© Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 38 (2024). Number 2, pp. 204[–214](#page-10-0) DOI[:10.12958/adm2362](https://doi.org/10.12958/adm2362)

Decomposition of matrices from $SL_2(K[x, y])$

Yevhenii Chapovskyi, Oleksandra Kozachok, and Anatoliy Petravchuk

Dedicated to Professor Yu. A. Drozd on the occasion of his 80th birthday

ABSTRACT. Let K be an algebraically closed field of characteristic zero and $\mathbb{K}[x, y]$ the polynomial ring. The group $\text{SL}_2(\mathbb{K}[x, y])$ of all matrices with determinant equal to 1 over $\mathbb{K}[x, y]$ can not be generated by elementary matrices. The known counterexample was pointed out by P. M. Cohn. Conversely, A. A. Suslin proved that the group $SL_r(\mathbb{K}[x_1,\ldots,x_n])$ is generated by elementary matrices for $r \geq 3$ and arbitrary $n \geq 2$, the same is true for $n = 1$ and arbitrary r. It is proven that any matrix from $SL_2(\mathbb{K}[x,y])$ with at least one entry of degree \leq 2 is either a product of elementary matrices or a product of elementary matrices and of a matrix similar to the one pointed out by P. Cohn. For any matrix $\begin{pmatrix} f & g \\ -Q & P \end{pmatrix} \in SL_2 (\mathbb{K}[x, y])$, we obtain formulas for the homogeneous components P_i, Q_i for the unimodular row $(-Q, P)$ as combinations of homogeneous components of the polynomials f, g , respectively, with the same coefficients.

Introduction

Let K be a field and $A = K[x_1, \ldots, x_n]$ the polynomial ring in n variables. The group $GL_r(A)$ of all invertible matrices and its subgroup $SL_r(A)$ of matrices with determinant of 1 was studied by many authors from different points of view (see, for example, $[2, 3, 5, 6]$ $[2, 3, 5, 6]$ $[2, 3, 5, 6]$ $[2, 3, 5, 6]$ $[2, 3, 5, 6]$ $[2, 3, 5, 6]$ $[2, 3, 5, 6]$, the last paper contains

²⁰²⁰ Mathematics Subject Classification: 20H05, 20H25, 15A23.

Key words and phrases: unimodular row, special linear group, generators, decomposition.

an extensive literature review). One of the important questions in studyng $GL_r(A)$ (and $SL_{rn}(A)$) is the question about generators and relations of these groups. Classical papers of A. A. Suslin and P. M. Cohn answer this question. In [\[3\]](#page-10-2), it was proved that the group $SL_r(A)$ is generated by elementary matrices (or, in other terminology, elementary transvections) if $r \geq 3$ for arbitrary $n \geq 2$; in case $n = 1, r \geq 2$ the proof is elementary. If $r = 2$ and $n \geq 2$, then the group $SL_r(A)$ cannot be generated by elementary matrices [\[2\]](#page-10-1). The counterexample from [\[2\]](#page-10-1) is the matrix $\begin{pmatrix} x^2 & xy-1 \\ xy & z \end{pmatrix}$ $xy+1$ y^2 from the group $SL_2(\mathbb{K}[x,y])$. A question arises: how typical is this counterexample? We prove (Theorem [1\)](#page-6-0) that any matrix from $SL_2(\mathbb{K}[x,y])$ with at least one entry of degree ≤ 2 is either a product of elementary matrices or a product of a matrix similar to the one pointed out in [\[2\]](#page-10-1) and elementary matrices.

We consider the group $SL_2(\mathbb{K}[x,y])$ over an algebraically closed field K of characteristic zero. Let us recall some definitions and notations. An elementary matrix from the group $SL_2(\mathbb{K}[x,y])$ is of the form $\left(\begin{array}{cc} 1 & h \ 0 & 1 \end{array} \right)$ or

