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The inverse semigroup of all fence-preserving
injections and its maximal subsemigroups
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Abstract. In this paper, we study the inverse semigroup IFn

of all partial injections α on an n-element set such that both α and
α−1 are fence-preserving (preserve the zig-zag order). The main
result of this paper is the characterization of the maximal subsemi-
groups of IFn: There are five types of maximal subsemigroups,
whenever n is odd; if n is even, then the maximal semigroups are
of the form IFn \ {α}, where α belongs to the least generating set
of IFn. Moreover, we describe the i-conjugate elements in IFn.

Introduction

Let S be a semigroup. A subsemigroup S′ of S is called a maximal sub-
semigroup of S if S′ ̸= S (i.e., S is a proper subsemigroup of S) and S′ is
not contained in any proper other subsemigroup of S. Maximal subsemi-
groups were characterized for a variety of semigroups. The paper [6] by
N. Graham, R. Graham, and J. Rhodes is basically for the study of maxi-
mal subsemigroups of finite semigroups. A semigroup S is called inverse
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if for all x ∈ S, there is a unique y ∈ S with xyx = x and yxy = y. Such
an element y is called the inverse of x and is denoted by x−1. Let n be
a positive integer and let n̄ = {1, . . . , n} be the set of the first n positive
integers. For a set A ⊆ n̄, a mapping α : A → n̄ is called partial trans-
formation onn̄. The set of all partial transformations on n̄ is denoted by
PTn. The set A is called domain of α (in symbols: A = dom(α)) and
im(α) = {xα : x ∈ dom(α)} is the image (range) of α. The cardinality of
im(α) is called the rank of α (in symbols: rank(α) = |im(α)|). If A = n̄,
then α is called a full transformation. If α is injective, then α is called a
partial injection. The set In of all partial injections on n̄ forms a monoid
with the identity mapping idn̄ on n̄ as identity element, called the sym-
metric inverse semigroup on n̄. For any A ⊆ n̄, the transformation idn̄
restricted to A, i.e., the transformation α with dom(α) = A and xα = x
for all x ∈ dom(α) is called a partial identity.

Several subsemigroups of In have already been intensively studied.
In particular, the maximal subsemigroups were determined. In [5], the
authors characterized the maximal subsemigroups of the monoid IOn

consisting of all order-preserving (isotone) partial injections on n̄. In [3],
the authors characterized the maximal subsemigroups of the ideals of
IOn. The maximal subsemigroups of the ideals of the monoid IMn con-
sisting of all monotone, i.e., order-preserving or order-reversing (isotone
or antitone) partial injections on n̄ were determined in [3], as well. Recall
that α ∈ In is called order-preserving (order-reversing) if x < y ⇒ xα <
yα (x < y ⇒ xα > zα) for all x, y ∈ dom(α). D-B. Li, W-T. Zhang,
and Y-F. Luo determined the maximal subsemigroups of the monoid of
all orientation-preserving extensive partial injections on n̄ [9]. The maxi-
mal subsemigroups of the ideals of the inverse semigroup of all order-,
fence-, and parity-preserving partial injections on n̄ were determined by
J. Koppitz and A. Sareeto in [11].

Let ≺ be the binary relation on n̄ defined by

i ≺ i+ 1, whenever i+ 1 ∈ n̄ and i ≺ i− 1, whenever i− 1 ∈ n̄

for all even integers i ∈ n̄. This relation ≺ is a partial order on n̄, which
is called zig-zag order (or fence, regarded as poset (n̄,≺)). Every element
in n̄ is either maximal or minimal with respect to ≺.

A partial transformation α is called fence-preserving if for all x, y ∈
dom(α), the following implication holds:

x ≺ y ⇒ xα ≺ yα.
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Figure 1: zig-zag order.

