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Abstract. An idea of the notion of a digroup which genera-
lizes groups and has close relationships with the dimonoids, trioids,
Leibniz algebras and other structures was proposed by J.-L. Loday.
In terms of digroups, Kinyon obtained an analogue of Lie’s third
theorem for the class of so-called split Leibniz algebras. In this pa-
per, we use group operations (semigroup operations) to construct
new digroups (dimonoids) and show that any group (semigroup)
can be embedded into a suitable non-trivial digroup (dimonoid).
We present a universal extension for an arbitrary dimonoid, give
a construction of the free abelian generalized digroup and charac-
terize the least group congruence on it. We also describe the least
abelian digroup congruence on the free generalized digroup.

1. Introduction

The digroups first implicitly appeared in the paper of Loday [8] and then
they have been also proposed independently in [2, 4, 7]. The notion of a
digroup generalizes the notion of a group. A digroup is a nonempty set
equipped with two binary associative operations, a unary operation and a
nullary operation satisfying additional axioms relating these operations.
A digroup is a group iff these both binary operations coincide. Digroups
are closely related to dimonoids and trioids which play an important role
in problems from the theory of Leibniz algebras and algebraic topology
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and they have been studied, for example, in [8,14,16,17,20,21,24]. Cay-
ley’s theorem for digroups was given in [7]. Kinyon showed that every
digroup is a product of a group and a trivial digroup [5]. Linear repre-
sentations of digroups were considered by Felipe [3]. A more simple
basis of independent axioms for the variety of digroups was obtained
by Phillips [10]. Different examples of digroups can be found in [19] and
some analogues of known structural results of group theory were obtained
in [9]. The free digroup of an arbitrary rank was constructed in [15], but
a clearer description of the free monogenic digroup was given in [26].
The properties of generalized digroups and generalized dimonoids were
investigated in [12,22]. For other recent works on (generalized) digroups
see, for instance, [13,18,25].

This paper is organised as follows. In Section 2, we define a new
class of dimonoids and describe some representations of semigroups and
dimonoids into suitable dimonoids (Theorems 1 and 2). In Section 3,
we construct a new class of digroups from groups and show that an
arbitrary group can be embedded into some non-trivial digroup of this
class (Theorem 4). In Section 4, we give a construction of the free abelian
generalized digroup of an arbitrary rank (Theorem 6) and characterize
the least group congruence on it. In addition, we present the least abelian
digroup congruence on the free generalized digroup.

2. Dimonoids

Definition 1. A nonempty set D equipped with two binary associative
operations ⊣ and ⊢ is called a dimonoid [8] if for all x, y, z ∈ D,

(D1) (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),

(D2) (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z),

(D3) (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z).

These algebraic systems under the name “dimonoids” first appeared
in Loday’s paper [8]. It should be noted that for the notion of a dimonoid
some authors use a termin “disemigroup” (see, e.g. [15]).

If operations of a dimonoid coincide, then it becomes a semigroup.

Example 1. A dimonoid is any (finite dimensional) vector space V with
the operations on V defined by x ⊣ y := x + yφ and x ⊢ y := xφ+ y,
where φ is an idempotent linear operator on V (it follows from [2, Exam-
ple 3.2]).
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Definition 2. For a semigroup S, a nonempty subset with the property
that every element commutes with any other element of the semigroup
is called the center of S and it is denoted by Z(S). For a dimonoid
D = (D,⊣,⊢), the intersection Z((D,⊣)) ∩ Z((D,⊢)) we call the center
of D. We will denote by Z(D) the center of the dimonoid D.

Let G = (G,≺,≻) be an arbitrary dimonoid with a nonempty center,
ξ ∈ Z(G) and D(G) = G∪ (G×G). We extend the dimonoid operations
on G to the binary operations ⊣ and ⊢ on D(G) as follows:

a ⊣ (b, c) = a ≺ b ≺ c ≺ ξ,

(b, c) ⊣ a = (b, c ≺ a),

(a, b) ⊣ (c, d) = (a, b ≺ c ≺ d ≺ ξ),

a ⊢ (b, c) = (a ≻ b, c),

(b, c) ⊢ a = b ≻ c ≻ a ≻ ξ,

(a, b) ⊢ (c, d) = (a ≻ b ≻ c ≻ ξ, d)

for all a, b, c, d ∈ G. The algebra (D(G),⊣,⊢) is denoted by Dξ(G).

