© Algebra and Discrete Mathematics Volume **38** (2024). Number 2, pp. 204–214 DOI:10.12958/adm2362

Decomposition of matrices from $SL_2(K[x, y])$

Yevhenii Chapovskyi, Oleksandra Kozachok, and Anatoliy Petravchuk

Dedicated to Professor Yu. A. Drozd on the occasion of his 80th birthday

ABSTRACT. Let \mathbb{K} be an algebraically closed field of characteristic zero and $\mathbb{K}[x, y]$ the polynomial ring. The group $\mathrm{SL}_2(\mathbb{K}[x, y])$ of all matrices with determinant equal to 1 over $\mathbb{K}[x, y]$ can not be generated by elementary matrices. The known counterexample was pointed out by P. M. Cohn. Conversely, A. A. Suslin proved that the group $\mathrm{SL}_r(\mathbb{K}[x_1, \ldots, x_n])$ is generated by elementary matrices for $r \geq 3$ and arbitrary $n \geq 2$, the same is true for n = 1 and arbitrary r. It is proven that any matrix from $\mathrm{SL}_2(\mathbb{K}[x, y])$ with at least one entry of degree ≤ 2 is either a product of elementary matrices or a product of elementary matrices and of a matrix similar to the one pointed out by P. Cohn. For any matrix $\begin{pmatrix} f & g \\ -Q & P \end{pmatrix} \in \mathrm{SL}_2(\mathbb{K}[x, y])$, we obtain formulas for the homogeneous components P_i, Q_i for the unimodular row (-Q, P) as combinations of homogeneous components of the polynomials f, g, respectively, with the same coefficients.

Introduction

Let K be a field and $A = K[x_1, \ldots, x_n]$ the polynomial ring in *n* variables. The group $GL_r(A)$ of all invertible matrices and its subgroup $SL_r(A)$ of matrices with determinant of 1 was studied by many authors from different points of view (see, for example, [2, 3, 5, 6], the last paper contains

²⁰²⁰ Mathematics Subject Classification: 20H05, 20H25, 15A23.

Key words and phrases: unimodular row, special linear group, generators, decomposition.

an extensive literature review). One of the important questions in studyng $GL_r(A)$ (and $SL_{rn}(A)$) is the question about generators and relations of these groups. Classical papers of A. A. Suslin and P. M. Cohn answer this question. In [3], it was proved that the group $SL_r(A)$ is generated by elementary matrices (or, in other terminology, elementary transvections) if $r \ge 3$ for arbitrary $n \ge 2$; in case $n = 1, r \ge 2$ the proof is elementary. If r = 2 and $n \ge 2$, then the group $SL_r(A)$ cannot be generated by elementary matrices [2]. The counterexample from [2] is the matrix $\begin{pmatrix} x^2 & xy-1 \\ xy+1 & y^2 \end{pmatrix}$ from the group $SL_2(\mathbb{K}[x,y])$. A question arises: how typical is this counterexample? We prove (Theorem 1) that any matrix from $SL_2(\mathbb{K}[x,y])$ with at least one entry of degree ≤ 2 is either a product of elementary matrices or a product of a matrix similar to the one pointed out in [2] and elementary matrices.

We consider the group $SL_2(\mathbb{K}[x, y])$ over an algebraically closed field \mathbb{K} of characteristic zero. Let us recall some definitions and notations. An elementary matrix from the group $SL_2(\mathbb{K}[x, y])$ is of the form $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}$ or