Then set of all fence-preserving full transformations on n̄ forms a monoid
and it was first studied by J. Currie and T. Visentin in 1991 [2] as well as
by A. Rutkowski in 1992 [10]. Extending the results of [2], A. Rutkowski
gives the number of fence-preserving full transformations on n̄ for an
even as well as for an odd positive integer n. For a long period, fence-
preserving transformations were not considered. In 2015, a paper by
K. Jendrdana and R. Srithus apears, which studies coregular semigroups
of fence-preserving full transformations [7]. One year later, R. Tanya-
wong, R. Srithus, and R. Chinram determined the regular semigroups
of fence-preserving full transformations [12]. In 2017, I. Dimitrova and
J. Koppitz [4] studied the monoid IFn of all α ∈ In such that both α
and α−1 are fence-preserving. Note that IFn is an inverse semigroup.
In contrast, the monoid of all fence-preserving partial injections is not
an inverse semigroup. For example, if n = 4, then the inverse element

of the fence-preserving partial injection

(
1 4
1 2

)
is

(
1 2
1 4

)
, where(

1 2
1 4

)
does not be fence-preserving since 2 ≺ 1 but 4 ⊀ 1. We can

characterize the elements in IFn as in the following proposition.

Proposition 1. Let

α =

(
d1 d2 . . . dp
m1 m2 . . . mp

)
∈ In.

Then α ∈ IFn if and only if for all i, j ∈ {1, 2, . . . , p}, the following both
conditions hold:

(1) |di − dj | = 1 if and only if |mi −mj | = 1;
(2) if |di − dj | = 1, then di and mi have the same parity.
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Proof. Let i, j ∈ {1, 2, . . . , p}.
(1) Suppose that |di − dj | = 1. Then |mi − mj | = 1 since α is fence-
preserving. Suppose that |mi −mj | = 1 and |di − dj | ≠ 1, which implies
that α−1 is not fence-preserving. So, α−1 /∈ IFn, a contradiction. Thus,
|di − dj | = 1.
(2) Assume that |di − dj | = 1. Then di ≺ dj or dj ≺ di. Since α is
fence-preserving, we have mi ≺ mj and mj ≺ mi, respectively. So, di
and mi have the same parity.

Conversely, suppose that both conditions (1) and (2) hold. Let x, y ∈
dom(α) with x ≺ y, which means |x− y| = 1. Let x = di and y = dj for
some i, j ∈ {1, 2, . . . , p}. By (1) and |di − dj | = 1, we get |mi −mj | = 1,
i.e., xα ≺ yα or yα ≺ xα. From (2) and |di − dj | = 1, we get that x and
xα have the same parity. Hence, xα ≺ yα. Let x, y ∈dom(α−1) = im(α)
with x ≺ y, which means |x − y| = 1. Let x = mi and y = mj for
some i, j ∈ {1, 2, . . . , p}. Then mi = diα and mj = djα. By (1) and
|mi−mj | = 1, we obtain |xα−1− yα−1| = |di−dj | = 1. Thus, di ≺ dj or
dj ≺ di. Since |di−dj | = 1 and as (2), we get that di = miα and mi have
the same parity. Therefore, miα

−1 ≺ mjα
−1. Hence, xα−1 ≺ yα−1.

We call Y ⊆ n̄ an insterval of n̄ if Y is a consecutive set, i.e., Y =
{i, i + 1, . . . , i + r} for some i ∈ {1, 2, . . . , n} and r ∈ {0, 1, . . . , n − i},
such that i−1, i+r+1 /∈ Y . From Proposition 1, we obtain immediately
a characterization of the restrictions of an α ∈ IFn to the intervals in
dom(α).

Remark 1. Let α ∈ IFn, let k ∈ {1, . . . , n} and let p ∈ {0, . . . , n − k}
such that A = {k, k + 1, . . . , k + p} be an interval in dom(α). Then

α|A =

(
k k + 1 . . . k + p
l l + 1 . . . l + p

)
or α|A =

(
k k + 1 . . . k + p
l l − 1 . . . l − p

)
for some l ∈ {1, . . . , n}, where k and l have the same parity, whenever
p > 0. With other words, the restriction of α to an interval in dom(α) is
an order-preserving or order-reversing partial transformations on n̄, with
a consecutive image set. So, Remark 1 gives a vivid description of the
elements in IFn.

