∼= k̂
[
C⃗n
] ∼=

Hn(O).
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5. Equivariant coherent sheaves on regular curves and
hereditary non-commutative curves

As in the previous section, let G be a finite group of order n and k be a
field such that gcd

(
n, char(k)

)
= 1. Let Y be a quasi-projective variety

over k and G
γ
−! Autk(Y ) be a group homomorphism, which we assume

to be injective. Then we have a quasi-projective variety X := Y/G and
a canonical projection Y

π
−! X. Let us now recall the corresponding

constructions, following [17] (see also [37, Appendix 1]).

We can always find an open affine G-invariant covering Y = Y1 ∪ . . .
∪Ym. For any 1 ≤ i ≤ m let Ai = OY (Yi). Then for any g ∈ G we have

a k-algebra automorphism Ai
γ♯i,g
−! Ai. Moreover, γ♯i,e = id and γ♯i,g1g2 =

γ♯i,g2γ
♯
i,g1

for all g1, g2 ∈ G. For any g ∈ G we put γ̂
(i)
g := γ♯

i,g−1 . In this

way, for any 1 ≤ i ≤ m we get a group homomorphism G
γ̂(i)
−! Autk(Ai).

Let Oi := AGi and Xi = Spec(Oi). By the construction of X = Y/G,
we have an open affine covering X = X1 ∪ · · · ∪Xm with Yi = π−1(Xi).

Moreover, the morphism Yi
πi−! Xi is dual to the inclusion Oi ⊆ Ai.

Next, we put Hi := Ai[G, γ̂
(i)]. In this way we construct a coherent sheaf

of OX -algebras H on X such that H(Xi) = Hi for all 1 ≤ i ≤ m.

Proposition 5.1. The following results are true.

(a) Assume Y is integral. Then for any 1 ≤ i ≤ m, the homomorphism

G
γ̂(i)
−! Autk(Ai) is injective.

(b) Let K be the sheaf of rational functions on X, K = Γ(X,K) be the
field of rational functions on X and F = Γ(X,K ⊗O H). Then we
have an isomorphism of K-algebras F ∼=Mn(K).

(c) Suppose furthermore that Y is a regular curve. Then X is regular
as well and X = Y �G = (X,H) is a non-commutative hereditary
curve.

(d) Let Y be as above, y ∈ Y◦, G⋄ ⊆ G be its stabilizer group, r = |G⋄|,
x := π(y) ∈ X, O = Ôx and H = Ĥx. If k is algebraically closed
then H is Morita equivalent to the standard hereditary order Hr(O).

Proof. (a) Let L be the field of rational functions on Y . Then for any
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1 ≤ i ≤ m we have a commutative diagram

G
γ̂(i) //

_�

γ

��

Autk(Ai)� _

��
Autk(Y ) �

� // Autk(L)

where three out four group homomorphisms are known to be injective.
Hence, γ̂(i) is injective, too.

(b) Since K = LG, this result is a consequence of Lemma 4.1.

(c) This statement follows from Theorem 4.3.

(d) Let π−1(x) =
{
y1, . . . , yt

}
with y = y1. For 1 ≤ i ≤ t we put Bi = Ôyi

and B := B1×· · ·×Bt. Then we have an injective group homomorphism

G
γ̂
−! Autk(B). Moreover, we have an isomorphism of k-algebras H ∼=

B[G, γ̂]. By Lemma 4.2, the k-algebras H and B⋄[G⋄, γ̂⋄] are Morita

equivalent, where B⋄ = B1 and G⋄
γ̂⋄
−! Autk(B⋄) is the restricted action.

Since γ is injective, γ̂⋄ is injective, too. If k is algebraically closed, then
by Lemma 4.4 we have: G⋄ ∼= Zr and B⋄[G⋄, γ̂⋄] ∼= Hr(O).

For any g ∈ G the automorphism Y
γg
−! Y induces a pair of k-linear

auto-equivalences γ∗g and γg∗ : Coh(Y ) −! Coh(Y ), which assign to a
coherent sheaf on Y its inverse (respectively, direct) image sheaf. We
have: γg1g2∗ = γg1∗γg2∗ and γg∗ = γ∗g−1 for all g, g1, g2 ∈ G. Hence, in
what follows we shall assume that the canonical isomorphisms of functors

γ∗g1g2
∼=−! γ∗g2γ

∗
g1 are trivial for all g1, g2 ∈ G.

Definition 5.2. The category CohG(Y ) ofG-equivariant coherent sheaves
on Y is defined as follows.

(a) Its objects are tuples
(
F , (αg)g∈G

)
, where F ∈ Coh(Y ) and F αg

−!
γ∗g (F) is an isomorphism in Coh(Y ) for any g ∈ G such that αe = id
and

αg2g1 = γ∗g1(αg2)αg1 ∈ HomY

(
F , γ∗g2g1(F)

)
(25)

for any g1, g2 ∈ G.