of the form $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $h₁$ $\Big), h \in \mathbb{K}[x, y]$. A row $(f, g) \in (\mathbb{K}[x, y])^2$ is called unimodular if there exist polynomials $P, Q \in \mathbb{K}[x, y]$ such that $Pf + Qg = 1$ (about some properties of unimodular rows see, for example, [\[4\]](#page-10-5)). The latter means that the matrix $\begin{pmatrix} f & g \\ -Q & P \end{pmatrix}$ has the determinant of 1. The unimodular row $(-Q, P)$ will be called associated with the row (f, g) . Note that by multiplying a unimodular row (f, g) from the right by the matrix $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}$, where $h \in \mathbb{K}[x, y]$, the result is the unimodular row $(f, g + fh)$. Multiplying unimodular rows (f, g) by an elementary matrix from the right defines a linear transformation of the free module of rank 2 over $\mathbb{K}[x,y]$. We call such a transformation an elementary transformation. The automorphism group $Aut(K[x, y])$ acts naturally on the group $SL_2(\mathbb{K}[x,y])$ by the rule: for any $\theta \in Aut(\mathbb{K}[x,y])$ and $A = (a_{ij}) \in SL_2(\mathbb{K}[x,y])$ put $A^{\theta} = (a_{ij}^{\theta})$ (note that for any elementary matrix B the matrix $B^{\theta}, \theta \in \text{Aut}(\mathbb{K}[x, y])$ is also an elementary matrix). We will use unimodular rows, and then the main result will be reformulated in matrix language. In Lemmas [5,](#page-4-0) [6,](#page-4-1) and [7](#page-5-0) we prove that any unimodular row (f, g) with deg $f \leq 2$ is, up to action of an automorphism $\theta \in$ Aut $(\mathbb{K}[x,y])$, one of the forms: $(1,0)$, or $(x^2, \psi(y)x + \gamma)$ with arbitrary $\psi(y) \in \mathbb{K}[x, y]$, or $(xy - \gamma, x^k)$, $\gamma \in \mathbb{K}^*, k \in \mathbb{Z}$, $k \geq 2$. As a

consequence, we obtain the main result (Theorem [1\)](#page-6-0).

In the second part of the paper, we consider unimodular rows (f, g) , $\deg f = \deg q = n, n \ge 1$. We obtain formulas for homogeneous components P_i, Q_i of the associated unimodular row $(-Q, P)$ as combinations of homogeneous components of polynomials f, g , respectively, with the same coefficients (Theorem [2\)](#page-8-0). These formulas can be used for studying matrices from $SL_2(\mathbb{K}[x,y])$ with entries of any degree.

1. Some properties of unimodular rows over $K[x, y]$

Here some technical results are collected about unimodular rows (of length 2) over the polynomial ring $\mathbb{K}[x, y]$.

Lemma 1. (1) Let (f, g) be a unimodular row over the ring $\mathbb{K}[x, y]$ and P, Q be polynomials such that $P f + Q g = 1$. Then the rows (P, Q) , (P, g) and (f, Q) are also unimodular.

(2) If (f, g) is a unimodular row, then for any endomorphism θ of the ring $\mathbb{K}[x, y]$, the row $(\theta(f), \theta(g))$ is also unimodular.

Lemma 2. Let $f, g, P, Q \in \mathbb{K}[x, y]$ be nonconstant polynomials such that $P f + Q g = 0$. Then there exist polynomials $h_1, h_2, \varphi, \psi \in \mathbb{K}[x, y]$ such that $f = \varphi h_1$, $g = \varphi h_2$, $gcd(h_1, h_2) = 1$, $P = \psi h_2$, $Q = -\psi h_1$.

Proof. Let $\varphi = \gcd(f, q)$, $\psi_0 = \gcd(P, Q)$. Then $f = \varphi h_1$, $g = \varphi h_2$ for coprime polynomials $h_1, h_2 \in \mathbb{K}[x, y]$. Analogously $P = \psi_0 P_0, Q = \psi_0 Q_0$ for some coprime P_0, Q_0 . Then by the conditions of the lemma we have

$$
0 = Pf + Qg = \varphi \psi_0 (P_0 h_1 + Q_0 h_2).
$$

The latter equalities imply

$$
P_0 h_1 + Q_0 h_2 = 0. \t\t(1)
$$

Since $gcd(h_1, h_2) = 1$ we have $P_0 \mid h_2$ and $h_2 \mid P_0$. But then $P_0 = \alpha h_2$ for some $\alpha \in \mathbb{K}^*$. Analogously $Q_0 = \beta h_1$ for some $\beta \in \mathbb{K}^*$. It follows from [1](#page-2-0) that $\beta = -\alpha$. Besides, $P = \psi_0 P_0 = \psi_0 \alpha h_2$ and $Q_0 = -\psi_0 \alpha h_1$. Denoting $\psi = \psi_0 \alpha$ we get $P = \psi h_2, Q = -\psi h_1$. \Box

Lemma 3. Let (f, g) be a unimodular row of nonconstant polynomials over $\mathbb{K}[x, y]$ and let $f = f_0 + \cdots + f_n$, $g = g_0 + \cdots + g_l$ be decomposition of f and g, respectively, in sums of homogeneous components. Then the polynomials f_n and g_l are not coprime, i.e., $\deg \gcd(f_n, g_l) \geq 1$.

