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Abstract. Let K be an algebraically closed field of characte-
ristic zero and K[x, y] the polynomial ring. The group SL2 (K[x, y])
of all matrices with determinant equal to 1 over K[x, y] can not be
generated by elementary matrices. The known counterexample
was pointed out by P. M. Cohn. Conversely, A. A. Suslin proved
that the group SLr (K[x1, . . . , xn]) is generated by elementary mat-
rices for r ≥ 3 and arbitrary n ≥ 2, the same is true for n = 1
and arbitrary r. It is proven that any matrix from SL2 (K[x, y])
with at least one entry of degree ≤ 2 is either a product of ele-
mentary matrices or a product of elementary matrices and of a
matrix similar to the one pointed out by P. Cohn. For any matrix(

f g
−Q P

)
∈ SL2 (K[x, y]), we obtain formulas for the homoge-

neous components Pi, Qi for the unimodular row (−Q,P ) as combi-
nations of homogeneous components of the polynomials f, g, respec-
tively, with the same coefficients.

Introduction

Let K be a field and A = K[x1, . . . , xn] the polynomial ring in n variables.
The group GLr(A) of all invertible matrices and its subgroup SLr(A) of
matrices with determinant of 1 was studied by many authors from diffe-
rent points of view (see, for example, [2, 3, 5, 6], the last paper contains
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an extensive literature review). One of the important questions in stu-
dyng GLr(A) (and SLrn(A)) is the question about generators and rela-
tions of these groups. Classical papers of A. A. Suslin and P. M. Cohn
answer this question. In [3], it was proved that the group SLr(A) is
generated by elementary matrices (or, in other terminology, elementary
transvections) if r ≥ 3 for arbitrary n ≥ 2; in case n = 1, r ≥ 2 the
proof is elementary. If r = 2 and n ≥ 2, then the group SLr(A) cannot
be generated by elementary matrices [2]. The counterexample from [2] is

the matrix

(
x2 xy − 1

xy + 1 y2

)
from the group SL2(K[x, y]). A question

arises: how typical is this counterexample? We prove (Theorem 1) that
any matrix from SL2(K[x, y]) with at least one entry of degree ≤ 2 is
either a product of elementary matrices or a product of a matrix similar
to the one pointed out in [2] and elementary matrices.

We consider the group SL2(K[x, y]) over an algebraically closed field
K of characteristic zero. Let us recall some definitions and notations. An

elementary matrix from the group SL2(K[x, y]) is of the form

(
1 h
0 1

)
or

of the form

(
1 0
h 1

)
, h ∈ K[x, y]. A row (f, g) ∈ (K[x, y])2 is called uni-

modular if there exist polynomials P,Q ∈ K[x, y] such that Pf +Qg = 1
(about some properties of unimodular rows see, for example, [4]). The

latter means that the matrix

(
f g
−Q P

)
has the determinant of 1. The

unimodular row (−Q,P ) will be called associated with the row (f, g).
Note that by multiplying a unimodular row (f, g) from the right by the

matrix

(
1 h
0 1

)
, where h ∈ K[x, y], the result is the unimodular row

(f, g + fh). Multiplying unimodular rows (f, g) by an elementary mat-
rix from the right defines a linear transformation of the free module
of rank 2 over K[x, y]. We call such a transformation an elementary
transformation. The automorphism group Aut(K[x, y]) acts naturally
on the group SL2(K[x, y]) by the rule: for any θ ∈ Aut(K[x, y]) and
A = (aij) ∈ SL2(K[x, y]) put Aθ = (aθij) (note that for any elementary

matrix B the matrix Bθ, θ ∈ Aut(K[x, y]) is also an elementary matrix).
We will use unimodular rows, and then the main result will be refor-
mulated in matrix language. In Lemmas 5, 6, and 7 we prove that any
unimodular row (f, g) with deg f ≤ 2 is, up to action of an automor-
phism θ ∈ Aut (K[x, y]) , one of the forms: (1, 0), or (x2, ψ(y)x+ γ) with
arbitrary ψ(y) ∈ K[x, y], or (xy − γ, xk), γ ∈ K∗, k ∈ Z, k ≥ 2. As a
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consequence, we obtain the main result (Theorem 1).
In the second part of the paper, we consider unimodular rows (f, g),

degf = degg = n, n ≥ 1. We obtain formulas for homogeneous compo-
nents Pi, Qi of the associated unimodular row (−Q,P ) as combinations
of homogeneous components of polynomials f, g, respectively, with the
same coefficients (Theorem 2). These formulas can be used for studying
matrices from SL2(K[x, y]) with entries of any degree.