In [4], the authors show that IFn is generated by the set {α : α ∈
IFn, rank(α) ≥ n−2}. First, we consider an even positive integer n. Let

G2 =

{(
1 2
1 2

)
,

(
1
2

)
,

(
2
1

)}
.
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For n ≥ 4, we define

σ1 =

(
1 2 3 · · · n
n − 1 · · · n− 2

)
;

σ2 = σ−1
1 =

(
1 · · · n− 2 n− 1 n
3 · · · n − 1

)
;

γi =

(
1 · · · i− 1 i i+ 1 · · · n

i− 1 · · · 1 − i+ 1 · · · n

)
for i ∈ {4, 6, . . . , n};

δi =

(
1 · · · i− 1 i i+ 1 · · · n
1 · · · i− 1 − n · · · i+ 1

)
for i ∈ {1, 3, . . . , n− 3};

and

Gn = {idn̄, σ1, σ2} ∪ {γi : i ∈ {4, 6, . . . n}} ∪ {δi : i ∈ {1, 3, . . . , n− 3}}.

Theorem 1 ([4]). If n is an even positive integer, then G ↗n is the least
generating set of IFn.

Since Gn is the least generating set of IFn, one can easy determine
the maximal subsemigroups IFn:

Proposition 2. Let n be an even positive integer and let T be a sub-
semigroup of IFn. Then T is a maximal subsemigroup of IFn if and only
if T = IFn \ {α} for some α ∈ Gn.

For example, T1 =

{(
1
1

)
,

(
2
2

)
,

(
1 2
1 2

)
,

(
1
2

)}
,

T2 =

{(
1
1

)
,

(
2
2

)
,

(
1 2
1 2

)
,

(
2
1

)}
, and T3 =

{(
1
1

)
,

(
1
2

)
,

(
2
2

)
,

(
2
1

)}
are the maximal subsemigroups of IF2.

We consider now the case that n is odd. The authors of [8] give a
generating set of IFn of minimal size. We define particular elements in
IFn as follows:

γn =

(
1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
;

αi =

(
1 2 . . . i− 1 i i+ 1 i+ 2 . . . n
1 2 . . . i− 1 − n n− 1 . . . i+ 1

)
for i ∈ {2, 4, . . . , n− 1};

αi =

(
1 2 . . . i− 1 i i+ 1 i+ 2 . . . n
1 2 . . . i− 1 − i+ 1 i+ 2 . . . n

)
for i ∈ {1, 3, . . . , n};

βodd
2 =

(
1 2 3 4 . . . n
2 − − 4 . . . n

)
;

βeven
2 = (βodd

2 )−1 =

(
1 2 3 4 . . . n
− 1 − 4 . . . n

)
.
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In the case, n ≥ 5 for i ∈ {4, 6, . . . , n− 1}, we define

βodd
i =

(
1 2 3 . . . i i+ 1 i+ 2 . . . n
i − 1 . . . i− 2 − i+ 2 . . . n

)
and

βeven
i = (βodd

i )−1

(
1 . . . i− 2 i− 1 i+ 2 . . . n
3 . . . i − i+ 2 . . . n

)
.

In case n ≥ 7, we define

αi,j =

(
1 2 . . . i− 1 i i+ 1 . . . j − 1 j j + 1 . . . n
− 2 . . . i− 1 − j − 1 . . . i+ 1 − j + 1 . . . n

)
for i, j ∈ {2, 3, . . . , n− 1} with 4 ≤ j − i < n− 1 and i < n− j + 1;

α1,j =

(
1 2 . . . j − 1 j j + 1 . . . n
− j − 1 . . . 2 − j + 1 . . . n

)
for j ∈ {5, 7, . . . , n−2};

αi,n =

(
1 . . . j − 1 j j + 1 . . . n− 1 n
1 . . . j − 1 − n− 1 . . . j + 1 −

)
for i ∈ {3, 5, . . . , n−4}

and

α1,n =

(
1 2 . . . n− 1 n
− n− 1 . . . 2 −

)
.