of the form $\begin{pmatrix} 1 & 0 \\ h & 1 \end{pmatrix}$, $h \in \mathbb{K}[x, y]$. A row $(f, g) \in (\mathbb{K}[x, y])^2$ is called unimodular if there exist polynomials $P, Q \in \mathbb{K}[x, y]$ such that Pf + Qg = 1(about some properties of unimodular rows see, for example, [4]). The latter means that the matrix $\begin{pmatrix} f & g \\ -Q & P \end{pmatrix}$ has the determinant of 1. The unimodular row (-Q, P) will be called associated with the row (f, g). Note that by multiplying a unimodular row (f, g) from the right by the matrix $\begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix}$, where $h \in \mathbb{K}[x, y]$, the result is the unimodular row (f, g + fh). Multiplying unimodular rows (f, g) by an elementary matrix from the right defines a linear transformation of the free module of rank 2 over $\mathbb{K}[x,y]$. We call such a transformation an elementary transformation. The automorphism group $\operatorname{Aut}(\mathbb{K}[x,y])$ acts naturally on the group $SL_2(\mathbb{K}[x,y])$ by the rule: for any $\theta \in Aut(\mathbb{K}[x,y])$ and $A = (a_{ij}) \in SL_2(\mathbb{K}[x,y])$ put $A^{\theta} = (a_{ij}^{\theta})$ (note that for any elementary matrix B the matrix $B^{\theta}, \theta \in \operatorname{Aut}(\mathbb{K}[x, y])$ is also an elementary matrix). We will use unimodular rows, and then the main result will be reformulated in matrix language. In Lemmas 5, 6, and 7 we prove that any unimodular row (f,g) with deg $f \leq 2$ is, up to action of an automorphism $\theta \in \operatorname{Aut}(\mathbb{K}[x,y])$, one of the forms: (1,0), or $(x^2, \psi(y)x + \gamma)$ with arbitrary $\psi(y) \in \mathbb{K}[x,y]$, or $(xy - \gamma, x^k)$, $\gamma \in \mathbb{K}^*, k \in \mathbb{Z}, k \geq 2$. As a consequence, we obtain the main result (Theorem 1).

In the second part of the paper, we consider unimodular rows (f, g), deg $f = \text{deg}g = n, n \ge 1$. We obtain formulas for homogeneous components P_i, Q_i of the associated unimodular row (-Q, P) as combinations of homogeneous components of polynomials f, g, respectively, with the same coefficients (Theorem 2). These formulas can be used for studying matrices from $SL_2(\mathbb{K}[x, y])$ with entries of any degree.

1. Some properties of unimodular rows over K[x, y]

Here some technical results are collected about unimodular rows (of length 2) over the polynomial ring $\mathbb{K}[x, y]$.

Lemma 1. (1) Let (f, g) be a unimodular row over the ring $\mathbb{K}[x, y]$ and P, Q be polynomials such that Pf + Qg = 1. Then the rows (P, Q), (P, g) and (f, Q) are also unimodular.

(2) If (f,g) is a unimodular row, then for any endomorphism θ of the ring $\mathbb{K}[x,y]$, the row $(\theta(f), \theta(g))$ is also unimodular.

Lemma 2. Let $f, g, P, Q \in \mathbb{K}[x, y]$ be nonconstant polynomials such that Pf + Qg = 0. Then there exist polynomials $h_1, h_2, \varphi, \psi \in \mathbb{K}[x, y]$ such that $f = \varphi h_1, g = \varphi h_2, \operatorname{gcd}(h_1, h_2) = 1, P = \psi h_2, Q = -\psi h_1$.

Proof. Let $\varphi = \gcd(f, g)$, $\psi_0 = \gcd(P, Q)$. Then $f = \varphi h_1$, $g = \varphi h_2$ for coprime polynomials $h_1, h_2 \in \mathbb{K}[x, y]$. Analogously $P = \psi_0 P_0$, $Q = \psi_0 Q_0$ for some coprime P_0, Q_0 . Then by the conditions of the lemma we have

$$0 = Pf + Qg = \varphi \psi_0 \left(P_0 h_1 + Q_0 h_2 \right).$$

The latter equalities imply

$$P_0h_1 + Q_0h_2 = 0. (1)$$

Since $gcd(h_1, h_2) = 1$ we have $P_0 \mid h_2$ and $h_2 \mid P_0$. But then $P_0 = \alpha h_2$ for some $\alpha \in \mathbb{K}^*$. Analogously $Q_0 = \beta h_1$ for some $\beta \in \mathbb{K}^*$. It follows from 1 that $\beta = -\alpha$. Besides, $P = \psi_0 P_0 = \psi_0 \alpha h_2$ and $Q_0 = -\psi_0 \alpha h_1$. Denoting $\psi = \psi_0 \alpha$ we get $P = \psi h_2$, $Q = -\psi h_1$.