Proof. By the conditions of the lemma there exist polynomials $P, Q \in$ $\mathbb{K}[x, y]$ such that $P f + Q g = 1$. Let

$$
P = P_0 + \dots + P_m, \ Q = Q_0 + \dots + Q_k
$$

be their decomposition into sums of homogeneous components. It follows from the equality $P f + Qg = 1$ that $P_m f_n + Q_k g_l = 0$ (it is obvious that $m + n = k + l$). Assume on the contrary that $gcd(f_n, g_l) = 1$. Then, by Lemma [2,](#page-2-1) we have

$$
P_m = \psi g_l, \ Q_k = -\psi f_n \tag{2}
$$

for a polynomial $\psi \in \mathbb{K}[x, y]$ with deg $\psi = m-l = k-n$. Denote by Ω the set of all pairs (P,Q) of polynomials that satisfy the equality $Pf+Qg=1$. Choose a pair $(P,Q) \in \Omega$ such that the sum $m + k = \deg P + \deg Q$ is minimal. Then the equalities [\(2\)](#page-3-0) imply that

$$
\deg(P - \psi g) + \deg(Q + \psi f) < \deg P + \deg Q.
$$

Besides, the equality holds: $(P - \psi g)f + (Q + \psi f)g = 1$. The latter contradicts the choice of the pair (P,Q) . This contradiction shows that $\deg \gcd(f_n, g_l) \geq 1.$ \Box

Corollary 1. Let $f, g \in \mathbb{K}[x, y]$ be a unimodular row. If deg $f = 1$, then $g = hf + c$ for some $h \in \mathbb{K}[x, y], c \in \mathbb{K}^*$.

Proof. Let

$$
f = f_0 + f_1, \ g = g_0 + g_1 + \dots + g_l
$$

be the decomposition of polynomials into sums of homogeneous compo-nents. Then by Lemma [3](#page-2-2) we have deg gcd $(f_1, g_1) \geq 1$. The latter means that g_l is divisible by f_1 , i.e. $g_l = h_1 f_1$ for some polynomial $h_1 \in \mathbb{K}[x, y]$. But then the row $(f, g - h_1 f)$ is unimodular and $\deg(g - h_1 f) < \deg g$. Continuing such considerations we obtain a unimodular row $(f, g - hf)$ for some $h \in \mathbb{K}[x, y]$ such that $\deg(g - hf) = 0$, i.e. $g - hf = c$. Obviously $c \neq 0$ and we get $g = hf + c, c \in \mathbb{K}^*$. П

Let us recall that any quadratic curve $f(x, y) = 0$, deg $f = 2$ is reduced by linear transformations of variables to one of the known canonical forms. This can be reformulated as follows:

Lemma 4. Let $f(x, y) \in \mathbb{K}[x, y]$, deg $f = 2$. Then there exist an affine automorphism θ of the ring $\mathbb{K}[x, y]$ of the form $\theta(x) = \alpha_1 x + \beta_1 y + \gamma_1$, $\theta(y) = \alpha_2 x + \beta_2 y + \gamma_2$ such that $\theta(f)$ is a polynomial of the following type:

(1) $f(x,y) = x^2 + \gamma, \, \gamma \in \mathbb{K};$ (2) $f(x, y) = x^2 + y;$ (3) $f(x, y) = xy + \gamma, \gamma \in \mathbb{K}$.

Lemma 5. Let (f, g) be a unimodular row such that $f = x^2+y$. Then this row is reduced to the row $(1,0)$ by elementary transformations, i.e. there exist elementary matrices B_1, \ldots, B_k such that $(f, g)B_1, \ldots, B_k = (1, 0)$.