(b) A morphism
(
F , (αg)g∈G

)
−!

(
F ′, (α′

g)g∈G
)
of G-equivariant co-

herent sheaves is given by a morphism f ∈ HomY (F ,F ′) such that
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the diagram

F
αg //

f

��

γ∗g (F)

γ∗g (f)

��
F ′ α′

g // γ∗g (F ′)

(26)

is commutative for all g ∈ G.

The following result is well-known to the experts. For the reader’s con-
venience, we give below its proof.

Proposition 5.3. The categories CohG(Y ) and Coh(X) are equivalent.

Proof. We first prove the local statement. Let A be a (commutative)

k-algebra and G
ϕ
−! Autk(A) be a group homomorphism. Consider a left

A[G,ϕ]-module M . Then M is also a left A-module and for any g ∈ G
we have a k-linear automorphism

M
αg
−!M,x 7! [g]x.

We have: αe = id and αg1αg2 = αg1g2 for all g1, g2 ∈ G. Moreover,

αg(ax) = [g]ax = ϕg(a)[g]x = ϕg(a)αg(x)

for all a ∈ A and x ∈ M . Conversely, let M be a left A-module and(
M

αg
−!M

)
g∈G

be a family of k-linear automorphisms such that αg(ax) =

ϕg(a)αg(x) for any a ∈ A and x ∈ M and such that αe = id and
αg1αg2 = αg1g2 for all g1, g2 ∈ G. Then M can be equipped with a
unique structure of a left A[G,ϕ]-module such that [g]x = αg(x). In these

terms, a morphism
(
M, (αg)g∈G

) f
−!

(
M ′, (α′

g)g∈G
)
of A[G,ϕ]-modules

is a morphism of A-modules M
f
−!M ′ such that

M
αg //

f
��

M

f
��

M ′ α′
g //M ′

(27)

is commutative for all g ∈ G.

Let A′ be another commutative k-algebra and A
ϑ
−! A′ be a ho-

momorphism of k-algebras. Let X ′ = Spec(A′)
ν
−! X = Spec(A) be

the morphism of schemes induced by ϑ. The functors of global sections
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give equivalences of categories QCoh(Y ) ≃ A−Mod and QCoh(Y ′) ≃
A′−Mod. In this identification, for M ∈ A−Mod we have: ν∗(M) =
A′ ⊗AM . For any a ∈ A and x ∈M we have: ϑ(a)⊗ x = 1⊗ ax. Now,
consider a special case when A′ = A. Then we have mutually inver-
se isomorphisms of A-modules M ! ν∗(M), x 7! 1⊗x and ν∗(M)!M,
a⊗ x 7! ϑ−1(a)x.

Now, let F ∈ Coh(Y ) and Y = Y1 ∪ · · · ∪ Ym be a G-invariant open
affine covering. For any 1 ≤ i ≤ m let Ai = OY (Yi), Mi = F(Yi) and

Hi = Ai[G, γ̂
(i)]. Let

(
F αg
−! γ∗g (F)

)
g∈G be a family of isomorphisms

in Coh(Y ) making F to an G-equivariant sheaf. For each 1 ≤ i ≤ m

α
(i)
g = αg

∣∣
Yi

: Mi −! Mi is a k-linear map satisfying the property

α
(i)
g (ax) = γ̂(i)(a)α

(i)
g (x) for all a ∈ Ai and x ∈Mi. The above discussion

allows one to equip Mi with a structure of a left Hi-module. Globalizing
this correspondence, we equip F with a structure of a left H-module.

Comparing (26) with (27) we conclude that we get a functor CohG(Y )
E
−!

Coh(X). Moreover, the above discussion shows that E is fully faithful and
dense, hence an equivalence of categories.

Summary. Let Y be a complete regular curve over a field k and G be a
finite group of order n such that gcd

(
n, char(k)

)
= 1. Let G

γ
−! Autk(Y )

be an injective group homomorphism, X = Y/G and X = Y�G = (X,H)
be the corresponding non-commutative hereditary curve. Then X is also
complete and the following statements are true.

(i) Let K be the field of rational functions of X. Then the class [FX] of
X in the Brauer group Br(K) is trivial, where FX = Γ(X,K⊗O H).

(ii) Let y ∈ Y◦, x = π(y) ∈ X and Gy be the stabilizer of y. Then Ĥx

is Morita equivalent to Ôy[Gy, γ̂y].