Further, let Gn = {γn} ∪ {αi : i ∈ {1, 3, . . . ,
(
n+ 1

2

)
o

}}

∪{αi : i ∈ {2, 4, . . . , n− 3}}

∪{βodd
i , βeven

i : i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

}}

∪{αi,j : i, j ∈ {1, 3, . . . , n}, 4 ≤ j − i < n− 1, i ≤ n− j + 1},

where

(
n+ 1

2

)
o

(

(
n+ 1

2

)
e

) denotes the odd (even) number in the set

{n+ 1

2
,
n+ 1

2
− 1}.

Theorem 2 ([8]). Gn is a generating set of IFn of minimal size for all
odd integers n ≥ 5 and G3 = {γ3, α1, α2, β

odd
2 , βeven

2 } is a generating set
of IF3 of minimal size.

In particular, we can observe that IFn has no least generating set,
whenever n ≥ 3 is odd. For example, we can replace α1 in Gn by
γnα1γn /∈ Gn and obtain a new generating set of IFn of minimal size.
This suggests that the question for the maximal subsemigroups of IFn

(n ≥ 3 is odd) does not have a straightforward answer. The main target
of this paper will be the characterization of the maximal subsemigroups
of IFn. Moreover, the paper will also fill two further gaps in the study
of the inverse semigroup IFn.
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Back to any positive integer n. We will also consider the conjugacy
in the inverse semigroup IFn. In [1], J. Araújo et al. characterize the
i-conjugate elements in the symmetric inverse semigroup In. We are
going to find a charcterization of the i-conjugate elements in the sub-
semigroup IFn of the symmetric inverse semigroup. This is the subject
of the next section.

1. Conjugacy in IFn

Two elements a and b of an inverse semigroup S with identity element
are called i-conjugate, denoted a ∼i b, if there exists g ∈ S such that
g−1ag = b and gbg−1 = a. By [1], α, β ∈ In are i-conjugate if and
only if there is a full transformation σ ∈ In (σ is a permutation) such
that σ−1ασ = β. The aim of this section is to give a description of the
conjugacy in the inverse semigroup IFn, for all positive integers n. Let
us fix a positive integer n for that section.

Lemma 1. Let α, β ∈ IFn with

α =

(
a1 a2 . . . ap
ap+1 ap+2 . . . a2p

)
and β =

(
b1 b2 . . . bq
bq+1 bq+2 . . . b2q

)
.

If α ∼i β, then p = q.

Proof. Suppose that α ∼i β. Since α ∼i β, we have α = γβγ−1 and β =
γ−1αγ for some γ ∈ IFn. Let |dom(α)| = p =|im(α)| and |dom(β)| =
q =|im(β)|. Clearly, β = γ−1αγ implies q = |im(β)| ≤ |im(α)| = p and
α = γβγ−1 implies q = |im (α)| ≤ |im (β)| = p. Then p = q.

For any positive integer m, let Sm be the set of all full transfor-
mations in Im (i.e., all permutations on {1, 2, . . . ,m}). Let p ∈ n̄, j ∈
{1, 2, . . . , 2p}, and σ ∈ S2p. Then we put

jσ =

{
jσ if j ∈ {1, 2, . . . , p},
(1− p)σ + p if j ∈ {p+ 1, p+ 2, . . . , 2p}.

Theorem 3. Let α, β ∈ IFn with

α =

(
a1 a2 . . . ap
ap+1 ap+2 . . . a2p

)
and β =

(
b1 b2 . . . bq
bq+1 bq+2 . . . b2q

)
.

Then α ∼i β if and only if p = q and there is σ ∈ S2p with σ|{1,2,...,p} ∈ Sp

such that
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(a) ai = aj if and only if biσ = bjσ for all 1 ≤ i < j ≤ 2p;
(b) either ai and biσ have the same parity and

|ai − aj | = |biσ − bjσ | = 1 or |ai − aj |, |biσ − bjσ | > 1
for all 1 ≤ i < j ≤ 2p.