Proof. Let us write the polynomial g as a polynomial of x with coefficients depending on y ,

$$
g(x, y) = g_0(y) + g_1(y)x + \cdots + g_k(y)x^k.
$$

Denote

$$
h(x,y) = g_2(y) + g_3(y)x + \dots + g_k(y)x^{k-2}.
$$

Then

$$
(f,g)\cdot\left(\begin{array}{cc}1 & -h\\0 & 1\end{array}\right)=(f,g_0(y)+g_1(y)x-yh(x,y)).
$$

Note that the polynomial $g^{(1)} = g_0(y) + g_1(y)x - yh(x, y)$ is of degree $\lt k$ on x, i.e., $\deg_x g < \deg_x g^{(1)}$. Repeating this process for the unimodular row $(x^2 + y, g^{(1)})$ we obtain as a result a unimodular row of the form $(x^2+y, g^{(s)})$ for some $s \ge 2$ with $\deg_x g^{(s)} \le 1$. So we can assume without loss of generality that $g(x, y) = g_0(y) + g_1(y)x$. By the conditions of the lemma, there exist polynomials $P(x, y), Q(x, y) \in \mathbb{K}[x, y]$ such that

$$
P(x, y)(x2 + y) + Q(x, y)(g0(y) + g1(y)x) = 1.
$$

Putting here $y = -x^2$ we get the equality

$$
Q(x, -x^2)(g_0(-x^2) + xg_1(-x^2)) = 1.
$$

It follows from this equality that $g_0(-x^2) + xg_1(-x^2) = c$ for some $c \in \mathbb{K}^*$. Since $\deg_x g_0(-x^2)$ is even and $\deg_x xg_1(-x^2)$ is odd we get $g_1 = 0$ and $g_0(y) \in \mathbb{K}$. But then $g = g_0 \in \mathbb{K}^*$ and the unimodular row $(x^2 + y, g_0)$ obviously is reduced to the row $(1, 0)$.

Lemma 6. Let (f, g) be a unimodular row, where $f = x^2 + \gamma$, $\gamma \in \mathbb{K}$. Then this row can be reduced by elementary transformations to either the row $(1,0)$, or to the row $(x^2 + \gamma, x\psi(y) + \delta)$, $\delta \in \mathbb{K}$, deg $\psi(y) \geq 1$.

Proof. Write down the polynomial $g(x, y)$ as a polynomial of x with coefficients in $\mathbb{K}[y]$

$$
g = g_0(y) + g_1(y) + \cdots + g_k(y)x^k.
$$

Repeating the consideration from the proof of Lemma [5](#page-4-0) one can assume without loss of generality that $g = g_0(y) + g_1(y)x$ for some polynomials $g_0(y)$ and $g_1(y)$. Since $(x^2 + \gamma, g_0(y) + g_1(y)x)$ is a unimodular row, there exist polynomials $P, Q \in \mathbb{K}[x, y]$ such that

$$
P(x^{2} + \gamma) + Q(g_{0}(y) + g_{1}(y)x) = 1.
$$

Note that for any polynomial $A(x, y) \in \mathbb{K}[x, y]$, the polynomials

$$
\overline{P}(x,y) = P(x,y) + A(x,y)g(x,y), \ \overline{Q}(x,y) = Q(x,y) - A(x,y)(x^2 + \gamma)
$$

also satisfy the equality $(x^2 + \gamma) \overline{P} + g(x, y) \overline{Q} = 1$. Therefore, without loss of generality, one can reduce the unimodular row (P,Q) by elementary transformations to the row $(P, Q_0(y) + Q_1(y)x)$ without changing the initial unimodular row $(x^2 + \gamma, g(x, y))$. We get the equality

$$
P(x, y)(x2 + \gamma) + (Q0(y) + Q1(y)x)(g0(y) + g1(y)x) = 1.
$$
 (3)

First, let $\gamma \neq 0$. Substituting in formulas [\(3\)](#page-5-1) x for $\sqrt{-\gamma}$ and then x for First, let $\gamma \neq 0$. Substituting in formulas (c) x for $\sqrt{-\gamma}$ and then x for $-\sqrt{-\gamma}$ we obtain two inclusions $g_1(y)\sqrt{-\gamma}+g_0(y) \in \mathbb{K}$ and $-g_1(y)\sqrt{-\gamma}+g_0(y)$ $g_0(y) \in \mathbb{K}$. It follows from these inclusions that $g_0(y) \in \mathbb{K}$ and $g_1(y) \in \mathbb{K}$. But then from [\(3\)](#page-5-1) we see that $Q_0(y), Q_1(y) \in \mathbb{K}$. The equality (3) shows also that $g_1 = 0$ and $Q_1 = 0$, i.e., $g(x, y) = c_1$ and $Q(x, y) = c_2$ for some $c_1, c_2 \in \mathbb{K}$. Therefore the unimodular row $(x^2 + \gamma, g)$ can be reduced (by elementary transformations) to the row $(1, 0)$.