(iii) If k is algebraically closed then Ôy[Gy, γ̂y] ∼= Hr(Ôx), where r =∣∣Gy∣∣. In particular, the special locus EX of the hereditary curve X
admits the following description. Let y ∈ Y◦ be such that x = π(y).
Then x ∈ EX if and only if Gy ̸= {e}. Moreover, ρ(x) =

∣∣Gy|.
Remark 5.4. In the case the field k is algebraically closed of characteris-
tic zero, the theory of non-commutative hereditary curves was considered
in [15] from the perspective of algebraic stacks.

Theorem 5.5. Let k be a field of char(k) ̸= 2, Y be a complete regu-
lar and geometrically integral curve over k and G ⊂ Autk(Y ) be a finite
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group of order n acting faithfully on Y . Assume that gcd
(
n, char(k)

)
= 1

and X = Y/G is a curve of genus zero. Then there exists a finite dimen-
sional k-algebra Π(Y,G) such that we have an exact equivalence

Db
(
CohG(Y )

)
≃ Db

(
Π(Y,G)−mod

)
. (28)

Proof. Any geometrically integral regular projective curve X over k of
genus zero is isomorphic to a plane conic

X(a,b) := Proj
(
k[x, y, z]/(ax2 + by2 − z2)

)
(29)

for some a, b ∈ k∗. Let

Λ(a,b) =
〈
i, j
∣∣ i2 = a, j2 = b, ij = −ji

〉
k

be the corresponding generalized quaternion algebra. It was shown in [26]
that there exists a tilting bundle F ∈ VB(X(a,b)) such that

(
EndX(F)

)◦ ∼=
Λ(a,b). The statement is therefore a consequence of Theorem 3.12 and
Proposition 5.3.

Example 5.6. Let G ⊂ SL2(C) be a finite subgroup. Then G acts on the
complex projective line Y = P1 by the fractional-linear transformations.
Then X = Y/G ∼= P1. Let X = Y �G be the corresponding non-
commutative hereditary curve. Then there exists a finite-dimensional
algebra Π(P1,G) of the form (16) such that

Db
(
CohG(Y )

)
≃ Db

(
Coh(X)

)
≃ Db

(
Π(P1,G)−mod

)
.

Up to a conjugation, a classification of finite subgroups of SL2(C) is
well-known; see for instance [25]. In all the cases, the cardinality of
the exceptional set EX is either two or three. The group AutC(P

1) acts
transitively on the set of triples on distinct points ofP1. In the case of two
special points, we may assume that EX =

{
(0 : 1), (1 : 0)

}
. In the case of

three special points, we may assume that EX =
{
(0 : 1), (1 : 0), (1 : 1)

}
.

Therefore, to define X, it is sufficient to specify the sequence (a, b, c) of
orders on non-trivial stabilizers of the G-action on P1 (with a ≤ b ≤ c
and allowing a = 1 in the case there are only two special points). The
corresponding hereditary curve X will be therefore denoted by P1

(a,b,c).
The following cases can occur.

(a) G ∼= Zn with n ≥ 2. The corresponding weight sequence is (n, n).
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(b) G ∼= Dn is a binary dihedral group with n ≥ 2. The corresponding
weight sequence is (2, 2, n).

(c) G is a binary tetrahedral, octahedral or icosahedral group. The
corresponding weight sequences are (2, 3, 3), (2, 3, 4) and (2, 3, 5),
respectively.

On the other hand, the simply-laced Dynkin diagrams are parametrized
by the triples (a, b, c) ∈ N3 such that

a ≤ b ≤ c and
1

a
+

1

b
+

1

c
> 1.

Hence, we may write Π(P1,G) = Π(a,b,c). On the other hand, let Γ(a,b,c)

be the path algebra of the corresponding Euclidean quiver. Then there
exists an exact equivalence of triangulated categoriesDb

(
Π(a,b,c)−mod

)
≃

Db
(
Γ(a,b,c)−mod

)
, see [43, Section 4.3] and [45, Section XII.1]. Hence,

there exists an exact equivalence

Db
(
Coh(P1

(a,b,c))
)
≃ Db

(
Γ(a,b,c)−mod

)
.

This striking observation was made for the first time by Lenzing
in [31]. Later it led to a development of the theory of weighted projec-
tive lines of Geigle and Lenzing in [16]. An elaboration of the equivalence
Db
(
CohG(P1)

)
≃ Db

(
Π(P1,G)−mod

)
in the framework of genuine equi-

variant coherent sheaves on P1 can be found in [23,39].