Lemma 3. Let (f,g) be a unimodular row of nonconstant polynomials over $\mathbb{K}[x,y]$ and let $f = f_0 + \cdots + f_n$, $g = g_0 + \cdots + g_l$ be decomposition of f and g, respectively, in sums of homogeneous components. Then the polynomials f_n and g_l are not coprime, i.e., $\deg \gcd(f_n, g_l) \ge 1$. *Proof.* By the conditions of the lemma there exist polynomials $P, Q \in \mathbb{K}[x, y]$ such that Pf + Qg = 1. Let

$$P = P_0 + \dots + P_m, \ Q = Q_0 + \dots + Q_k$$

be their decomposition into sums of homogeneous components. It follows from the equality Pf + Qg = 1 that $P_m f_n + Q_k g_l = 0$ (it is obvious that m + n = k + l). Assume on the contrary that $gcd(f_n, g_l) = 1$. Then, by Lemma 2, we have

$$P_m = \psi g_l, \ Q_k = -\psi f_n \tag{2}$$

for a polynomial $\psi \in \mathbb{K}[x, y]$ with $\deg \psi = m - l = k - n$. Denote by Ω the set of all pairs (P, Q) of polynomials that satisfy the equality Pf + Qg = 1. Choose a pair $(P, Q) \in \Omega$ such that the sum $m + k = \deg P + \deg Q$ is minimal. Then the equalities (2) imply that

$$\deg(P - \psi g) + \deg(Q + \psi f) < \deg P + \deg Q.$$

Besides, the equality holds: $(P - \psi g)f + (Q + \psi f)g = 1$. The latter contradicts the choice of the pair (P,Q). This contradiction shows that $\deg \gcd(f_n, g_l) \ge 1$.

Corollary 1. Let $f, g \in \mathbb{K}[x, y]$ be a unimodular row. If deg f = 1, then g = hf + c for some $h \in \mathbb{K}[x, y], c \in \mathbb{K}^*$.

Proof. Let

$$f = f_0 + f_1, \ g = g_0 + g_1 + \dots + g_l$$

be the decomposition of polynomials into sums of homogeneous components. Then by Lemma 3 we have deg gcd $(f_1, g_l) \ge 1$. The latter means that g_l is divisible by f_1 , i.e. $g_l = h_1 f_1$ for some polynomial $h_1 \in \mathbb{K}[x, y]$. But then the row $(f, g - h_1 f)$ is unimodular and deg $(g - h_1 f) < \deg g$. Continuing such considerations we obtain a unimodular row (f, g - hf)for some $h \in \mathbb{K}[x, y]$ such that deg(g - hf) = 0, i.e. g - hf = c. Obviously $c \neq 0$ and we get $g = hf + c, c \in \mathbb{K}^*$.

Let us recall that any quadratic curve f(x, y) = 0, deg f = 2 is reduced by linear transformations of variables to one of the known canonical forms. This can be reformulated as follows:

Lemma 4. Let $f(x, y) \in \mathbb{K}[x, y]$, deg f = 2. Then there exist an affine automorphism θ of the ring $\mathbb{K}[x, y]$ of the form $\theta(x) = \alpha_1 x + \beta_1 y + \gamma_1$, $\theta(y) = \alpha_2 x + \beta_2 y + \gamma_2$ such that $\theta(f)$ is a polynomial of the following type: (1) $f(x, y) = x^2 + \gamma, \ \gamma \in \mathbb{K};$ (2) $f(x, y) = x^2 + y;$ (3) $f(x, y) = xy + \gamma, \ \gamma \in \mathbb{K}.$

Lemma 5. Let (f, g) be a unimodular row such that $f = x^2 + y$. Then this row is reduced to the row (1,0) by elementary transformations, i.e. there exist elementary matrices B_1, \ldots, B_k such that $(f,g)B_1, \ldots, B_k = (1,0)$.