Proof. Suppose that α ∼i β. By Lemma 1, we obtain p = q. We show
now (a) and (b). From α ∼i β, it follows α = γβγ−1 for some γ ∈ IFn.
Define σ : {1, 2, . . . , 2p} → {1, 2, . . . , 2p} with σ|{1,2,...,p} : {1, 2, . . . , p} →
{1, 2, . . . , p} by

ajγ =

{
bjσ for j ∈ {1, 2, . . . , p},
b(j−p)σ+p for j ∈ {p+ 1, p+ 2, . . . , 2p}.

It is easy to verify that σ is well-defined, σ ∈ S2p, and σ|{1,2,...,p} ∈ Sp.
Suppose that 1 ≤ i < j ≤ 2p.
(a) By the definition of σ and since α = γβγ−1, we get akγ = bkσ and
ak = bkσγ

−1 for k ∈ {i, j}. Suppose that ai = aj . Then biσ = aiγ =
ajγ = bjσ . Suppose that biσ = bjσ . Then ai = biσγ

−1 = bjσγ
−1 = aj .

(b) Assume that |ai − aj | ≤ 1 or |biσ − bjσ | ≤ 1. We will prove that
ai and biσ have the same parity. If |ai − aj | ≤ 1, then |ai − aj | = 0 or
|ai − aj | = 1. Since i < j, we get ai ̸= aj which means |ai − aj | = 1.
Thus, ai ≺ aj or aj ≺ ai. Without loss of generality, let ai ≺ aj . By the
fence-preserving property of γ, we have aiγ ≺ ajγ. Since ai ≺ aj and
aiγ ≺ ajγ, we can conclude that ai and aiγ = biσ have the same parity.
If |biσ − bjσ | ≤ 1, then we can similarly prove that ai and biσ have the
same parity, substituting ai with biσ and aj with bjσ . Next, we will prove
that |ai − aj | = |biσ − bjσ | = 1. If |ai − aj | ≤ 1, then, as already shown,
|ai−aj | = 1 and either ai ≺ aj or aj ≺ ai. Without loss of generality, let
ai ≺ aj . Then biσ = aiγ ≺ ajγ = bjσ by the fence-preserving property
of γ. Therefore, |biσ − bjσ | = 1. If |biσ − bjσ | ≤ 1, then we can similarly
prove |ai− aj | = |biσ − bjσ | = 1, substituting ai with biσ and aj with bjσ .

Suppose that p = q and there is σ ∈ S2p with σ|{1,2,...,p} ∈ Sp such
that (a) and (b) hold. We define a partial transformation γ on n̄ by
aiγ = biσ for all i ∈ {1, 2, . . . , 2p}. The mapping γ is well defined and
injective by (a). Let i ∈ {1, 2, . . . , p}. From aiγ = biσ , we get ai = biσγ

−1.
Then we consider

biσ(γ
−1αγ) = (biσγ

−1)αγ = aiαγ = (aiα)γ = ai+pγ = b(i+p)σ = biσ+p

and biσβ = biσβ = biσ+p.

We obtain that biσ(γ
−1αγ) = biσβ. Next, we consider
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ai(γβγ
−1) = (aiγ)βγ

−1 = biσβγ
−1 = (biσβ)γ

−1 = biσ+pγ
−1 = b(i+p)σγ

−1

= ai+p and aiα = ai+p.

Thus, we obtain that ai(γβγ
−1) = aiα. We have now shown that β =

γ−1αγ and α = γβγ−1. It remains to prove that γ ∈ IFn. Let i < j ∈
{1, 2, . . . , p}.
(1) Suppose that |ai − aj | = 1. From (b) and |ai − aj | = 1, we have
|aiγ − ajγ| = |biσ − bjσ | = |ai − aj | = 1. Let |aiγ − ajγ| = 1. Then
|biσ − bjσ | = 1. From (b) and |biσ − bjσ | = 1, we have |ai − aj | =
|biσ − bjσ | = 1.
(2) Suppose |ai − aj | = 1. By (b) and |ai − aj | = 1, we get that ai and
aiγ = biσ have the same parity.
By Proposition 1, we obtain that γ ∈ IFn.