Proposition 1. For any dimonoid G with a nonempty center and every
ξ ∈ Z(G), the algebraic system Dξ(G) is a dimonoid.

Proof. Similar as in [26], one can prove the associativity of operations ⊣
and ⊢ on D(G). Now we will check the axiom (D3) for Dξ(G).

Let a, b, c ∈ D(G). The case a, b, c ∈ G is trivial. If a ∈ G × G,
a = (a1, a2), and b, c ∈ G, then using (D3) for G,

(a ⊣ b) ⊢ c = (a1, a2 ≺ b) ⊢ c =

= a1 ≻ ((a2 ≺ b) ≻ c) ≻ ξ = a1 ≻ a2 ≻ b ≻ c ≻ ξ =

= (a1, a2) ⊢ (b ≻ c) = a ⊢ (b ⊢ c).

Let a, c ∈ G and b = (b1, b2) ∈ G × G. Using the axiom (D3) for G
three times and fact ξ ∈ Z(G), we obtain that

(a ⊣ b) ⊢ c = (a ≺ b1 ≺ b2 ≺ ξ) ≻ c =

= a ≻ b1 ≻ b2 ≻ ξ ≻ c = a ≻ b1 ≻ b2 ≻ c ≻ ξ =

= a ⊢ (b ⊢ c).
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For a, b ∈ G and c = (c1, c2) ∈ G×G, we have

(a ⊣ b) ⊢ c = (a ≺ b) ⊢ (c1, c2) =

= ((a ≺ b) ≻ c1, c2) = (a ≻ b ≻ c1, c2) =

= a ⊢ (b ≻ c1, c2) = a ⊢ (b ⊢ c).

Assume a = (a1, a2), b = (b1, b2) ∈ G×G and c ∈ G. Applying (D3)
to G three times and taking into acount that ξ ∈ Z(G),

(a ⊣ b) ⊢ c = (a1, a2 ≺ b1 ≺ b2 ≺ ξ) ⊢ c =

= a1 ≻ (a2 ≺ b1 ≺ b2 ≺ ξ) ≻ c ≻ ξ =

= a1 ≻ a2 ≻ b1 ≻ b2 ≻ c ≻ ξ ≻ ξ =

= (a1, a2) ⊢ b1 ≻ b2 ≻ c ≻ ξ = a ⊢ (b ⊢ c).

Let a = (a1, a2), c = (c1, c2) ∈ G×G and b ∈ G. Then

(a ⊣ b) ⊢ c = (a1, a2 ≺ b) ⊢ (c1, c2) =

= (a1 ≻ (a2 ≺ b) ≻ c1 ≻ ξ, c2) =

= (a1, a2) ⊢ (b ≻ c1, c2) = a ⊢ (b ⊢ c).

Take a ∈ G and b = (b1, b2) , c = (c1, c2) ∈ G×G. Similarly as above,

(a ⊣ b) ⊢ c = (a ≺ b1 ≺ b2 ≺ ξ) ⊢ (c1, c2) =

= ((a ≺ b1 ≺ b2 ≺ ξ) ≻ c1, c2) =

= (a ≻ b1 ≻ b2 ≻ c1 ≻ ξ, c2) =

= a ⊢ (b1 ≻ b2 ≻ c1 ≻ ξ, c2) = a ⊢ (b ⊢ c).

Finally, for a = (a1, a2), b = (b1, b2), c = (c1, c2) ∈ G×G,

(a ⊣ b) ⊢ c = (a1, a2 ≺ b1 ≺ b2 ≺ ξ) ⊢ (c1, c2) =

= (a1 ≻ (a2 ≺ b1 ≺ b2 ≺ ξ) ≻ c1 ≻ ξ, c2) =

= (a1 ≻ a2 ≻ b1 ≻ b2 ≻ c1 ≻ ξ ≻ ξ, c2) =

= (a1, a2) ⊢ (b1 ≻ b2 ≻ c1 ≻ ξ, c2) = a ⊢ (b ⊢ c).

Therefore, the axiom (D3) holds for Dξ(G). Analogously, one can
prove that (D1) holds, too. Furthermore, we prove the axiom (D2).
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The case a, b, c ∈ G is clear. In the case a = (a1, a2) ∈ G × G and
b, c ∈ G, we have

(a ⊢ b) ⊣ c = (a1 ≻ a2 ≻ b ≻ ξ) ≺ c =

= a1 ≻ a2 ≻ b ≻ (ξ ≺ c) = a1 ≻ a2 ≻ ((b ≻ ξ) ≺ c) =

= a1 ≻ a2 ≻ ((ξ ≻ b) ≺ c) = a1 ≻ a2 ≻ (ξ ≻ (b ≺ c)) =

= a1 ≻ a2 ≻ (b ≺ c) ≻ ξ = (a1, a2) ⊢ (b ≺ c) = a ⊢ (b ⊣ c).