Proof. Let us write the polynomial g as a polynomial of x with coefficients depending on y,

$$g(x,y) = g_0(y) + g_1(y)x + \dots + g_k(y)x^k.$$

Denote

$$h(x,y) = g_2(y) + g_3(y)x + \dots + g_k(y)x^{k-2}.$$

Then

$$(f,g) \cdot \begin{pmatrix} 1 & -h \\ 0 & 1 \end{pmatrix} = (f,g_0(y) + g_1(y)x - yh(x,y)).$$

Note that the polynomial $g^{(1)} = g_0(y) + g_1(y)x - yh(x, y)$ is of degree $\langle k$ on x, i.e., $\deg_x g \langle \deg_x g^{(1)}$. Repeating this process for the unimodular row $(x^2 + y, g^{(1)})$ we obtain as a result a unimodular row of the form $(x^2 + y, g^{(s)})$ for some $s \geq 2$ with $\deg_x g^{(s)} \leq 1$. So we can assume without loss of generality that $g(x, y) = g_0(y) + g_1(y)x$. By the conditions of the lemma, there exist polynomials $P(x, y), Q(x, y) \in \mathbb{K}[x, y]$ such that

$$P(x,y)(x^{2} + y) + Q(x,y)(g_{0}(y) + g_{1}(y)x) = 1.$$

Putting here $y = -x^2$ we get the equality

$$Q(x, -x^2)(g_0(-x^2) + xg_1(-x^2)) = 1.$$

It follows from this equality that $g_0(-x^2) + xg_1(-x^2) = c$ for some $c \in \mathbb{K}^*$. Since $\deg_x g_0(-x^2)$ is even and $\deg_x xg_1(-x^2)$ is odd we get $g_1 = 0$ and $g_0(y) \in \mathbb{K}$. But then $g = g_0 \in \mathbb{K}^*$ and the unimodular row $(x^2 + y, g_0)$ obviously is reduced to the row (1, 0).

Lemma 6. Let (f,g) be a unimodular row, where $f = x^2 + \gamma$, $\gamma \in \mathbb{K}$. Then this row can be reduced by elementary transformations to either the row (1,0), or to the row $(x^2 + \gamma, x\psi(y) + \delta)$, $\delta \in \mathbb{K}$, deg $\psi(y) \ge 1$.

Proof. Write down the polynomial g(x, y) as a polynomial of x with coefficients in $\mathbb{K}[y]$

$$g = g_0(y) + g_1(y) + \dots + g_k(y)x^k.$$

Repeating the consideration from the proof of Lemma 5 one can assume without loss of generality that $g = g_0(y) + g_1(y)x$ for some polynomials $g_0(y)$ and $g_1(y)$. Since $(x^2 + \gamma, g_0(y) + g_1(y)x)$ is a unimodular row, there exist polynomials $P, Q \in \mathbb{K}[x, y]$ such that

$$P(x^{2} + \gamma) + Q(g_{0}(y) + g_{1}(y)x) = 1.$$

Note that for any polynomial $A(x, y) \in \mathbb{K}[x, y]$, the polynomials

$$\overline{P}(x,y) = P(x,y) + A(x,y)g(x,y), \ \overline{Q}(x,y) = Q(x,y) - A(x,y)(x^2 + \gamma)$$

also satisfy the equality $(x^2 + \gamma)\overline{P} + g(x, y)\overline{Q} = 1$. Therefore, without loss of generality, one can reduce the unimodular row (P, Q) by elementary transformations to the row $(P, Q_0(y) + Q_1(y)x)$ without changing the initial unimodular row $(x^2 + \gamma, g(x, y))$. We get the equality

$$P(x,y)(x^{2} + \gamma) + (Q_{0}(y) + Q_{1}(y)x)(g_{0}(y) + g_{1}(y)x) = 1.$$
 (3)

First, let $\gamma \neq 0$. Substituting in formulas (3) x for $\sqrt{-\gamma}$ and then x for $-\sqrt{-\gamma}$ we obtain two inclusions $g_1(y)\sqrt{-\gamma}+g_0(y) \in \mathbb{K}$ and $-g_1(y)\sqrt{-\gamma}+g_0(y) \in \mathbb{K}$. It follows from these inclusions that $g_0(y) \in \mathbb{K}$ and $g_1(y) \in \mathbb{K}$. But then from (3) we see that $Q_0(y), Q_1(y) \in \mathbb{K}$. The equality (3) shows also that $g_1 = 0$ and $Q_1 = 0$, i.e., $g(x, y) = c_1$ and $Q(x, y) = c_2$ for some $c_1, c_2 \in \mathbb{K}$. Therefore the unimodular row $(x^2 + \gamma, g)$ can be reduced (by elementary transformations) to the row (1,0).