2. Maximal Subsemigroup of IFn

In this section, let n be an odd integer greater than or equal to 3. Note
that, the semigroups consisting of the identity mapping on {1} and the
empty transformation, respectively, are both maximal subsemigroups of
IF1. We will characterize the maximal subsemigroups of IFn. First, we
observe the following general fact:

Lemma 2. Let T be a maximal subsemigroup of any subsemigroup S of
PTn. Then there are r ∈ {0, 1, . . . , n} and J ⊆ {α ∈ S : rank(α) = r}
such that T = S \ J .

Proof. Let J = S \ T . Suppose there exist α, β ∈ J such that rank(α) <
rank(β). Since α /∈ T and T is a maximal subsemigroup of S, we have
⟨T, α⟩ = S. Therefore, β = γ1 . . . γk, for some γ1, . . . , γk ∈ T ∪ {α}. As
β /∈ T , γi = α, for some i = 1, . . . , k. Hence, rank(β) = rank(γ1 . . . γk) ≤
rank(α) < rank(β), which is a contradiction. Thus rank(α) = rank(β)
for all α, β ∈ J .

Let us now define the following sets:

Ai = {αi, γnαi, αiγn, γnαiγn} for i ∈ {1, 3, . . . ,
(
n+ 1

2

)
o

};

Bi = {βodd
i , γnβ

odd
i , βodd

i γn, γnβ
odd
i γn, α2β

odd
i , γnα2β

odd
i , α2β

odd
i γn,

γnα2β
odd
i γn} for i ∈ {2, 4, . . . ,

(
n+ 1

2

)
e

};

Ci = {βeven
i , γnβ

even
i , βeven

i γn, γnβ
even
i γn, β

even
i α2, γnβ

even
i α2,
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βeven
i α2γn, γnβ

even
i α2γn} for i ∈ {2, 4, . . . ,

(
n+ 1

2

)
e

};

Di = {αi, γnαi, αiγn, γnαiγn, αn−i+1, γnαn−i+1, αn−i+1γn,

γnαn−i+1γn} for i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

};

Ei,j = {αi,j , γnαi,j , αi,jγn, γnαi,jγn} for i, j ∈ {1, 3, . . . , n}
with 4 ≤ j − i < n− 1 and i ≤ n− j + 1}, whenever n ≥ 7.

Note that for n = 3, we have β2γn = β2, α2β2 = β2α2 = β2, and
α2 = γnα2γn. Hence,

B2 = {βodd
2 , γ3β

odd
2 },

C2 = {βeven
2 , γ3β

even
2 }, and

D2 = {α2, γ3α2}.

Now, we will consider five types of subsemigroups of IFn, for which,
we will verify that these are the maximal ones.

Lemma 3. IFn \ Ai is a maximal subsemigroup of IFn for all i ∈

{1, 3, . . . ,
(
n+ 1

2

)
o

}.

Proof. Let i ∈ {1, 3, . . . ,
(
n+ 1

2

)
o

}. First, we show that IFn \ Ai is a

subsemigroup of IFn. Assume that there are α, β ∈ IFn \Ai such that

αβ = αi.

Without loss of generality, we can assume that β ̸= idn̄. So, im(αi) ⊆
im(β) and by Remark 1, it is easy to verify that there are three possible
cases for β:

(1) β = αiγn ∈ Ai,
(2) β = αi ∈ Ai, and
(3) β = γn.

In case (3), we get α = αiγn ∈ Ai. These observations show that β ∈ Ai

or α ∈ Ai, a contradiction. Then αi /∈ ⟨IFn \Ai⟩.
It follows that αi, γnαi, αiγn, γnαiγn /∈ ⟨IFn \ Ai⟩ since γn /∈ Ai and

γ2n = idn̄. Therefore, IFn \ Ai is a subsemigroup of IFn. It remains
to show that IFn \ Ai is a maximal subsemigroup of IFn. For this, let
x ∈ Ai. There are r, s ∈ {1, 2} such that x = γrnαiγ

s
n. Then

Ai = {γr+1
n αγsn, γ

r
nαiγ

s+1
n , γr+1

n αγs+1
n , γrnαiγ

s
n} ⊆ ⟨IFn \Ai, x, γn⟩.
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Since γn /∈ Ai, this shows that ⟨IFn \ Ai, x⟩ = IFn, i.e., IFn \ Ai is a
maximal subsemigroup of IFn.