Now let $\gamma = 0$, i.e., $f(x, y) = x^2$. Putting $x = 0$ in the equality [\(3\)](#page-5-1) we get $Q_0(y)g_0(y) = 1$. Thus $Q_0, g_0 \in \mathbb{K}^*$. The latter means that $g =$ $x\psi(y) + \delta$, where $\psi(y) = Q_1(y)$ and $\delta = Q_0$. Note that the unimodular row associated with $(x^2, x\psi(y)+\delta)$ is the row $(\frac{x\psi(y)-\delta}{\delta^2}, \delta^{-2}\psi^2(y))$ because the matrix $\begin{pmatrix} x^2 & x\psi(y) + \delta \\ s-2\psi(x) & s \end{pmatrix}$ $\delta^{-2}(x\psi(y)-\delta) \quad \delta^{-2}\psi^2(y)$ has the determinant 1.

2. The main theorem

We need to consider the last case when the unimodular row is of the form $(xy + \gamma, g(x, y)).$

Lemma 7. Let (f, g) be a unimodular row with $f(x, y) = xy + \gamma, \gamma \in \mathbb{K}$. Then this row can be reduced by elementary transformations to the unimodular row $(xy + \gamma, x^k)$ or to the row $(xy + \gamma, (-\gamma^{-1}y)^k)$ with integer $k \geq 2$, or to the row $(1,0)$.

Proof. By the conditions of the lemma we have an equality of the form

$$
P(x, y)(xy + \gamma) + Q(x, y)g(x, y) = 1
$$
\n⁽⁴⁾

for some polynomials $P, Q \in \mathbb{K}[x, y]$. Write down the polynomial $g(x, y)$ in the form $g(x, y) = \varphi(x) + \psi(y) + xyh(x, y)$ for some polynomials $\varphi(x), \psi(y), h(x, y) \in \mathbb{K}[x, y]$. Then we get the equality

$$
(xy + \gamma, g) \left(\begin{array}{cc} 1 & -h(x, y) \\ 0 & 1 \end{array} \right) = (xy + \gamma, \varphi(x) + \psi(y) - \gamma h(x, y)).
$$

If $h(x, y) \neq 0$ we can write $h(x, y) = \varphi_1(x) + \psi_1(y) + xyh_1(x, y)$ and repeat the previous considerations. As a result, we may assume without loss of generality that $g(x, y) = \varphi(x) + \psi(y)$. Analogously repeating considerations from the proof of Lemma [6](#page-4-1) we may assume that $Q(x, y) =$ $u(x) + v(y)$ for some polynomials $u(x), v(y) \in \mathbb{K}[x, y]$.

First, let $\gamma \neq 0$. Let us put $y = -\gamma/x$ in the equality [\(4\)](#page-6-1). We get $(u(x) + v(-\gamma/x))(\varphi(x) + \psi(-\gamma/x)) = 1$. One can easily prove that an element $p(x, x^{-1})$ from ring $\mathbb{K}[x, x^{-1}]$ is invertible in this ring if and only if $p = \alpha x^k$ for some $k \in \mathbb{Z}$, $\alpha \in \mathbb{K}^*$. So, we have $g(x, y) = x^k$, $Q(x, y) = (-\gamma^{-1}y)^k$ or $g(x, y) = (-\gamma^{-1}y)^k$, $Q(x, y) = x^k$ for some $k \ge 0$. In any case, the polynomial $P(x, y)$ is of the form

$$
P(x,y) = \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} = \gamma^{-1} \left(1 + \left(-\frac{xy}{\gamma} \right) + \dots + \left(-\frac{xy}{\gamma} \right)^{k-1} \right).
$$

As a result, we get two unimodular rows:

1) $(xy + \gamma, x^k)$ with the associated row $\left(-(-\gamma^{-1}y)^k, \frac{1-(-\gamma^{-1}xy)^k}{\gamma+xy} \right);$ 2) $(xy + \gamma, (-\gamma^{-1}y)^k)$ with the associated row $\left(-x^k, \frac{1-(-\gamma^{-1}xy)^k}{\gamma+xy}\right)$.