If a, c ∈ G and b = (b1, b2) ∈ G×G, then

(a ⊢ b) ⊣ c = (a ≻ b1, b2) ⊣ c =

= (a ≻ b1, b2 ≺ c) = a ⊢ (b1, b2 ≺ c) = a ⊢ (b ⊣ c).

For a, b ∈ G and c = (c1, c2) ∈ G×G,

(a ⊢ b) ⊣ c = (a ≻ b) ⊣ (c1, c2) =

= (a ≻ b) ≺ c1 ≺ c2 ≺ ξ =

= a ≻ (b ≺ c1 ≺ c2 ≺ ξ) = a ⊢ (b ⊣ c).

Take a = (a1, a2), b = (b1, b2) ∈ G×G and c ∈ G. Then

(a ⊢ b) ⊣ c = (a1 ≻ a2 ≻ b1 ≻ ξ, b2) ⊣ c =

= (a1 ≻ a2 ≻ b1 ≻ ξ, b2 ≺ c) =

= (a1, a2) ⊢ (b1, b2 ≺ c) = a ⊢ (b ⊣ c).

For the case a = (a1, a2), c = (c1, c2) ∈ G×G and b ∈ G,

(a ⊢ b) ⊣ c = (a1 ≻ a2 ≻ b ≻ ξ) ⊣ (c1, c2) =

= (a1 ≻ a2 ≻ b ≻ ξ) ≺ c1 ≺ c2 ≺ ξ =

= (a1 ≻ a2 ≻ ξ ≻ b) ≺ c1 ≺ c2 ≺ ξ =

= a1 ≻ a2 ≻ ξ ≻ (b ≺ c1 ≺ c2 ≺ ξ) =

= a1 ≻ a2 ≻ (b ≺ c1 ≺ c2 ≺ ξ) ≻ ξ =

= (a1, a2) ⊢ (b ≺ c1 ≺ c2 ≺ ξ) = a ⊢ (b ⊣ c).

Supposing a ∈ G and b = (b1, b2) , c = (c1, c2) ∈ G×G, we obtain

(a ⊢ b) ⊣ c = (a ≻ b1, b2) ⊣ (c1, c2) =
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= (a ≻ b1, b2 ≺ c1 ≺ c2 ≺ ξ) =

= a ⊢ (b1, b2 ≺ c1 ≺ c2 ≺ ξ) = a ⊢ (b ⊣ c).

Let a = (a1, a2), b = (b1, b2), c = (c1, c2) ∈ G×G, then

(a ⊢ b) ⊣ c = (a1 ≻ a2 ≻ b1 ≻ ξ, b2) ⊣ (c1, c2) =

= (a1 ≻ a2 ≻ b1 ≻ ξ, b2 ≺ c1 ≺ c2 ≺ ξ) =

= (a1, a2) ⊢ (b1, b2 ≺ c1 ≺ c2 ≺ ξ) = a ⊢ (b ⊣ c).

Thus, Dξ(G) is a dimonoid.

Proposition 1 gives a new class of dimonoids (both dimonoid opera-
tions are not commutative) which are defined by arbitrary dimonoids
with a nonempty center.

Theorem 1. For any semigroup S there exists a monoid (T, ·) with unity
e such that the dimonoid De((T, ·, ·)) contains S as a subsemigroup.

Proof. Let S be an arbitrary semigroup (with the operation ∗). Assume
that S does not have a unity. We take an arbitrary symbol 1 /∈ S and
define on the set S1 = S ∪ {1} a new binary operation · as follows:
1 · x = x = x · 1 and y · z = y ∗ z for all x ∈ S1 and y, z ∈ S. It is
well-known (see, e.g., [6]) that (S1, ·) is a monoid. Then we put

T =

{
S, if S has a unity,

(S1, ·) otherwise

for any semigroup S. Therefore, T is a monoid (say, with the unity e).
Clearly, the monoid T can be considered as a dimonoid in which opera-
tions coincide. In this case Z(T ) ̸= Ø and by Proposition 1, De(T ) is a
dimonoid. By construction of De(T ), we conclude that De(T ) contains
S as a subsemigroup.