Lemma 4. Both IFn \ Bi and IFn \ Ci are maximal subsemigroups of

IFn for all i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

}.

Proof. Let i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

}. We prove that IFn\Bi is a maximal

subsemigroup of IFn. Note that β
even
i = (βodd

i )−1. So, we can prove that
IFn\Ci is a maximal subsemigroup of IFn using the same method. First,
we show that IFn \Bi is a subsemigroup of IFn.

Suppose that i = 2. Assume that there are α, β ∈ IFn \B2 such that

αβ = βodd
2 .

Thus, im(βodd
2 ) ⊆ im(β) and by Remark 1, it is easy to verify that there

are six possible cases for β:

(1) β = βodd
2 ∈ B2;

(2) β =

(
n− 1 n 1 2 . . . n− 2
− 2 − 4 . . . n

)
= γnα2β

odd
2 ∈ B2;

(3) β =

(
n− 1 n n− 2 n− 3 . . . 1
− 2 − 4 . . . n

)
= γnβ

odd
2 ∈ B2;

(4) β =

(
n 1 2 n− 1 . . . 3
− 2 − 4 . . . n

)
= α2β

odd
2 ∈ B2;

(5) β is a partial identity with im(βodd
2 ) ⊆ im(β), and

(6) γnβ is a partial identity with im(βodd
2 ) ⊆ im(β).

In cases (5) and (6), we can calculate that α = βodd
2 ∈ B2 and α =

βodd
2 γn ∈ B2, respectively. These observations show that α ∈ B2 or

β ∈ B2, a contradiction. So, β
odd
2 /∈ ⟨IFn\B2⟩. This implies βodd

2 , γnβ
odd
2 ,

βodd
2 γn, γnβ

odd
2 γn, α2β

odd
2 , γnα2β

odd
2 , α2β

odd
2 γn, γnα2β

odd
2 γn /∈ ⟨IFn \ B2⟩

since γn, α2 /∈ B2, α
2
2β

odd
2 = βodd

2 and γ2n = idn̄. Hence, IFn \ B2 is a
subsemigroup of IFn.

Suppose i ∈ {4, 6, . . . ,
(
n+ 1

2

)
e

}. We show that IFn \ Bi is a sub-

semigroup of IFn. Suppose that there are α, β ∈ IFn \Bi with

αβ = βodd
i .
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We get Bi ∩ ⟨IFn \Bi⟩ = ∅ by the same arguments as in the case i = 2.
It remains to show that IFn \ Bi is a maximal subsemigroup of

IFn. For this, let x ∈ Bi. Then there are r, s ∈ {1, 2} such that
x = γrnα2β

odd
i γsn or x = γrnβ

odd
i α2γ

s
n. Suppose x = γrnα2β

odd
i γsn. Be-

cause of α2γ
r
nγ

r
nα2β

odd
i = α2α2β

odd
i = βodd

i , we can conclude that Bi =
{βodd

i , γnβ
odd
i , βodd

i γn, γnβ
odd
i γn, α2β

odd
i , γnα2β

odd
i , α2β

odd
i γn, γnα2β

odd
i γn}

⊆ ⟨IFn \ Bi, x, γn⟩. Since γn /∈ Bi, this shows that ⟨IFn \ Bi, x⟩ = IFn.
Suppose that x = γrnβ

odd
i γsn. We have γnγnβ

odd
i = βodd

i . Hence, we get
that Bi ⊆ ⟨IFn \ Bi, γn, α2, x⟩(i = 2 and B2 ⊆ ⟨IFn \ B2, γn⟩, whenever
n = 3). Since γn, α2 /∈ Bi, this shows that ⟨IFn \ Bi, x⟩ = IFn. Altoge-
ther, we can conclude that IFn\Bi is a maximal subsemigroup of IFn.