Example 5.7. Let k be a field of char(k) ̸= 2, λ ∈ k∗ \ {1} and

Yλ = Proj
(
k[x, y, z]/(zy2 − x(x− z)(x− λz))

)
be an elliptic curve over k. Then G =

〈
ı
∣∣ ı2 = e

〉 ∼= Z2 acts on Yλ by

the rule (x : y : z)
ı
7! (x : −y : z). There are precisely four points

of Yλ with non-trivial stabilizers: (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 1)
and (λ : 0 : 1). Next, we have: X = Yλ/G ∼= P1

k. Let Yλ
π
−! X

be the canonical projection. One can choose homogeneous coordinates
on X so that the image of the set of four ramification points of π is
E =

{
(0 : 1), (1 : 0), (1 : 1), (λ : 1)

}
. For any x ∈ E we have ρ(x) = 2.

Let Σλ be the tubular canonical algebra of type ((2, 2, 2, 2);λ) [44], i.e. the
path algebra of the following quiver
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(30)

modulo the relations b1a1 − b2a2 = b3a3 and b1a1 − λb2a2 = b4a4. An
exact equivalence of triangulated categories

Db
(
CohG(Yλ)

)
−! Db(Σλ−mod) (31)

was for the first time discovered by Geigle and Lenzing; see [16, Examp-
le 5.8]. The algebra Σλ is derived-equivalent to the squid algebra (16) of
the same type ((2, 2, 2, 2);λ) (see [43, 44]), which is of course consistent
with Theorem 5.5.

Example 5.8. Let k = C. Consider the following finite group actions
on the following complex elliptic curves.
(I) Let Y = Proj

(
k[x, y, z]/(zy2 − x3 − z3)

)
and G =

〈
ϱ
∣∣ ϱ6 = e

〉 ∼= Z6.
Then G acts on Y by the rule ϱ(x : y : z) = (ξx : −y : z), where

ξ = exp

(
2πi

3

)
and Y/G ∼= P1. Moreover,

(a) The stabilizer of (−1 : 0 : 1) is Z2.

(b) The stabilizer of (0 : 1 : 1) is Z3.

(c) The stabilizer of (0 : 1 : 0) is Z6.

Combining the exact equivalences of triangulated categories (28) and
(19) we get

Db
(
CohG(Y )

)
≃ Db

(
Π(2,3,6)−mod

)
≃ Db

(
Σ(2,3,6)−mod

)
,

where Π(2,3,6) and Σ(2,3,6) are the squid and canonical algebras of type
(2, 3, 6), respectively.

(II) Next, let ϱ̃ = ϱ4. Consider the subgroup Z3
∼= N = ⟨ϱ̃⟩ ⊂ G. Then

N acts on Y by the rule ϱ̃(x : y : z) = (ξx : y : z) Again, we have
Y/N ∼= P1. However, this time the stabilizer of the point (−1 : 0 : 1)
is trivial, whereas (0 : 1 : 1) and (0 : −1 : 1) belong to different orbits.
The stabilizer of each point (0 : 1 : 1), (0 : −1 : 1) and (0 : 1 : 0) is the
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group N itself. Therefore, we have exact equivalences of triangulated
categories

Db
(
CohN (Y )

)
≃ Db

(
Π(3,3,3)−mod

)
≃ Db

(
Σ(3,3,3)−mod

)
.

(III) Now, let Y = Proj
(
k[x, y, z]/(zy2−x3+xz2)

)
andG =

〈
ϱ
∣∣ ϱ4 = e

〉 ∼=
Z4. Then G acts on Y by the rule ϱ(x : y : z) = (−x : iy : z) and
Y/G ∼= P1. The stabilizer of the point (1 : 0 : 1) is Z2, whereas the
stabilizer of (0 : 0 : 1) and (0 : 1 : 0) is the group G itself. Therefore, we
have exact equivalences of triangulated categories

Db
(
CohG(Y )

)
≃ Db

(
Π(2,4,4)−mod

)
≃ Db

(
Σ(2,4,4)−mod

)
.

6. Tilting on real curve orbifolds

In this section, we shall discuss some interesting and natural actions over
R on complex projective curves. Do this, we begin with the local case.

Proposition 6.1. Let G be a finite group, A = CJzK, m = (z) and

G
ϕ
−! AutR(A) be an injective group homomorphism. Then the following

two cases can occur.

(a) For any g ∈ G the homomorphism A
ϕg
−! A is C-linear. Then G =

⟨ϱ
∣∣ ϱn = e⟩ is a cyclic group and there exists another choice of a

local parameter w ∈ m such that ϕϱ(w) = ξw, where ξ = exp

(
2πi

n

)
.