Note that one can assume that $k \geq 2$. Really, in other case the row $(xy + \gamma, x^k)$ is reduced to the row $(1,0)$ because of Corollary [1.](#page-3-1) Let now $\gamma = 0$. Let us replace x with 0 in the equality [\(4\)](#page-6-1). Then we have $(u(0) + v(y))(\varphi(0) + \psi(y)) = 1$. This equality implies obviously $v(y), \psi(y) \in \mathbb{K}$. Analogously after substituting 0 instead of y in [\(4\)](#page-6-1) we get $v(x), \psi(x) \in \mathbb{K}$. We see that in this case the polynomial $g(x, y)$ is constant and therefore the unimodular row can be reduced to the row $(1, 0)$. The proof is complete. \Box

Theorem 1. Let $A = \begin{pmatrix} a_{11}(x, y) & a_{12}(x, y) \\ a_{21}(x, y) & a_{22}(x, y) \end{pmatrix}$ $a_{21}(x, y) \quad a_{22}(x, y)$ $\Big\}\ \in\ SL_2\left(\mathbb{K}[x,y]\right). \quad I_j$ $\deg a_{i,j} = 2$ for some $i, j \in \{1, 2\}$, then there exists an automorphism $\theta \in \text{Aut}(\mathbb{K}[x,y])$ such that A^θ is one of the types:

1) $A^{\theta} = B_1 B_2 \dots B_k$, $k \ge 1$, B_i are elementary matrices;

2) $A^{\theta} = B_1 \dots B_s C B_{s+1} \dots B_k$, where $B_1 \dots B_s$, $B_{s+1} \dots B_k$ are elementary matrices and C is one of the form:

a)
$$
\begin{pmatrix} x^2 & x\psi(y) + \delta \\ \frac{x\psi(y) - \delta}{\delta^2} & \frac{\psi(y)^2}{\delta^2} \end{pmatrix} b) \begin{pmatrix} xy + \gamma & x^k \\ -(-\gamma^{-1}y)^k & \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} \end{pmatrix}
$$

for some $\delta, \gamma \in \mathbb{K}^*, \ \psi(y) \in \mathbb{K}[x, y], k \in \mathbb{Z}, k \ge 2.$

Proof. Multiplying the matrix A from the left or from the right by the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ we can assume without loss of generality that $i = j = 1$, i.e. deg $a_{11} \leq 2$. Applying a linear automorphism θ to the matrix A we can reduce (by Lemma [3\)](#page-2-2) the element $a_{1,1}(x, y)$ to one of the forms

- 1) $a_{11}(x, y) = x^2 + y;$
- 2) $a_{11}(x, y) = x^2 + \gamma;$

$$
3) a_{11}(x, y) = xy + \gamma.
$$

First, let $a_{11}(x,y) = x^2 + y$. Then applying Lemma [5](#page-4-0) to the first row of the matrix A we get the matrix $\begin{pmatrix} 1 & 0 \\ b(x, y) & 1 \end{pmatrix}$ for a polynomial $b(x, y) \in K[x, y]$, recall that multiplying from the left by elementary matrices makes elementary transformations in the first and second rows of A. The latter means that A is a product of elementary matrices. In the case $a_{1,1}(x, y) = x^2 + \gamma, \, \gamma \in \mathbb{K}$ we get either a product of elementary matrices $A = B_1 \dots B_k$ or a product of the form $A = B_1 \dots B_{i-1} C B_{i+1} \dots B_k$, where B_i are elementary matrices and C is of the form

$$
C = \begin{pmatrix} x^2 & x\psi(y) + \delta \\ \delta^{-2}(x\psi(y) - \delta) & \delta^{-2}\psi(y)^2 \end{pmatrix}.
$$