Now let $\gamma = 0$, i.e., $f(x, y) = x^2$. Putting x = 0 in the equality (3) we get $Q_0(y)g_0(y) = 1$. Thus $Q_0, g_0 \in \mathbb{K}^*$. The latter means that $g = x\psi(y) + \delta$, where $\psi(y) = Q_1(y)$ and $\delta = Q_0$. Note that the unimodular row associated with $(x^2, x\psi(y) + \delta)$ is the row $(\frac{x\psi(y) - \delta}{\delta^2}, \delta^{-2}\psi^2(y))$ because the matrix $\begin{pmatrix} x^2 & x\psi(y) + \delta \\ \delta^{-2}(x\psi(y) - \delta) & \delta^{-2}\psi^2(y) \end{pmatrix}$ has the determinant 1. \Box

2. The main theorem

We need to consider the last case when the unimodular row is of the form $(xy + \gamma, g(x, y))$.

Lemma 7. Let (f,g) be a unimodular row with $f(x,y) = xy + \gamma, \gamma \in \mathbb{K}$. Then this row can be reduced by elementary transformations to the unimodular row $(xy + \gamma, x^k)$ or to the row $(xy + \gamma, (-\gamma^{-1}y)^k)$ with integer $k \geq 2$, or to the row (1,0). *Proof.* By the conditions of the lemma we have an equality of the form

$$P(x,y)(xy+\gamma) + Q(x,y)g(x,y) = 1$$

$$\tag{4}$$

for some polynomials $P, Q \in \mathbb{K}[x, y]$. Write down the polynomial g(x, y) in the form $g(x, y) = \varphi(x) + \psi(y) + xyh(x, y)$ for some polynomials $\varphi(x), \psi(y), h(x, y) \in \mathbb{K}[x, y]$. Then we get the equality

$$(xy+\gamma,g)\left(\begin{array}{cc}1 & -h(x,y)\\0 & 1\end{array}\right) = (xy+\gamma,\varphi(x)+\psi(y)-\gamma h(x,y))$$

If $h(x, y) \neq 0$ we can write $h(x, y) = \varphi_1(x) + \psi_1(y) + xyh_1(x, y)$ and repeat the previous considerations. As a result, we may assume without loss of generality that $g(x, y) = \varphi(x) + \psi(y)$. Analogously repeating considerations from the proof of Lemma 6 we may assume that Q(x, y) =u(x) + v(y) for some polynomials $u(x), v(y) \in \mathbb{K}[x, y]$.

First, let $\gamma \neq 0$. Let us put $y = -\gamma/x$ in the equality (4). We get $(u(x) + v(-\gamma/x))(\varphi(x) + \psi(-\gamma/x)) = 1$. One can easily prove that an element $p(x, x^{-1})$ from ring $\mathbb{K}[x, x^{-1}]$ is invertible in this ring if and only if $p = \alpha x^k$ for some $k \in \mathbb{Z}$, $\alpha \in \mathbb{K}^*$. So, we have $g(x, y) = x^k$, $Q(x, y) = (-\gamma^{-1}y)^k$ or $g(x, y) = (-\gamma^{-1}y)^k$, $Q(x, y) = x^k$ for some $k \geq 0$. In any case, the polynomial P(x, y) is of the form

$$P(x,y) = \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} = \gamma^{-1} \left(1 + \left(-\frac{xy}{\gamma}\right) + \dots + \left(-\frac{xy}{\gamma}\right)^{k-1} \right).$$

As a result, we get two unimodular rows:

1) $(xy + \gamma, x^k)$ with the associated row $\left(-(-\gamma^{-1}y)^k, \frac{1-(-\gamma^{-1}xy)^k}{\gamma+xy}\right);$ 2) $(xy + \gamma, (-\gamma^{-1}y)^k)$ with the associated row $\left(-x^k, \frac{1-(-\gamma^{-1}xy)^k}{\gamma+xy}\right).$