(b) Otherwise,

G ∼= Dn =
〈
σ, ϱ

∣∣σ2 = e = ϱn, σϱσ−1 = ϱ−1
〉

(32)

is a dihedral group for some n ∈ N. Moreover, there exists a choice
of a local parameter w ∈ m such that{

ϕσ(α) = ᾱ for α ∈ C and ϕσ(w) = w,
ϕϱ(α) = α for α ∈ C and ϕϱ(w) = ξw,

(33)

where ξ = exp

(
2πi

n

)
.
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Proof. First note that
{
a ∈ A

∣∣ a2+1 = 0
}
= {i,−i}. Since for any g ∈ G

the map A
ϕg
−! A is an automorphism of R-algebras, we conclude that

ϕg(i) = ±i. Hence, any ϕg is either C-linear or C-antilinear. We put

N :=
{
g ∈ G

∣∣ϕg is C-linear} .
By Lemma 4.4 we have: N = ⟨ϱ

∣∣ ϱn = e⟩ ∼= Zn for some ϱ ∈ N and
n = |N |. Moreover, there exists a local parameter w ∈ m such that

ϕϱ(w) = ξw, where ξ = exp

(
2πi

n

)
. The same proof allows one to

construct w ∈ m such that ϕg(w) = ξgw for any g ∈ G, where ξg ∈ C∗.
If N = G then we are done and have the case (a). Now assume that

there exists σ ∈ G \ N . Then σ2 ∈ N and ϕσ(α) = ᾱ for any α ∈ C.
Moreover, for any g ∈ G \ N we have: gσ ∈ N . Hence, the elements ϱ
and σ generate the group G.

We know that ϕσ(w) = αw for some α ∈ C such that |α|2 = 1. Let
ζ ∈ C∗ be such that ζ2 = α. Then ϕσ(ζw) = ζ̄αw = ζw. Replacing w
by ζw we obtain:{

ϕϱ(α) = α for α ∈ C and ϕϱ(w) = ξw,
ϕσ(α) = ᾱ for α ∈ C and ϕσ(w) = w.

The last formula implies that ϕσ2 = id. Since ϕ is injective, we conclude
that σ2 = e. Analogously, we have ϕσϱ = ϕϱ−1σ, hence σϱ = ϱ−1σ and
G is a dihedral group.

Lemma 6.2. Let G = Dn be the dihedral group given by the presen-
tation (32), N = ⟨ϱ⟩ ∼= Zn and C = ⟨σ⟩ ∼= Z2. Let A be a ring and

G
ϕ
−! Aut(A) be a group homomorphism. Then the following results are

true.

(a) We have a group homomorphism C
ψ
−! Aut

(
A[N,ϕ]

)
, where

ψσ
(
a[h]

)
= ϕσ(a)[h

−1] for any a ∈ A, h ∈ N. (34)

(b) There is a ring isomorphism(
A[N,ϕ]

)
[C,ψ] ∼= A[G,ϕ], (a[h]){σm} 7! a[hσm]

for any a ∈ A, h ∈ N and m ∈ N.
(35)

Moreover, if k is a field and G acts on A by k-algebra automorphisms
then the action ψ is also k-linear and (35) is an isomorphism of
k-algebras.
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Comment to the proof. Both results can be verified by a straightforward
computation and are therefore left to an interested reader as an exercise.

Proposition 6.3. For any n ∈ N, let G = Dn be the corresponding
dihedral group acting on A = CJzK by R-algebra homomorphisms given
by the formula (33). Then we have an isomorphism of R-algebras

A[G,ϕ] ∼=M2

(
Hn(O)

)
, (36)

where O = RJtnK.

Proof. By Lemma 6.2 we have: A[G,ϕ] ∼=
(
A[N,ϕ]

)
[C,ψ]. Recall that

we have an isomorphism of C-algebras A[N,ϕ] µ
−! Ĉ

[
C⃗n
]
given by the

formula (24). For any ζ ∈ C∗ with |ζ| = 1 we have: ψσ(ζ) = ζ̄ = ζ−1.
For all h ∈ N we have: ψσ([h]) =

[
h−1

]
. Hence,

ψσ
(
εk
)
= ψσ

 1

n

n−1∑
j=0

ζjk[ϱ
j ]

 =

n−1∑
j=0

ζ−jk [ϱ−j ] = εk

for any 1 ≤ k ≤ n. It follows that the induced action Ĉ
[
C⃗n
] ψσ
−! Ĉ

[
C⃗n
]

is given by the complex conjugation.

According to Lemma 4.1 we have: C[C,ψ] ∼= M2(R), where C ψσ
−! C,

α 7! ᾱ is the complex conjugation. As a consequence, we get isomor-
phisms of R-algebras

A[G,ϕ] ∼= Ĉ
[
C⃗n
][
C,ψ

] ∼=M2

(
Hn(O)

)
,

what proves the statement.

Definition 6.4. Let Y be a complete regular curve over C, which we
view as a scheme over R. Let G ⊆ AutR(Y ) be a finite subgroup and
Y

π
−! Y/G =: X be the canonical projection. For y ∈ Y◦ let N ⊆ G be

the corresponding stabilizer group, A = Ôy and x = π(y). We suppose
that |N | ≥ 2.