Let (G,≺,≻) be an arbitrary dimonoid and D(G) = G ∪ (G × G).
We extend the dimonoid operations on G to the binary operations ⊣ and
⊢ on D(G) as follows:

a ⊣ (b, c) = a ≺ b ≺ c,

(b, c) ⊣ a = (b, c ≺ a),

(a, b) ⊣ (c, d) = (a, b ≺ c ≺ d),
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a ⊢ (b, c) = (a ≻ b, c),

(b, c) ⊢ a = b ≻ c ≻ a,

(a, b) ⊢ (c, d) = (a ≻ b ≻ c, d).

The algebra (D(G),⊣,⊢) is denoted by D(G).

Theorem 2. For any dimonoid G = (G,≺,≻), the algebraic system
D(G) = (D(G),⊣,⊢) is a dimonoid containing G as a subdimonoid.

Proof. Similarly as in Proposition 1 one can show that the algebra D(G)
is a dimonoid. By construction, G ⊂ D(G).

We call the obtained dimonoid D(G) the universal extension of the
dimonoid G.

3. Digroups

There are several definitions of a digroup, so we consider them.

Definition 3. Following [5], a dimonoid (D,⊣,⊢) is called a digroup if

(D4) there exists an element e ∈ D such that for all g ∈ D,

e ⊢ g = g = g ⊣ e,

(D5) for any g ∈ D there exists an element g−1 ∈ D such that

g ⊢ g−1 = e = g−1 ⊣ g.

An element e is called a bar-unit of the digroup (D,⊣,⊢) and g−1 is said
to be inverse to g with respect to e.

A bar-unit of a dimonoid is defined in analogous way as for digroups
(see, e.g., [8]). Axiom (D4) asserts that a bar-unit exists in a digroup,
but it is not assumed to be unique.

Example 2. Let (V,⊣,⊢) be the dimonoid from Example 1. Then
(V,⊣,⊢) is a digroup if we take the zero vector as a bar-unit and if
we put g−1 = −g for all g ∈ V [2, Example 3.2].

Recall that a non-empty class K of algebraic systems is a variety if
the Cartesian product of any sequence of K-systems is a K-system, every
subsystem of an arbitraryK-system is aK-system and any homomorphic
image of an arbitrary K-system is a K-system [1]. Equivalently, a variety
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K is an equational class, that is, a class of algebras defined by some set
of identities of the given type.

Observe that the class of digroups according to Definition 3 is not a
variety; in particular, it is not the variety of dimonoids similarly as the
class of groups is not the variety of semigroups.

Definition 4. According to [10, 15], a nonempty set G equipped with
two binary operations ⊣ and ⊢, a unary operation −1, and a nullary
operation 1, is called a digroup if the following conditions hold:

(D0) (G,⊣) and (G,⊢) are semigroups,

(D1) (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z),

(D2) x ⊢ (y ⊣ z) = (x ⊢ y) ⊣ z,

(D3) (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z),

(D4) 1 ⊢ x = x = x ⊣ 1,

(D5) x ⊢ x−1 = 1 = x−1 ⊣ x.

An element 1 is called the bar-unit of the digroup and x−1 is said to
be inverse of x.

We gave both definitions of digroups (Definitions 3 and 4), because
both of them are currently in use. Observe that the class of digroups
according to Definition 4 is a variety, in contrast to Definition 3. We will
give a summary of these two classes of digroups in a forthcoming paper.

Definition 5. Let D = (D,⊣,⊢,−1 , 1) be an arbitrary digroup (in the
sense of Definition 4). The set of all bar-units of D is called the halo part
and denoted by E(D); the set of all inverse elements of D is called the
group part and denoted by J(D) (see, e.g., [15]).

Remark 1. The group part of any digroup (D,⊣,⊢,−1 , 1) is a group in
which the binary operations ⊣ and ⊢ coincide [5, Lemma 4.5 (3)].

Remark 2. Note that (D,⊢,⊣,−1 , 1) does not yield a digroup if
(D,⊣,⊢,−1 , 1) is a digroup. So, the digroup axioms are not “self-dual”.