1. Some properties of unimodular rows over K[x ,y ]

Here some technical results are collected about unimodular rows (of
length 2) over the polynomial ring K[x, y].

Lemma 1. (1) Let (f, g) be a unimodular row over the ring K[x, y] and
P,Q be polynomials such that Pf+Qg = 1. Then the rows (P,Q), (P, g)
and (f,Q) are also unimodular.

(2) If (f, g) is a unimodular row, then for any endomorphism θ of the
ring K[x, y], the row (θ(f), θ(g)) is also unimodular.

Lemma 2. Let f, g, P,Q ∈ K[x, y] be nonconstant polynomials such that
Pf + Qg = 0. Then there exist polynomials h1, h2, φ, ψ ∈ K[x, y] such
that f = φh1, g = φh2, gcd(h1, h2) = 1, P = ψh2, Q = −ψh1.

Proof. Let φ = gcd(f, g), ψ0 = gcd(P,Q). Then f = φh1, g = φh2 for
coprime polynomials h1, h2 ∈ K[x, y]. Analogously P = ψ0P0, Q = ψ0Q0

for some coprime P0, Q0. Then by the conditions of the lemma we have

0 = Pf +Qg = φψ0 (P0h1 +Q0h2) .

The latter equalities imply

P0h1 +Q0h2 = 0. (1)

Since gcd(h1, h2) = 1 we have P0 | h2 and h2 | P0. But then P0 = αh2
for some α ∈ K∗. Analogously Q0 = βh1 for some β ∈ K∗. It follows
from 1 that β = −α. Besides, P = ψ0P0 = ψ0αh2 and Q0 = −ψ0αh1.
Denoting ψ = ψ0α we get P = ψh2, Q = −ψh1.

Lemma 3. Let (f, g) be a unimodular row of nonconstant polynomials
over K[x, y] and let f = f0 + · · ·+ fn, g = g0 + · · ·+ gl be decomposition
of f and g, respectively, in sums of homogeneous components. Then the
polynomials fn and gl are not coprime, i.e., deg gcd(fn, gl) ≥ 1.
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Proof. By the conditions of the lemma there exist polynomials P,Q ∈
K[x, y] such that Pf +Qg = 1. Let

P = P0 + · · ·+ Pm, Q = Q0 + · · ·+Qk

be their decomposition into sums of homogeneous components. It follows
from the equality Pf +Qg = 1 that Pmfn+Qkgl = 0 (it is obvious that
m+ n = k + l). Assume on the contrary that gcd(fn, gl) = 1. Then, by
Lemma 2, we have

Pm = ψgl, Qk = −ψfn (2)

for a polynomial ψ ∈ K[x, y] with degψ = m−l = k−n. Denote by Ω the
set of all pairs (P,Q) of polynomials that satisfy the equality Pf+Qg = 1.
Choose a pair (P,Q) ∈ Ω such that the sum m + k = degP + degQ is
minimal. Then the equalities (2) imply that

deg(P − ψg) + deg(Q+ ψf) < degP + degQ.

Besides, the equality holds: (P − ψg)f + (Q + ψf)g = 1. The latter
contradicts the choice of the pair (P,Q). This contradiction shows that
deg gcd(fn, gl) ≥ 1.

Corollary 1. Let f, g ∈ K[x, y] be a unimodular row. If deg f = 1, then
g = hf + c for some h ∈ K[x, y], c ∈ K∗.