(a) Assume that N acts on A by C-linear automorphisms. Then we
say that x ∈ X has type n for n = |N | (note that according to
Proposition 6.1 we have G ∼= Zn).
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(b) Assume that N contains an element which acts as the complex
conjugation on A. Then N ∼= Dn for some n ∈ N (see again
Proposition 6.1) and we say that x has type n̄ provided n ≥ 2.

Remark 6.5. In the notation of Definition 6.4, let X = Y �G = (X,H)
be the corresponding non-commutative hereditary curve. Then points of
X of types n and n̄ for n ∈ N≥2 are precisely those ones for which the

order Ĥx is not maximal; see Proposition 6.3.

Remark 6.6. There are precisely three pairwise non-isomorphic real
projective curves of genus zero:

(a) The real projective line Xre = P1
R. The corresponding tame bi-

module Λre (see (9)) is the path algebra of the Kronecker quiver:

Λre = R
[

•
''
77 •
]
∼=
(

R R⊕ R
0 R

)
.

(b) The complex projective line Xco = P1
C. The corresponding tame

bimodule Λco is the path algebra of the Kronecker quiver over C:

Λco = C
[

•
''
77 •
]
∼=
(

C C⊕ C
0 C

)
.

(c) The real conic Xqt = Proj
(
R[x, y, z]/(x2 + y2 + z2)

)
. The corre-

sponding tame bimodule is

Λqt =

(
R H
0 H

)
,

see [32, Proposition 7.5].

Let Y ′ be a complete geometrically integral regular curve over R and

Y = Spec (C)×Spec(R) Y
′.

Then the Galois group Gal(C/R) = ⟨σ
∣∣σ2 = e

〉
canonically acts on Y

viewed as a scheme over R. In all examples below σ acts as the complex
conjugation.

Analogously to Example 5.7 and Example 5.8, we can consider finite
group actions on complex elliptic curves viewed as schemes over R.
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Example 6.7. Let Yλ = Proj
(
C[x, y, z]/(y2z − (x − λz)(x2 + z2))

)
for

some λ ∈ R. Then the dihedral group G = D2 = ⟨σ, ϱ⟩ ∼= Z2×Z2 acts on

Yλ by the rule (x : y : z)
ϱ
7! (x : −y : z). The fixed points of this action

are (λ : 0 : 1), (0 : i : 1) and (0 : 1 : 0) (note that σ permutes (0 : i : 1)
and (0 : −i : 1)). The stabilizer of (λ : 0 : 1) and (0 : 1 : 0) is the group
G itself, whereas the stabilizer of (0 : i : 1) is ⟨ϱ⟩ ∼= Z2.

We have: Yλ/G ∼= Xre. Moreover, one can naturally choose homo-
geneous coordinates (u : v) on Xre = Proj

(
R[u, v]

)
such that for the

canonical projection Yλ
π
−! Xre we have: π(λ : 0 : 1) = (λ : 1) and

π(0 : 1 : 0) = (1 : 0). The point o = π(i : 0 : 1) ∈ Xre corresponds to the
homogeneous ideal u2 + v2 ∈ R[u, v].

The above discussion shows that the corresponding non-commutative
hereditary curve X is of type

(
Xre, (2, 2̄, 2̄)

)
. More precisely, X has

(a) one special complex point o of weight 2;

(b) two special real points (λ : 1) and (1 : 0) of weight 2.

We have an exact equivalence of triangulated categories

Db
(
CohG(Yλ)

)
−! Db(ΠYλ,G−mod)

for an appropriate squid algebra ΠYλ,G of the form (10).

Example 6.8. Let Y = Proj
(
C[x, y, z]/(zy2 − x3 − z3)

)
and G = ⟨σ, ϱ⟩

∼= D6. Then G acts on Y by the rule ϱ(x : y : z) = (ξx : −y : z), where

ξ = exp

(
2πi

3

)
. The special orbits of the G-action are those of

(a) the point (−1 : 0 : 1), whose stabilizer is D2;

(b) the point (0 : 1 : 1), whose stabilizer is D3;

(c) the point (0 : 1 : 0), whose stabilizer is D6.

The corresponding hereditary curve X has type
(
Xre, (2̄, 3̄, 6̄)

)
. Since the

group AutR(Xre) acts transitively on triples of distinct closed real points
of Xre, we may assume that the special points of X are (0 : 1), (1 : 0)
and (1 : 1), respectively.