Example 3. Let G be an arbitrary set with |G| > 1. Define x ⊣ y := x
and x ⊢ y := y for all x, y ∈ G. Select any element of G as 1 and define
all x−1 as 1. Then (G,⊣,⊢,−1 , 1) becomes a digroup [19, Example 3.1]
in which every element satisfies the axiom (D4) and can be considered
as a signature bar-unit of another digroup.
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It turns out that the axioms of a digroup in Definition 4 are not inde-
pendent. The system of independent axioms for the variety of digroups
was found by Phillips [10, Theorem 2], where it was proved that the
digroup Definition 4 can be simplified.

Theorem 3 ([10]). A nonempty set G equipped with two binary opera-
tions ⊣ and ⊢, a unary operation −1, and a nullary operation 1, is a
digroup according to Definition 4 if and only if

(D0) (G,⊣) and (G,⊢) are semigroups,

(D′
2) x ⊢ (x ⊣ z) = (x ⊢ x) ⊣ z,

(D4) 1 ⊢ x = x = x ⊣ 1,

(D5) x ⊢ x−1 = 1 = x−1 ⊣ x.

An arbitrary digroup we call trivial if its binary operations coincide
and non-trivial otherwise.

If (H, ∗) is a group, sometimes we refer to (H, ∗) as a trivial digroup
(H, ∗, ∗). Obviously, for an arbitrary group (H, ∗), we have J((H, ∗, ∗))
= (H, ∗). In connection with this, it is natural to consider the following
question: is there for an arbitrary group H a non-trivial digroup G such
that J(G) = H ?

One of the main results of this paper is the following statement.

Theorem 4. For an arbitrary group H there exists a non-trivial digroup
such that the group part of this digroup coincides with H.

Proof. LetH = (H, ∗) be an arbitrary group with the unity 1, and let ξ be
a fixed element of the center Z(H). It is easy to see that ξ ∈ Z((H, ∗, ∗)),
where (H, ∗, ∗) is a trivial digroup and the center of a digroup is defined
in similar way as for dimonoids (see Def. 2). Now we can define a unary
operation † on D(H) = H ∪ (H ×H) by

x† =

{
x−1, x ∈ H,

x−1
2 ∗ x−1

1 ∗ ξ−1, x = (x1, x2) ∈ H ×H.

Denote the algebra (D(H),⊣,⊢, †, 1) by DGξ(H). Here the operations
⊣ and ⊢ onD(H) are defined in a similar way as in Proposition 1 (Sect. 2).
By Theorem 1, Dξ(H) = (D(H),⊣,⊢) is a dimonoid which contains H.
Consequently, axioms (D0) and (D′

2) from Definition 5 hold in DGξ(H).
Further for all a ∈ H and b = (b1, b2) ∈ H ×H we have

1 ⊢ a = 1 ∗ a = a = a ∗ 1 = a ⊣ 1,



Yu. V. Zhuchok, G. F. Pilz, A. V. Zhuchok 279

1 ⊢ b = (1 ∗ b1, b2) = b = (b1, b2 ∗ 1) = b ⊣ 1.

Thus, 1 is a bar-unit of the dimonoid Dξ(H) and (D4) holds. At the
end, we check the last digroup axiom (D5).

For every x ∈ H there exists an inverse element x† = x−1 ∈ H such
that

x ∗ x† = 1 = x† ∗ x.
Moreover, for every pair (x, y) ∈ H×H there exists an inverse element

(x, y)† = y−1 ∗ x−1 ∗ ξ−1 ∈ H such that

(x, y) ⊢ (x, y)† = (x, y) ⊢
(
y−1 ∗ x−1 ∗ ξ−1

)
=

= x ∗ y ∗
(
y−1 ∗ x−1 ∗ ξ−1

)
∗ ξ = 1 =

=
(
y−1 ∗ x−1 ∗ ξ−1

)
∗ x ∗ y ∗ ξ =

=
(
y−1 ∗ x−1 ∗ ξ−1

)
⊣ (x, y) = (x, y)† ⊣ (x, y) .

According to Definition 5, DGξ(H) is a digroup. It is obvious that
J(DGξ(H)) = H.

Thus, Theorem 4 gives a new class of digroups which are defined by
arbitrary groups.

Corollary 1. E(DGξ(H)) = {1, (x, x−1 ∗ ξ−1) | x ∈ H}.

Corollary 2. Let H = (H, ∗,−1 , 1) be an arbitrary group and the non-
nullary operations of H are extended to the binary operations ⊣ and ⊢,
and the unary operation † on H ∪ (H ×H) as follows:

a ⊣ (b, c) = a ∗ b ∗ c,

(b, c) ⊣ a = (b, c ∗ a),
(a, b) ⊣ (c, d) = (a, b ∗ c ∗ d),

a ⊢ (b, c) = (a ∗ b, c),
(b, c) ⊢ a = b ∗ c ∗ a,

(a, b) ⊢ (c, d) = (a ∗ b ∗ c, d),
(a, b)† = b−1 ∗ a−1.