Proof. Let
f = f0 + f1, g = g0 + g1 + · · ·+ gl

be the decomposition of polynomials into sums of homogeneous compo-
nents. Then by Lemma 3 we have deg gcd(f1, gl) ≥ 1. The latter means
that gl is divisible by f1, i.e. gl = h1f1 for some polynomial h1 ∈ K[x, y].
But then the row (f, g − h1f) is unimodular and deg(g − h1f) < deg g.
Continuing such considerations we obtain a unimodular row (f, g − hf)
for some h ∈ K[x, y] such that deg(g−hf) = 0, i.e. g−hf = c. Obviously
c ̸= 0 and we get g = hf + c, c ∈ K∗.

Let us recall that any quadratic curve f(x, y) = 0, deg f = 2 is
reduced by linear transformations of variables to one of the known canoni-
cal forms. This can be reformulated as follows:

Lemma 4. Let f(x, y) ∈ K[x, y], deg f = 2. Then there exist an affine
automorphism θ of the ring K[x, y] of the form θ(x) = α1x + β1y + γ1,
θ(y) = α2x + β2y + γ2 such that θ(f) is a polynomial of the following
type:
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(1) f(x, y) = x2 + γ, γ ∈ K;
(2) f(x, y) = x2 + y;
(3) f(x, y) = xy + γ, γ ∈ K.

Lemma 5. Let (f, g) be a unimodular row such that f = x2+y. Then this
row is reduced to the row (1, 0) by elementary transformations, i.e. there
exist elementary matrices B1, . . . , Bk such that (f, g)B1, . . . , Bk = (1, 0).

Proof. Let us write the polynomial g as a polynomial of x with coeffi-
cients depending on y,

g(x, y) = g0(y) + g1(y)x+ · · ·+ gk(y)x
k.

Denote

h(x, y) = g2(y) + g3(y)x+ · · ·+ gk(y)x
k−2.

Then

(f, g) ·
(

1 −h
0 1

)
= (f, g0(y) + g1(y)x− yh(x, y)).

Note that the polynomial g(1) = g0(y)+g1(y)x−yh(x, y) is of degree < k
on x, i.e., degxg < degxg

(1). Repeating this process for the unimodular
row (x2 + y, g(1)) we obtain as a result a unimodular row of the form
(x2+y, g(s)) for some s ≥ 2 with degxg

(s) ≤ 1. So we can assume without
loss of generality that g(x, y) = g0(y) + g1(y)x. By the conditions of the
lemma, there exist polynomials P (x, y), Q(x, y) ∈ K[x, y] such that

P (x, y)(x2 + y) +Q(x, y)(g0(y) + g1(y)x) = 1.

Putting here y = −x2 we get the equality

Q(x,−x2)(g0(−x2) + xg1(−x2)) = 1.

It follows from this equality that g0(−x2)+xg1(−x2) = c for some c ∈ K∗.
Since degx g0(−x2) is even and degx xg1(−x2) is odd we get g1 = 0 and
g0(y) ∈ K. But then g = g0 ∈ K∗ and the unimodular row (x2 + y, g0)
obviously is reduced to the row (1, 0).

Lemma 6. Let (f, g) be a unimodular row, where f = x2 + γ, γ ∈ K.
Then this row can be reduced by elementary transformations to either the
row (1, 0), or to the row (x2 + γ, xψ(y) + δ), δ ∈ K, degψ(y) ≥ 1.

Proof. Write down the polynomial g(x, y) as a polynomial of x with
coefficients in K[y]

g = g0(y) + g1(y) + · · ·+ gk(y)x
k.
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Repeating the consideration from the proof of Lemma 5 one can as-
sume without loss of generality that g = g0(y) + g1(y)x for some poly-
nomials g0(y) and g1(y). Since (x2 + γ, g0(y) + g1(y)x) is a unimodular
row, there exist polynomials P,Q ∈ K[x, y] such that

P (x2 + γ) +Q(g0(y) + g1(y)x) = 1.