Now, let ϱ̃ = ϱ4. Consider the subgroup D3
∼= N = ⟨σ, ϱ̃⟩ ⊂ G. Then

N acts on Y by the rule ϱ̃(x : y : z) = (ξx : y : z). Again, we have
Y/N ∼= Xre. The points (0 : 1 : 1), (0 : −1 : 1) and (0 : 1 : 0) are
stabilized by N . Hence, the corresponding hereditary curve X hat type(
Xre, (3̄, 3̄, 3̄)

)
.
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Example 6.9. Consider now Y = Proj
(
C[x, y, z]/(zy2 − x3 + z3)

)
and

D3
∼= N = ⟨σ, ϱ̃⟩, where ϱ̃(x : y : z) = (ξx : y : z) for ξ = exp

(
2πi

3

)
.

Again, we have Y/N ∼= Xre. However, this time σ(0 : i : 1) = (0 : −i : 1).
As a consequence, we now have only two special orbits of the N -action
on Y :

(a) those of (0 : i : 1) whose stabilizer is Z3;

(b) those of (0 : 1 : 0) whose stabilizer is D3.

As a consequence, the corresponding hereditary curve X has type
(
Xre,

(3, 3̄)
)
.

Example 6.10. Let A = C[x, y]/(y2 + (x2 + λ)2 + 1) for some λ ∈ R
and Y = Yλ be the smooth regular projective curve over C with is the
completion of Y̆ = Spec(A) ⊂ A2

C. The dihedral group D2 = ⟨σ, ϱ⟩
operates on A by the rule x

ϱ
7! −x, y ϱ

7! y. It is clear that this action on
Spec(A) can be extended to an action on Y . Since AG = R[w, y]/(z2 +
y2 + 1) for w = x2 + λ, we may conclude that Y/G ∼= Xqt.

The action of G on Y has two special orbits. The first one is the orbit
of the point (0, i

√
1 + λ2) ∈ Y̆ . The corresponding stabilizer is ⟨ϱ⟩ ∼= Z2.

To describe the second orbit, consider the closure Ȳ of Y in P2
C. We

have: Ȳ = Proj
(
C[x, y, z]/(y2z2 + (x2 + λz2)2 + z4)

)
. Note that the

point o = (0 : 1 : 0) ∈ Ȳ is singular. The curve Y is the normalization
of Ȳ . Let Y

ν
−! Ȳ be the normalization map. Then ν−1(o) = {o+, o−}

and σ(o±) = o∓. A straightforward local computation shows that the
stabilizer of o+ is ⟨ϱ⟩ ∼= Z2. It follows that the corresponding hereditary
curve X has type

(
Xqt, (2, 2)

)
.

A systematic way to construct finite group actions on complex ellip-
tic curves viewed as real algebraic schemes comes from wallpaper groups.
To explain this construction, recall that a Klein surface X is a dianalytic
manifold (possibly, with non-empty boundary) of complex dimension
one; see [1,2,5] for the details. Klein surfaces naturally form a category.
An important result due to Alling and Greenleaf asserts that the cate-
gory of compact Klein surfaces is equivalent to the category of regular
complete curves over R; see [1, Theorem 3], [2, Section II.3] as well as
[5, Appendix A] for further elaborations. The key point is the following:
the setM(X) of all meromorphic functions on a connected Klein surface X
is an algebraic function field of one variable over R (i.e. a finitely genera-
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ted field extension of R of transcendence degree one); see [1, Theorem 1]
as well as [2]. The field M(X) defines a uniquely determined (up to
isomorphisms) regular projective curve X over R. The main point is to
prove that the correspondence X 7!M(X) defines a contravariant equiva-
lence between the category of connected Klein surfaces and the category
of real algebraic function fields in one variable.

In particular, in genus zero we have:

(a) the closed disc D =
{
z ∈ C

∣∣ |z| ≤ 1
}

has the function field R(z)
and corresponds to the curve Xre;

(b) the Riemann sphere S has the function field C(z) and corresponds
to Xco;

(c) the real projective plane P has the function field R(y)[x]/(x2 +
y2 + 1) and corresponds to the curve Xqt.

Recall that the Euclidean group E2 = O2(R) ⋉ R2 is the group of
isometries of the Euclidean plane R2 = C. For any (A, v⃗) ∈ E2 we have
the corresponding automorphism

R2 −! R2, x⃗ 7! Ax⃗+ v⃗,

which is either analytic (if det(A) = 1) or anti-analytic (if det(A) = −1)
with respect to the standard complex structure on R2 = C.

A wallpaper group W (also called plane crystallographic group) is a
discrete cocompact subgroup of E2; see for example [24,36]. Let T be the
subgroup of W consisting of all translations. Bieberbach’s Theorem as-
serts that T �W is a normal subgroup, T ∼= Z2 and G :=W/T ⊂ O2(R)
is a finite group (called point group of W ). Obviously, Y = C/T is a
complex torus and the point group G acts on Y by dianalytic automor-
phisms. The quotient XW = R2/W = Y /G is a compact flat surface
orbifold; see [36, Appendix A.3].