Note that one can assume that $k \ge 2$. Really, in other case the row $(xy + \gamma, x^k)$ is reduced to the row (1,0) because of Corollary 1. Let now $\gamma = 0$. Let us replace x with 0 in the equality (4). Then we have $(u(0) + v(y))(\varphi(0) + \psi(y)) = 1$. This equality implies obviously $v(y), \psi(y) \in \mathbb{K}$. Analogously after substituting 0 instead of y in (4) we get $v(x), \psi(x) \in \mathbb{K}$. We see that in this case the polynomial g(x, y) is constant and therefore the unimodular row can be reduced to the row (1,0). The proof is complete. \Box

Theorem 1. Let $A = \begin{pmatrix} a_{11}(x,y) & a_{12}(x,y) \\ a_{21}(x,y) & a_{22}(x,y) \end{pmatrix} \in SL_2(\mathbb{K}[x,y])$. If $\deg a_{ij} = 2$ for some $i, j \in \{1, 2\}$, then there exists an automorphism $\theta \in \operatorname{Aut}(\mathbb{K}[x,y])$ such that A^{θ} is one of the types:

1) $A^{\theta} = B_1 B_2 \dots B_k, \ k \ge 1, \ B_i \ are \ elementary \ matrices;$

2) $A^{\theta} = B_1 \dots B_s C B_{s+1} \dots B_k$, where $B_1 \dots B_s$, $B_{s+1} \dots B_k$ are elementary matrices and C is one of the form:

$$a) \begin{pmatrix} x^2 & x\psi(y) + \delta \\ \frac{x\psi(y) - \delta}{\delta^2} & \frac{\psi(y)^2}{\delta^2} \end{pmatrix} b) \begin{pmatrix} xy + \gamma & x^k \\ -(-\gamma^{-1}y)^k & \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} \end{pmatrix}$$
for some $\delta, \gamma \in \mathbb{K}^*, \ \psi(y) \in \mathbb{K}[x, y], \ k \in \mathbb{Z}, \ k \ge 2.$

Proof. Multiplying the matrix A from the left or from the right by the matrix $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ we can assume without loss of generality that i = j = 1, i.e. deg $a_{11} \leq 2$. Applying a linear automorphism θ to the matrix A we can reduce (by Lemma 3) the element $a_{11}(x, y)$ to one of the forms

1) $a_{11}(x,y) = x^2 + y;$

2)
$$a_{11}(x,y) = x^2 + \gamma;$$

3)
$$a_{11}(x,y) = xy + \gamma$$
.

First, let $a_{11}(x, y) = x^2 + y$. Then applying Lemma 5 to the first row of the matrix A we get the matrix $\begin{pmatrix} 1 & 0 \\ b(x, y) & 1 \end{pmatrix}$ for a polynomial $b(x, y) \in \mathbb{K}[x, y]$, recall that multiplying from the left by elementary matrices makes elementary transformations in the first and second rows of A. The latter means that A is a product of elementary matrices. In the case $a_{11}(x, y) = x^2 + \gamma, \gamma \in \mathbb{K}$ we get either a product of elementary matrices $A = B_1 \dots B_k$ or a product of the form $A = B_1 \dots B_{i-1}CB_{i+1} \dots B_k$, where B_i are elementary matrices and C is of the form

$$C = \begin{pmatrix} x^2 & x\psi(y) + \delta \\ \delta^{-2}(x\psi(y) - \delta) & \delta^{-2}\psi(y)^2 \end{pmatrix}.$$

By Lemma 7, the last case $a_{11}(x, y) = xy + \gamma, \gamma \in \mathbb{K}$ yields the product $A = B_1 \dots B_{i-1}CB_{i+1} \dots B_k$ with C of the form

$$C_1 = \begin{pmatrix} xy + \gamma & x^k \\ -(-\gamma^{-1}y)^k & \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} \end{pmatrix}$$

or of the form

$$C_2 = \begin{pmatrix} xy + \gamma & (-\gamma^{-1}y)^k \\ -x^k & \frac{1 - (-\gamma^{-1}xy)^k}{\gamma + xy} \end{pmatrix}.$$

Note that the matrices C_1 and C_2 are conjugated by the automorphism $\theta: x \mapsto -\gamma^{-1}y, \ y \mapsto -\gamma x$. The proof is complete.