Note that for any polynomial A(x, y) ∈ K[x, y], the polynomials

P (x, y) = P (x, y) +A(x, y)g(x, y), Q(x, y) = Q(x, y)−A(x, y)(x2 + γ)

also satisfy the equality (x2+γ)P+g(x, y)Q = 1. Therefore, without loss
of generality, one can reduce the unimodular row (P,Q) by elementary
transformations to the row (P,Q0(y) + Q1(y)x) without changing the
initial unimodular row (x2 + γ, g(x, y)). We get the equality

P (x, y)(x2 + γ) + (Q0(y) +Q1(y)x)(g0(y) + g1(y)x) = 1. (3)

First, let γ ̸= 0. Substituting in formulas (3) x for
√
−γ and then x for

−
√
−γ we obtain two inclusions g1(y)

√
−γ+g0(y) ∈ K and −g1(y)

√
−γ+

g0(y) ∈ K. It follows from these inclusions that g0(y) ∈ K and g1(y) ∈ K.
But then from (3) we see that Q0(y), Q1(y) ∈ K. The equality (3) shows
also that g1 = 0 and Q1 = 0, i.e., g(x, y) = c1 and Q(x, y) = c2 for some
c1, c2 ∈ K. Therefore the unimodular row (x2 + γ, g) can be reduced (by
elementary transformations) to the row (1, 0).

Now let γ = 0, i.e., f(x, y) = x2. Putting x = 0 in the equality (3)
we get Q0(y)g0(y) = 1. Thus Q0, g0 ∈ K∗. The latter means that g =
xψ(y) + δ, where ψ(y) = Q1(y) and δ = Q0. Note that the unimodular

row associated with (x2, xψ(y)+δ) is the row (xψ(y)−δ
δ2

, δ−2ψ2(y)) because

the matrix

(
x2 xψ(y) + δ

δ−2(xψ(y)− δ) δ−2ψ2(y)

)
has the determinant 1.

2. The main theorem

We need to consider the last case when the unimodular row is of the form
(xy + γ, g(x, y)).

Lemma 7. Let (f, g) be a unimodular row with f(x, y) = xy+γ, γ ∈ K.
Then this row can be reduced by elementary transformations to the uni-
modular row (xy + γ, xk) or to the row (xy + γ, (−γ−1y)k) with integer
k ≥ 2, or to the row (1, 0).
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Proof. By the conditions of the lemma we have an equality of the form

P (x, y)(xy + γ) +Q(x, y)g(x, y) = 1 (4)

for some polynomials P,Q ∈ K[x, y]. Write down the polynomial g(x, y)
in the form g(x, y) = φ(x) + ψ(y) + xyh(x, y) for some polynomials
φ(x), ψ(y), h(x, y) ∈ K[x, y]. Then we get the equality

(xy + γ, g)

(
1 −h(x, y)
0 1

)
= (xy + γ, φ(x) + ψ(y)− γh(x, y)).

If h(x, y) ̸= 0 we can write h(x, y) = φ1(x) + ψ1(y) + xyh1(x, y) and
repeat the previous considerations. As a result, we may assume without
loss of generality that g(x, y) = φ(x) + ψ(y). Analogously repeating
considerations from the proof of Lemma 6 we may assume that Q(x, y) =
u(x) + v(y) for some polynomials u(x), v(y) ∈ K[x, y].

First, let γ ̸= 0. Let us put y = −γ/x in the equality (4). We
get (u(x) + v(−γ/x))(φ(x) + ψ(−γ/x)) = 1. One can easily prove that
an element p(x, x−1) from ring K[x, x−1] is invertible in this ring if and
only if p = αxk for some k ∈ Z, α ∈ K∗. So, we have g(x, y) = xk,
Q(x, y) = (−γ−1y)k or g(x, y) = (−γ−1y)k, Q(x, y) = xk for some k ≥ 0.
In any case, the polynomial P (x, y) is of the form

P (x, y) =
1− (−γ−1xy)k

γ + xy
= γ−1

(
1 +

(
−xy
γ

)
+ · · ·+

(
−xy
γ

)k−1
)
.

As a result, we get two unimodular rows:

1) (xy + γ, xk) with the associated row
(
−(−γ−1y)k, 1−(−γ−1xy)k

γ+xy

)
;

2) (xy + γ, (−γ−1y)k) with the associated row
(
−xk, 1−(−γ−1xy)k

γ+xy

)
.