Then the algebra DG1(H) = (H ∪ (H ×H),⊣,⊢, †, 1) is a digroup.

Example 4. Let Z = (Z,+) be the additive group of all integers and
let ξ = 1 ∈ Z. By Theorem 4, DG1(Z) is a digroup that contains Z
as a subgroup. It is known that DG1(Z) is generated by (0, 0) and it is
isomorphic to the free monogenic digroup (see [26]).
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4. Free abelian generalized digroups

Let us consider the notion of a generalized digroup.

Definition 6. A dimonoid (D,⊣,⊢) is called a generalized digroup (see,
e.g., [12, 18]) if there exists a bar-unit e ∈ D, and for every x ∈ D there

exist elements x
ℓ
−1
e and x

r
−1
e of D such that x ⊢ x

r
−1
e = e = x

ℓ
−1
e ⊣ x.

If elements x
ℓ
−1
e and x

r
−1
e coincide, then a generalized digroup is a

digroup in the sense of Definition 3. If operations ⊣ and ⊢ of a generalized
digroup coincide, then it becomes a group. As for digroups, the set of all
bar-units of a generalized digroup D = (D,⊣,⊢) is called the halo part
and it is denoted by E(D).

Commutativity and abelianity in generalized digroups have different
meanings. A generalized digroup (D,⊣,⊢) is called commutative [18] if
both semigroups (D,⊣) and (D,⊢) are commutative, and a generalized
digroup (D,⊣,⊢) is called abelian [12] if x ⊣ y = y ⊢ x for all x, y ∈ D.
It is obvious that for any generalized abelian digroup (D,⊣,⊢) the semi-
groups (D,⊣) and (D,⊢) are anti-isomorphic.

In [18], it was proved that there do not exist commutative generali-
zed digroups with different operations. From [12] it follows that any
abelian generalized digroup is an abelian digroup, therefore further we
will write “abelian digroup” instead of “abelian generalized digroup”.
Some models of free (generalized) digroups were considered in [11,18,26].

Now we give a model of the free monogenic generalized digroup [18].
As before, by Z we denote the set of integers. Define operations ⊣

and ⊢ on Z× Z by

(n,m) ⊣ (p, s) = (n,m+ p+ s+ 1),

(n,m) ⊢ (p, s) = (n+m+ p+ 1, s)

for all (n,m), (p, s) ∈ Z×Z. The algebra (Z×Z,⊣,⊢) is denoted by FD1.

Theorem 5 ([18]). FD1 is a free monogenic (by (0, 0)) generalized di-
group with the halo

E(FD1) = {(n,m) | n+m+ 1 = 0}

and inverses with respect to the bar unit (n,m)

(p, s)
ℓ
−1
(n,m) = (n,m− s− p− 1)
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and

(p, s)
r
−1
(n,m) = (n− s− p− 1,m),

where (p, s) ∈ FD1.

Proposition 2. The class of all generalized digroups does not form a
variety.

Proof. Consider the subset N × N of FD1, where N is the set of all
positive integers. Obviously, N × N forms a subdimonoid. At the same
time, E(N× N) = ∅. It means that the class of all generalized digroups
is not closed under taking subalgebras and so, it is not a variety.

The fact that a class of algebras, like (generalized) digroups defined
above, is not a variety, does not prevent the presence of free objects in
it. Now we show how to construct free abelian digroups of an arbitrary
rank.

Let (D,⊣,⊢) be a digroup, ε ∈ D a bar-unit and A a subset of D. We
say that A is a generating set of (D,⊣,⊢) respect to ε if every element
of D can be expressed as a product of elements of A and their inverses
respect to ε.

Let X be an arbitrary nonempty set, and let FA(X) be the free
abelian group generated by X, where e is the empty word. Define opera-
tions ⊣ and ⊢ on X × FA(X) by

(x, a) ⊣ (y, b) = (x, ayb), (x, a) ⊢ (y, b) = (y, xab)

for all (x, a), (y, b) ∈ X × FA(X). The obtained algebra is denoted by
FAD(X).

Theorem 6. FAD(X) is the free abelian digroup on X × {e}.