By Lemma [7,](#page-5-0) the last case $a_{1,1}(x, y) = xy + \gamma$, $\gamma \in \mathbb{K}$ yields the product $A = B_1 \dots B_{i-1} C B_{i+1} \dots B_k$ with C of the form

$$
C_1 = \begin{pmatrix} xy + \gamma & x^k \\ -(-\gamma^{-1}y)^k & \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} \end{pmatrix}
$$

or of the form

$$
C_2 = \begin{pmatrix} xy + \gamma & (-\gamma^{-1}y)^k \\ -x^k & \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} \end{pmatrix}.
$$

Note that the matrices C_1 and C_2 are conjugated by the automorphism $\theta: x \mapsto -\gamma^{-1}y$, $y \mapsto -\gamma x$. The proof is complete. П

3. Formulas for associated rows

If a unimodular row (f, g) is given, then there exists a unimodular row $(-Q, P)$ such that $Pf + Qg = 1$ (then the matrix $\begin{pmatrix} f & g \\ -Q & P \end{pmatrix}$ has determinant of 1). Such a row $(-Q, P)$ is unique up to a row $(-\lambda Q, \lambda P)$ for an arbitrary polynomial $\lambda \in \mathbb{K}[x, y]$. Really, if $P'f + Q'g = 1$ for a row (P', Q') , then $(P - P')f + (Q - Q')g = 0$. By Lemma [2,](#page-2-1) $P - P' = \lambda g$, $Q - Q' = \lambda f$ for some $\lambda \in \mathbb{K}[x, y]$ and therefore

$$
(P', Q') = (P, Q) + (-\lambda g, \lambda f).
$$

Let us point out how one can write homogeneous components of polynomials P , Q using homogeneous components of g and f respectively. We restrict ourselves only to polynomials f, g of the same degree. Let $\deg f = \deg g = n$. Then obviously $\deg P = \deg Q = m$ for some m. Write down polynomials f, g, P, Q as sums of their homogeneous components

$$
f = f_0 + \dots + f_n, \ g = g_0 + \dots + g_n,
$$

 $P = P_0 + \dots + P_m, \ Q = Q_0 + \dots + Q_m.$

Denote $\varphi = \gcd(f_n, g_n)$. We assume that all the polynomials f, g, P, Q are nonconstant ones. Then by the Lemma [3,](#page-2-2) deg $\varphi \geq 1$. It turns out that $\varphi^{i+1} P_{m-i}$ and $\varphi^{i+1} Q_{m-i}$ can be written as linear combinations of $g_i's$ and $f_i's$, respectively, with the same polynomial coefficients.

Theorem 2. There exist homogeneous polynomials $\alpha_0, \ldots, \alpha_m$ such that for $0 \leq i \leq m$

$$
\varphi^{i+1} P_{m-i} = \sum_{j=0}^{\min(i,n)} \varphi^j \alpha_{i-j} g_{n-j},
$$

$$
-\varphi^{i+1} Q_{m-i} = \sum_{j=0}^{\min(i,n)} \varphi^j \alpha_{i-j} f_{n-j}.
$$

$$
(*)
$$

Proof. Induction on i. The case $i = 0$ is a consequence of Lemma [2.](#page-2-1) Really, we have $P_m f_n + Q_m g_n = 0$. Let

$$
\varphi = \gcd(f_n, g_n), h_1 = f_n/\varphi, h_2 = g_n/\varphi.
$$

By Lemma [2](#page-2-1) $P_m = \psi h_2$, $Q_m = -\psi h_1$ for some $\psi \in \mathbb{K}[x, y]$. Then

$$
\varphi P_m = \psi \varphi h_2 = \psi g_n, \ -\varphi Q_m = \psi \varphi h_1 = \psi f_n.
$$

Putting $\alpha_0 = \psi$ we get the case $i = 0$. Let the formulas (\star) be true for $i' < i$, let us prove it for i. Since $Pf + Qg = 1$ we have equalities for

homogeneous components in the left side of the later equality: $(Pf +$ $Qg_{m+n-i} = 0$ for $0 \leq i \leq m$. But the left side of the latter equality can be written in the form

$$
\sum_{k=0}^{\min(i,n)} (P_{m-i+k}f_{n-k} + Q_{m-i+k}g_{n-k}) = 0.
$$

After multiplying this equality by φ^{i+1} we can rewrite it for $0 \leq i \leq m$ in the form

$$
\sum_{k=0}^{\min(i,n)} \varphi^k \left(\varphi^{i-k+1} P_{m-i+k} f_{n-k} + \varphi^{i-k+1} Q_{m-i+k} g_{n-k} \right) = 0.
$$