Note that one can assume that k ≥ 2. Really, in other case the
row (xy + γ, xk) is reduced to the row (1, 0) because of Corollary 1.
Let now γ = 0. Let us replace x with 0 in the equality (4). Then we
have (u(0) + v(y))(φ(0) + ψ(y)) = 1. This equality implies obviously
v(y), ψ(y) ∈ K. Analogously after substituting 0 instead of y in (4) we
get v(x), ψ(x) ∈ K. We see that in this case the polynomial g(x, y) is
constant and therefore the unimodular row can be reduced to the row
(1, 0). The proof is complete.

Theorem 1. Let A =

(
a1 1(x, y) a1 2(x, y)
a2 1(x, y) a2 2(x, y)

)
∈ SL2 (K[x, y]). If

deg ai j = 2 for some i, j ∈ {1, 2}, then there exists an automorphism
θ ∈ Aut (K[x, y]) such that Aθ is one of the types:
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1) Aθ = B1B2 . . . Bk, k ≥ 1, Bi are elementary matrices;

2) Aθ = B1 . . . BsCBs+1 . . . Bk, where B1 . . . Bs, Bs+1 . . . Bk are ele-
mentary matrices and C is one of the form:

a)

(
x2 xψ(y) + δ

xψ(y)−δ
δ2

ψ(y)2

δ2

)
b)

(
xy + γ xk

−(−γ−1y)k 1−(−γ−1xy)k

γ+xy

)
for some δ, γ ∈ K∗, ψ(y) ∈ K[x, y], k ∈ Z, k ≥ 2.

Proof. Multiplying the matrixA from the left or from the right by the ma-

trix

(
0 1
−1 0

)
we can assume without loss of generality that i = j = 1,

i.e. deg a1 1 ≤ 2. Applying a linear automorphism θ to the matrix A we
can reduce (by Lemma 3) the element a1 1(x, y) to one of the forms

1) a1 1(x, y) = x2 + y;

2) a1 1(x, y) = x2 + γ;

3) a1 1(x, y) = xy + γ.

First, let a1 1(x, y) = x2 + y. Then applying Lemma 5 to the first

row of the matrix A we get the matrix

(
1 0

b(x, y) 1

)
for a polynomial

b(x, y) ∈ K[x, y], recall that multiplying from the left by elementary mat-
rices makes elementary transformations in the first and second rows of A.
The latter means that A is a product of elementary matrices. In the case
a1 1(x, y) = x2+γ, γ ∈ K we get either a product of elementary matrices
A = B1 . . . Bk or a product of the form A = B1 . . . Bi−1CBi+1 . . . Bk,
where Bi are elementary matrices and C is of the form

C =

(
x2 xψ(y) + δ

δ−2(xψ(y)− δ) δ−2ψ(y)2

)
.

By Lemma 7, the last case a1 1(x, y) = xy + γ, γ ∈ K yields the product
A = B1 . . . Bi−1CBi+1 . . . Bk with C of the form

C1 =

(
xy + γ xk

−(−γ−1y)k 1−(−γ−1xy)k

γ+xy

)

or of the form

C2 =

(
xy + γ (−γ−1y)k

−xk 1−(−γ−1xy)k

γ+xy

)
.

Note that the matrices C1 and C2 are conjugated by the automor-
phism θ : x 7→ −γ−1y, y 7→ −γx. The proof is complete.
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3. Formulas for associated rows

If a unimodular row (f, g) is given, then there exists a unimodular row

(−Q,P ) such that Pf + Qg = 1 (then the matrix

(
f g
−Q P

)
has

determinant of 1). Such a row (−Q,P ) is unique up to a row (−λQ, λP )
for an arbitrary polynomial λ ∈ K[x, y]. Really, if P ′f + Q′g = 1 for a
row (P ′, Q′), then (P −P ′)f+(Q−Q′)g = 0. By Lemma 2, P −P ′ = λg,
Q−Q′ = λf for some λ ∈ K[x, y] and therefore

(P ′, Q′) = (P,Q) + (−λg, λf).