3. Formulas for associated rows

If a unimodular row (f,g) is given, then there exists a unimodular row (-Q, P) such that Pf + Qg = 1 (then the matrix $\begin{pmatrix} f & g \\ -Q & P \end{pmatrix}$ has determinant of 1). Such a row (-Q, P) is unique up to a row $(-\lambda Q, \lambda P)$ for an arbitrary polynomial $\lambda \in \mathbb{K}[x, y]$. Really, if P'f + Q'g = 1 for a row (P', Q'), then (P - P')f + (Q - Q')g = 0. By Lemma 2, $P - P' = \lambda g$, $Q - Q' = \lambda f$ for some $\lambda \in \mathbb{K}[x, y]$ and therefore

$$(P',Q') = (P,Q) + (-\lambda g,\lambda f).$$

Let us point out how one can write homogeneous components of polynomials P, Q using homogeneous components of g and f respectively. We restrict ourselves only to polynomials f, g of the same degree. Let $\deg f = \deg g = n$. Then obviously $\deg P = \deg Q = m$ for some m. Write down polynomials f, g, P, Q as sums of their homogeneous components

$$f = f_0 + \dots + f_n, \ g = g_0 + \dots + g_n,$$

 $P = P_0 + \dots + P_m, \ Q = Q_0 + \dots + Q_m$

Denote $\varphi = \gcd(f_n, g_n)$. We assume that all the polynomials f, g, P, Q are nonconstant ones. Then by the Lemma 3, $\deg \varphi \ge 1$. It turns out that $\varphi^{i+1}P_{m-i}$ and $\varphi^{i+1}Q_{m-i}$ can be written as linear combinations of g'_is and f'_is , respectively, with the same polynomial coefficients.

Theorem 2. There exist homogeneous polynomials $\alpha_0, \ldots, \alpha_m$ such that for $0 \le i \le m$

$$\varphi^{i+1}P_{m-i} = \sum_{j=0}^{\min(i,n)} \varphi^j \alpha_{i-j} g_{n-j},$$

$$-\varphi^{i+1}Q_{m-i} = \sum_{j=0}^{\min(i,n)} \varphi^j \alpha_{i-j} f_{n-j}.$$
 (*)

Proof. Induction on *i*. The case i = 0 is a consequence of Lemma 2. Really, we have $P_m f_n + Q_m g_n = 0$. Let

$$\varphi = \gcd(f_n, g_n), \ h_1 = f_n / \varphi, \ h_2 = g_n / \varphi.$$

By Lemma 2 $P_m = \psi h_2$, $Q_m = -\psi h_1$ for some $\psi \in \mathbb{K}[x, y]$. Then

$$\varphi P_m = \psi \varphi h_2 = \psi g_n, \ -\varphi Q_m = \psi \varphi h_1 = \psi f_n.$$

Putting $\alpha_0 = \psi$ we get the case i = 0. Let the formulas (\star) be true for i' < i, let us prove it for i. Since Pf + Qg = 1 we have equalities for

homogeneous components in the left side of the later equality: $(Pf + Qg)_{m+n-i} = 0$ for $0 \le i \le m$. But the left side of the latter equality can be written in the form

$$\sum_{k=0}^{\min(i,n)} \left(P_{m-i+k} f_{n-k} + Q_{m-i+k} g_{n-k} \right) = 0.$$

After multiplying this equality by φ^{i+1} we can rewrite it for $0 \leq i \leq m$ in the form

$$\sum_{k=0}^{\min(i,n)} \varphi^k \left(\varphi^{i-k+1} P_{m-i+k} f_{n-k} + \varphi^{i-k+1} Q_{m-i+k} g_{n-k} \right) = 0.$$