Let Z be a surface orbifold and p ∈ Z be its singular point. Then p
belongs to a one of the following three classes:

(a) Mirror point, if it admits a neighbourhood isomorphic to R2/Z2,
where the generator of Z2 acts by a reflection (say, with respect to
the x-axis).

(b) Elliptic point of order n ∈ N≥2 (denoted by n), if it admits a neigh-
bourhood isomorphic to R2/Zn, where Zn acts on R2 by rotations.
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(c) Corner reflector point of order n ∈ N≥2 (denoted by n̄), if it admits
a neighbourhood isomorphic to R2/Dn with respect to the natural
action of the dihedral group on R2.

If p ∈ XW is a mirror point then it is just an ordinary point of the
boundary of XW . An essential information about XW (viewed as an
surface orbifold) is governed by its diffeomorphism type and by the num-
ber/position of its elliptic and corner reflector points.

Let M be the field of meromorphic functions on Y. Then we have
a natural group embedding G ⊂ AutR(M) induced by the action of G
on Y (viewed as a Klein surface). Let Y be the complex elliptic curve
corresponding toY. Then we have a group embeddingG ⊂ AutR(Y ). Let
X = Y/G and X = XW = Y �G be the corresponding hereditary curve.
The key Proposition 6.1 as well as the aforementioned Alling–Greenleaf
equivalence of categories allows one to relate the datum (X, ρ) defining
X with the orbifold notation of the underlying wallpaper group W .

Theorem 6.11. Let W be a wallpaper group for which g(X) = 0. Then
there exists a real squid algebra ΠW of tubular type and an exact equiva-
lence of triangulated categories

Db
(
Coh(XW )

)
≃ Db

(
ΠW−mod

)
. (37)

Proof. Since g(X) = 0, Theorem 3.12 implies that there exists a squid al-
gebra ΠW such that Db

(
Coh(XW )

)
≃ Db

(
ΠW−mod

)
. Recall (see [24,36])

the classification of the isomorphism classes of wallpaper groups and the
corresponding flat surface orbifolds:

� Wallpaper group Orbifold type hereditary curve type
1 hexatrope group S(2, 3, 6) Xco(2, 3, 6)
2 tetratrope group S(2, 4, 4) Xco(2, 4, 4)
3 tritrope group S(3, 3, 3) Xco(3, 3, 3)
4 ditrope group S(2, 2, 2, 2) Xco(2, 2, 2, 2)
5 hexascope group D(2̄, 3̄, 6̄) Xre(2̄, 3̄, 6̄)
6 tetrascope group D(2̄, 4̄, 4̄) Xre(2̄, 4̄, 4̄)
7 triscope group D(3̄, 3̄, 3̄) Xre(3̄, 3̄, 3̄)
8 discope group D(2̄, 2̄, 2̄, 2̄) Xre(2̄, 2̄, 2̄, 2̄)
9 tetragyro group D(4, 2̄) Xre(4, 2̄)
10 trigyro group D(3, 3̄) Xre(3, 3̄)
11 digyro group D(2, 2) Xre(2, 2)
12 dirhomb group D(2, 2̄, 2̄) Xre(2, 2̄, 2̄)
13 diglide group P(2, 2) Xqt(2, 2)

14 monotrope group torus Proj
(
C[x, y, z]/(zy2 − x3 + xz2)

)
15 monoglide group Klein bottle Proj

(
R[x, y, z]/(z2y2 + (x2 + z2)(x2 + z2))

)
16 monorhomb group Möbius band Proj

(
R[x, y, z]/(zy2 − x3 − xz2)

)
17 monoscope group annulus Proj

(
R[x, y, z]/(zy2 − x3 + xz2)

)
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The last four types of the above table correspond to real projective curve
of genus one, the stated correspondence is taken from [2, Example 1]. The
corresponding derived categoryDb

(
Coh(X)

)
does not have tilting objects.

In the first thirteen cases, it follows from the stated classification, that
the squid algebra ΠW has a tubular type.

Remark 6.12. The correspondence between wallpaper groups and real
hereditary curves of tubular type was for the first time observed by Len-
zing many years ago [33]. Kussin in [28, Corollary 13.23] gave a classi-
fication of all hereditary curves of tubular type. From this classification
it became apparent that the curves of type XW are precisely those ones,
for which [ηX] = 0: indeed, the corresponding numerical patterns are
the same. Kussin informed me about another approach to establish a
more concrete correspondence between wallpaper groups and exceptional
hereditary curves of tubular type [29]. However, the works [28, 29] are
heavily based on the “axiomatic approach” to non-commutative heredi-
tary curves and the corresponding proofs are technically different from
the ones given in this paper.
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