Let us point out how one can write homogeneous components of poly-
nomials P , Q using homogeneous components of g and f respectively.
We restrict ourselves only to polynomials f , g of the same degree. Let
deg f = deg g = n. Then obviously degP = degQ = m for some m.
Write down polynomials f, g, P,Q as sums of their homogeneous compo-
nents

f = f0 + · · ·+ fn, g = g0 + · · ·+ gn,

P = P0 + · · ·+ Pm, Q = Q0 + · · ·+Qm.

Denote φ = gcd(fn, gn). We assume that all the polynomials f , g, P , Q
are nonconstant ones. Then by the Lemma 3, degφ ≥ 1. It turns out
that φi+1Pm−i and φi+1Qm−i can be written as linear combinations of
g′is and f ′is, respectively, with the same polynomial coefficients.

Theorem 2. There exist homogeneous polynomials α0, . . . , αm such that
for 0 ≤ i ≤ m

φi+1Pm−i =

min(i,n)∑
j=0

φjαi−jgn−j ,

−φi+1Qm−i =

min(i,n)∑
j=0

φjαi−jfn−j .

(⋆)

Proof. Induction on i. The case i = 0 is a consequence of Lemma 2.
Really, we have Pmfn +Qmgn = 0. Let

φ = gcd(fn, gn), h1 = fn/φ, h2 = gn/φ.

By Lemma 2 Pm = ψh2, Qm = −ψh1 for some ψ ∈ K[x, y]. Then

φPm = ψφh2 = ψgn, −φQm = ψφh1 = ψfn.

Putting α0 = ψ we get the case i = 0. Let the formulas (⋆) be true for
i′ < i, let us prove it for i. Since Pf +Qg = 1 we have equalities for
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homogeneous components in the left side of the later equality: (Pf +
Qg)m+n−i = 0 for 0 ≤ i ≤ m. But the left side of the latter equality can
be written in the form

min(i,n)∑
k=0

(Pm−i+kfn−k +Qm−i+kgn−k) = 0.

After multiplying this equality by φi+1 we can rewrite it for 0 ≤ i ≤ m
in the form

min(i,n)∑
k=0

φk
(
φi−k+1Pm−i+kfn−k + φi−k+1Qm−i+kgn−k

)
= 0.

Replacing Pm−i+k and Qm−i+k, k ≥ 1 by their expressions due to the
induction hypothesis we obtain the equality (we denote min(i, n) by i∧n
for brevity in the next part of the proof):

0 = φi+1 (Pm−ifn +Qm−ign)+

+
i∧n∑
k=1

φk

fn−k i∧n∑
j=0

φjαi−k−jgn−j − gn−k

i∧n∑
j=0

φjαi−k−jfn−j

 .

The last equality can be rewritten in the form

φi+1 (Pm−ifn +Qm−ign) + gn

i∧n∑
k=1

φkαi−kfn−k − fn

i∧n∑
k=1

φkαi−kgn−k+

+
∑

1≤j,k≤n
j+k≤i

φj+kαi−k−jfn−kgn−j −
∑

1≤j,k≤n
j+k≤i

φj+kαi−k−jfn−jgn−k = 0.

Note that the last two sums in this equality give as result 0 and we can
write the last equality as(

φi+1Pm−i −
i∧n∑
k=1

φkαi−kgn−k

)
fn+

+

(
φi+1Qm−i −

i∧n∑
k=1

φkαi−kfn−k

)
gn = 0.

It follows from Lemma 2 that there exists a polynomial αi such that

φi+1Pm−i −
i∧n∑
k=1

φkαi−kgn−k = αign,
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φi+1Qm−i +
i∧n∑
k=1

φkαi−kfn−k = −αifn.

These equalities can be rewritten (in the initial notation) in the form

φi+1Pm−i =

min(i,n)∑
k=0

φkαi−kgn−k, −φi+1Qm−i =

min(i,n)∑
k=0

φkαi−kfn−k.

The proof is complete.
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