Replacing P_{m-i+k} and Q_{m-i+k} , $k \geq 1$ by their expressions due to the induction hypothesis we obtain the equality (we denote $min(i, n)$ by $i \wedge n$ for brevity in the next part of the proof):

$$
0 = \varphi^{i+1} (P_{m-i}f_n + Q_{m-i}g_n) +
$$

+
$$
\sum_{k=1}^{i \wedge n} \varphi^k \left(f_{n-k} \sum_{j=0}^{i \wedge n} \varphi^j \alpha_{i-k-j} g_{n-j} - g_{n-k} \sum_{j=0}^{i \wedge n} \varphi^j \alpha_{i-k-j} f_{n-j} \right).
$$

The last equality can be rewritten in the form

$$
\varphi^{i+1} (P_{m-i}f_n + Q_{m-i}g_n) + g_n \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} f_{n-k} - f_n \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} g_{n-k} + \sum_{\substack{1 \le j,k \le n \\ j+k \le i}} \varphi^{j+k} \alpha_{i-k-j} f_{n-k} g_{n-j} - \sum_{\substack{1 \le j,k \le n \\ j+k \le i}} \varphi^{j+k} \alpha_{i-k-j} f_{n-j} g_{n-k} = 0.
$$

Note that the last two sums in this equality give as result 0 and we can write the last equality as

$$
\left(\varphi^{i+1}P_{m-i} - \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} g_{n-k}\right) f_n + \left(\varphi^{i+1} Q_{m-i} - \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} f_{n-k}\right) g_n = 0.
$$

It follows from Lemma [2](#page-2-1) that there exists a polynomial α_i such that

$$
\varphi^{i+1} P_{m-i} - \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} g_{n-k} = \alpha_i g_n,
$$

$$
\varphi^{i+1}Q_{m-i} + \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} f_{n-k} = -\alpha_i f_n.
$$

These equalities can be rewritten (in the initial notation) in the form

 \Box

$$
\varphi^{i+1} P_{m-i} = \sum_{k=0}^{\min(i,n)} \varphi^k \alpha_{i-k} g_{n-k}, \qquad -\varphi^{i+1} Q_{m-i} = \sum_{k=0}^{\min(i,n)} \varphi^k \alpha_{i-k} f_{n-k}.
$$

The proof is complete.

References

- [1] Cohn, P.M.: On a generalization of the Euclidean algorithm. Proc. Cambridge Phil. Soc. 57(1), 18–30 (1961). <https://doi.org/10.1017/S0305004100034812>
- [2] Cohn, P.M.: On the structure of the GL_2 of a ring. Publications Mathématiques de l'IHÉS. $30(12)$, 5–53 (1966). <https://doi.org/10.1007/BF02684355>
- [3] Suslin, A.A.: On the structure of the special linear group over polynomial rings. Mathematics of the USSR-Izvestiya. $11(2)$, $221-238$ (1977). [https://doi.org/10.](https://doi.org/10.1070/IM1977v011n02ABEH001709) [1070/IM1977v011n02ABEH001709](https://doi.org/10.1070/IM1977v011n02ABEH001709)
- [4] Mohan Kumar, N.: A Note on Unimodular Rows. J. Algebra. 191(1), 228–234 (1997). <https://doi.org/10.1006/jabr.1996.6923>
- [5] Green, Sh.M.: Generators and relations for the special linear group over a division ring. Proc. Amer. Math. Soc. 62(2), 229–232 (1977). [https://doi.org/10.1090/](https://doi.org/10.1090/S0002-9939-1977-0430084-3) [S0002-9939-1977-0430084-3](https://doi.org/10.1090/S0002-9939-1977-0430084-3)
- [6] Vavilov, N., Stepanov, A.V.: Linear groups over general rings. I. Generalities. J. Math. Sci. 188(5), 490–550 (2013). <https://doi.org/10.1007/s10958-013-1146-7>

CONTACT INFORMATION

Volodymyrska street, 01033 Kyiv, Ukraine E-Mail: kozachok.oleksandra@gmail.com, apetrav@gmail.com

Received by the editors: 03.12.2024.