Proof. By [23], FAD(X) is a dimonoid satisfying the identity x ⊣ y =
y ⊢ x for all x, y ∈ FAD(X). We state that E(FAD(X)) = {(y, b) |
yb = e}. Indeed,

(x, a) ⊣ (y, b) = (x, ayb) = (x, a) = (x, yba) = (y, b) ⊢ (x, a)

for all (x, a) ∈ FAD(X) and (y, b) ∈ E(FAD(X)). The proof that yb = e
for each bar-unit (y, b) is obvious. For any (x, a) ∈ FAD(X) the inverse
element with respect to the bar-unit (y, b) ∈ E(FAD(X)) is

((x, a)
ℓ
−1
(y,b) = (y, ba−1x−1) = (x, a)

r
−1
(y,b).
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Thus, we deduce that FAD(X) is an abelian digroup.
Further we fix the bar-unit (z, z−1), z ∈ X, and show that X ×{e} is

a generating set of FAD(X) respect to (z, z−1). It is clear that the set of
all inverses for X×{e} respect to (z, z−1) is the set {(z, z−1x−1) |x ∈ X},
and we should establish that every element of FAD(X) has a represen-
tation in the form of the product of a finite number of elements from
X × {e} ∪ {(z, z−1x−1) |x ∈ X}.

Observe that for every element w of an arbitrary abelian digroup
(D,⊣,⊢) and a positive integer n,

w ⊣ . . . ⊣ w︸ ︷︷ ︸
n

= w ⊢ . . . ⊢ w︸ ︷︷ ︸
n

= wn.

Let (x, a) ∈ FAD(X). Then there exist gi ∈ X and ni ∈ Z, where
1 ≤ i ≤ p, such that (x, a) = (x, gn1

1 . . . g
np
p ). For every 1 ≤ i ≤ p, let

gni
i =

{
(gi, e)

ni , ni > 0,
((gi, e)

−1)−ni = (z, z−1gi
−1)−ni , ni < 0.

It is not to hard to show that

(x, gn1
1 . . . g

np
p ) = (x, e) ⊣ gn1

1 ⊣ . . . ⊣ g
np
p .

If ni = 0 for some 1 ≤ i ≤ p, then we omit gni
i , regarding that it is equal

to (z, z−1). It is clear that such representation is unique up to an order
of gni

i , 1 ≤ i ≤ p. As a consequence, FAD(X) is generated by X × {e}
respect to (z, z−1).

Let (D,⊣,⊢) be an arbitrary abelian digroup and let α : X → D be an
arbitrary map. Further we will denote the inverse element (with respect
to some fixed bar-unit) for w ∈ D by w−1. Suppose that β : FAD(X) → D

is a map defined by the rule: (x, e)β = xα and

(x, y1y2 . . . ym)β = xα ⊣ y1α̃ ⊣ y2α̃ ⊣ . . . ⊣ ymα̃

for all x ∈ X, y1, y2, . . . , ym ∈ X ∪X−1, where

yiα̃ =

{
yiα, yi ∈ X,

(y−1
i α)−1, yi ∈ X−1 (1 ≤ i ≤ m).

The map β is a homomorphism of digroups. Indeed, for all (x1, x2 . . . xk),
(y1, y2 . . . ym) ∈ FAD(X), where x1, y1 ∈ X, xi, yj ∈ X∪X−1, 2 ≤ i ≤ k,
2 ≤ j ≤ m, we obtain

((x1, x2 . . . xk) ⊣ (y1, y2 . . . ym))β = (x1, x2 . . . xky1y2 . . . ym)β =
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= x1α ⊣ x2α̃ ⊣ . . . ⊣ xkα̃ ⊣ y1α̃ ⊣ y2α̃ ⊣ . . . ⊣ ymα̃ =

= (x1α ⊣ x2α̃ ⊣ . . . ⊣ xkα̃) ⊣ (y1α ⊣ y2α̃ ⊣ . . . ⊣ ymα̃) =

= (x1, x2 . . . xk)β ⊣ (y1, y2 . . . ym)β.

From Theorem 9 of [12], it follows that in an abelian digroup (D,⊣,⊢),
the semigroup (D,⊣) is right commutative; we used this fact above.

Finally, using that the map β is a homomorphism of the semigroup
(X×FA(X),⊣) into the semigroup (D,⊣) and abelianity of our digroups,
we deduce that

((x1, x2 . . . xk) ⊢ (y1, y2 . . . ym))β = ((y1, y2 . . . ym) ⊣ (x1, x2 . . . xk))β =

= (y1, y2 . . . ym)β ⊣ (x1, x2 . . . xk)β = (x1, x2 . . . xk)β ⊢ (y1, y2 . . . ym)β.