Replacing P_{m-i+k} and Q_{m-i+k} , $k \ge 1$ by their expressions due to the induction hypothesis we obtain the equality (we denote min(i, n) by $i \land n$ for brevity in the next part of the proof):

$$0 = \varphi^{i+1} \left(P_{m-i} f_n + Q_{m-i} g_n \right) + \\ + \sum_{k=1}^{i \wedge n} \varphi^k \left(f_{n-k} \sum_{j=0}^{i \wedge n} \varphi^j \alpha_{i-k-j} g_{n-j} - g_{n-k} \sum_{j=0}^{i \wedge n} \varphi^j \alpha_{i-k-j} f_{n-j} \right).$$

The last equality can be rewritten in the form

$$\varphi^{i+1} \left(P_{m-i}f_n + Q_{m-i}g_n \right) + g_n \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} f_{n-k} - f_n \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k}g_{n-k} + \sum_{\substack{1 \le j,k \le n \\ j+k \le i}} \varphi^{j+k} \alpha_{i-k-j} f_{n-k}g_{n-j} - \sum_{\substack{1 \le j,k \le n \\ j+k \le i}} \varphi^{j+k} \alpha_{i-k-j} f_{n-j}g_{n-k} = 0.$$

Note that the last two sums in this equality give as result 0 and we can write the last equality as

$$\left(\varphi^{i+1}P_{m-i} - \sum_{k=1}^{i\wedge n} \varphi^k \alpha_{i-k} g_{n-k}\right) f_n + \left(\varphi^{i+1}Q_{m-i} - \sum_{k=1}^{i\wedge n} \varphi^k \alpha_{i-k} f_{n-k}\right) g_n = 0.$$

It follows from Lemma 2 that there exists a polynomial α_i such that

$$\varphi^{i+1}P_{m-i} - \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} g_{n-k} = \alpha_i g_n,$$

$$\varphi^{i+1}Q_{m-i} + \sum_{k=1}^{i \wedge n} \varphi^k \alpha_{i-k} f_{n-k} = -\alpha_i f_n.$$

These equalities can be rewritten (in the initial notation) in the form

$$\varphi^{i+1}P_{m-i} = \sum_{k=0}^{\min(i,n)} \varphi^k \alpha_{i-k} g_{n-k}, \qquad -\varphi^{i+1}Q_{m-i} = \sum_{k=0}^{\min(i,n)} \varphi^k \alpha_{i-k} f_{n-k}.$$

The proof is complete.

References

- Cohn, P.M.: On a generalization of the Euclidean algorithm. Proc. Cambridge Phil. Soc. 57(1), 18–30 (1961). https://doi.org/10.1017/S0305004100034812
- [2] Cohn, P.M.: On the structure of the GL₂ of a ring. Publications Mathématiques de l'IHÉS. 30(12), 5–53 (1966). https://doi.org/10.1007/BF02684355
- [3] Suslin, A.A.: On the structure of the special linear group over polynomial rings. Mathematics of the USSR-Izvestiya. 11(2), 221–238 (1977). https://doi.org/10. 1070/IM1977v011n02ABEH001709
- [4] Mohan Kumar, N.: A Note on Unimodular Rows. J. Algebra. 191(1), 228–234 (1997). https://doi.org/10.1006/jabr.1996.6923
- [5] Green, Sh.M.: Generators and relations for the special linear group over a division ring. Proc. Amer. Math. Soc. 62(2), 229–232 (1977). https://doi.org/10.1090/ S0002-9939-1977-0430084-3
- [6] Vavilov, N., Stepanov, A.V.: Linear groups over general rings. I. Generalities. J. Math. Sci. 188(5), 490–550 (2013). https://doi.org/10.1007/s10958-013-1146-7

CONTACT INFORMATION

Y. Chapovskyi	Institute of Mathematics, National Academy
	of Sciences of Ukraine, Tereschenkivska street,
	3, 01004 Kyiv, Ukraine
	E-Mail: safemacc@gmail.com
O. Kozachok,	Faculty of Mechanics and Mathematics, Taras
A. Petravchuk	Shevchenko National University of Kyiv, 64,
	Volodymyrska street, 01033 Kyiv, Ukraine
	E-Mail: kozachok.oleksandra@gmail.com,

apetrav@gmail.com

Received by the editors: 03.12.2024.