If ρ is a congruence on a generalized digroup (D,⊣,⊢) such that
(D,⊣,⊢)/ρ is an abelian digroup, we say that ρ is an abelian digroup
congruence. If µ : D1 → D2 is a homomorphism of generalized digroups,
the kernel of µ is denoted by ∆µ, that is,

∆µ = {(x, y) ∈ D1 ×D1 |xµ = yµ}.

Now we present the least abelian digroup congruence on the free
generalized digroup. For this, we recall the construction of the free gene-
ralized digroup [11].

Let F (X) be the free group generated by X, where e is the empty
word. Define operations ⊣ and ⊢ on F (X)×X × F (X) by

(u, x, a) ⊣ (v, y, b) = (u, x, avyb),

(u, x, a) ⊢ (v, y, b) = (uxav, y, b)

for all (u, x, a), (v, y, b) ∈ F (X) × X × F (X). The algebraic system
(F (X)×X × F (X),⊣,⊢) is denoted by FD(X). By Proposition 4 from
[11], FD(X) is the free generalized digroup. Note that the free genera-
lized digroup FD(X) can be obtained from the more general digroup
construction first described in [19].

Proposition 3. The map

ζ : FD(X) → FAD(X) : (u, x, a) 7→ (u, x, a)ζ = (x, ua)

is an epimorphism inducing the least abelian digroup congruence on the
free generalized digroup FD(X).
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Proof. Take arbitrary elements (u, x, a), (v, y, b) ∈ FD(X). We have

((u, x, a) ⊣ (v, y, b))ζ = (u, x, avyb)ζ =

= (x, uavyb) = (x, ua) ⊣ (y, vb) = (u, x, a)ζ ⊣ (v, y, b)ζ,

((u, x, a) ⊢ (v, y, b))ζ = (uxav, y, b)ζ =

= (y, uxavb) = (x, ua) ⊢ (y, vb) = (u, x, a)ζ ⊢ (v, y, b)ζ.

For any (x, u) ∈ FAD(X) there exists (e, x, u) ∈ FD(X) such that
(e, x, u)ζ = (x, u), so ζ is surjective. Therefore, ζ is an epimorphism.
Since by Theorem 6 FAD(X) is the free abelian digroup, ∆ζ is the least
abelian digroup congruence on FD(X).

If ρ is a congruence on a generalized digroup (D,⊣,⊢) such that the
operations of (D,⊣,⊢)/ρ coincide and it is a group, we say that ρ is a
group congruence [18].

Now we present the least group congruence on the free abelian di-
group.

Proposition 4. The map

γ : FAD(X) → FA(X) : (x1, x2 . . . xk) 7→ (x1, x2 . . . xk)γ = x1x2 . . . xk

is an epimorphism inducing the least group congruence on the free abelian
digroup FAD(X).

Proof. For arbitrary elements (x1, x2 . . . xk), (y1, y2 . . . ym) ∈ FAD(X),
where x1, y1 ∈ X,xi, yj ∈ X ∪X−1, 2 ≤ i ≤ k, 2 ≤ j ≤ m, we get

((x1, x2 . . . xk) ⊣ (y1, y2 . . . ym))γ = (x1, x2 . . . xky1y2 . . . ym)γ =

= x1x2 . . . xky1y2 . . . ym = (x1x2 . . . xk)(y1y2 . . . ym) =

= (x1, x2 . . . xk)γ (y1, y2 . . . ym)γ,

((x1, x2 . . . xk) ⊢ (y1, y2 . . . ym))γ = (y1, x1x2 . . . xky2 . . . ym)γ =

= y1x1x2 . . . xky2 . . . ym = x1x2 . . . xky1y2 . . . ym =

= (x1x2 . . . xk)(y1y2 . . . ym) = (x1, x2 . . . xk)γ (y1, y2 . . . ym)γ.

The map γ is surjective since for any xu, y−1w ∈ FA(X), where
x, y ∈ X,u, v ∈ FA(X), there exist (x, u), (y, y−1vy−1) ∈ FAD(X) such
that (x, u)γ = xu or (y, y−1vy−1)γ = y−1v. Thus, γ is an epimorphism.
Since FA(X) is a free abelian group, ∆γ is the least group congruence
on FAD(X).
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