Lemma 5. IFn \ Di is a maximal subsemigroup of IFn for all i ∈

{2, 4, . . . ,
(
n+ 1

2

)
e

}.

Proof. Let i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

}. First, we show that IFn \ Di is a

subsemigroup of IFn. Suppose that there are α, β ∈ IFn \Di with

αβ = αn−i+1.

Without loss of generality, we can assume that β ̸= idn̄. Since
im(αn−i+1) ⊆ im(β), by Remark 1, it is easy to verify that there are
nine possible cases for β:

(1) β = αn−i+1 ∈ Di;

(2) β =

(
n− i n− i− 1 . . . 1 n− i+ 1 n− i+ 2 . . . n
1 2 . . . n− i − n− i+ 2 . . . n

)
= γnαiγn ∈ Di;

(3) β =

(
n n− 1 . . . i+ 1 i 1 2 . . . i− 1
1 2 . . . n− i − n− i+ 2 n− i+ 3 . . . n

)
= γnαn−i+1 ∈ Di;

(4) β =

(
i+ 1 i+ 2 . . . n i i− 1 i− 2 . . . 1
1 2 . . . n− i − n− i+ 2 n− i+ 3 . . . n

)
= αiγn ∈ Di;

(5) β =

(
1 2 . . . n− i n− i+ 1 n− i+ 2 n− i+ 3 . . . n
1 2 . . . n− i − n− i+ 2 n− i+ 3 . . . n

)
;

(6) β =

(
n− i . . . 1 n− i+ 1 n . . . n− i+ 2
1 . . . n− i − n− i+ 2 . . . n

)
;
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(7) β =

(
i+ 1 . . . n i 1 2 . . . i− 1
1 . . . n− i − n− i+ 2 n− i+ 3 . . . n

)
;

(8) β =

(
n n− 1 . . . i+ 1 i i− 1 i− 2 . . . 1
1 2 . . . n− i − n− i+ 2 n− i+ 3 . . . n

)
, and

(9) β = γn.

In the cases (5), (6), (7), (8), and (9), we can easily calculate that α =
αn−i+1 ∈ Di, α = γnαiγn ∈ Di, α = γnαi ∈ Di, α = αn−i+1γn ∈ Di,
and α = αn−i+1γn ∈ Di, respectively. These observations show that
α ∈ Di or β ∈ Di, a contradiction. So, αn−i+1 /∈ ⟨IFn \Di⟩. Similarly,
we can verify that αi /∈ ⟨IFn \Di⟩. Finally, γ2n = idn̄ and αi, αn−i+1 /∈
⟨IFn \Di⟩ imply that αi, γnαi, αiγn, γnαiγn, αn−i+1, γnαn−i+1, αn−i+1γn,
γnαn−i+1γn /∈ ⟨IFn \Di⟩. Hence, IFn \Di is a subsemigroup of IFn.

It remains to show that IFn \Di is a maximal subsemigroup of IFn.
For this, let x ∈ Di. Then there are r, s ∈ {1, 2} such that x = γrnαiγ

s
n

or x = γrnαn−i+1γ
s
n. If n = 3, then i = 2 and αi = αn−i+1 = α2. Since

α2γ3 = γ3α2 and γ3 /∈ D2, we obtain that x = α2 or x = γ3α2. Since γ3 /∈
D2, we can conclude that ⟨IF3\D2, x⟩ = IF3. So, we have to consider the
case n ≥ 5. Suppose x = γrnαiγ

s
n. Because of (γnαiγn)

2αn−i+1 = αn−i+1

and γ2n = idn̄, we can conclude

Di = {αi, γnαi, αiγn, γnαiγn, αn−i+1, γnαn−i+1, αn−i+1γn, γnαn−i+1γn}
⊆ ⟨IFn \Di, x, γn, (γnαiγn)αn−i+1⟩.

It is easy to verify that γnαiγnαn−i+1 /∈ Di. Since γn /∈ Di, this shows
that ⟨IFn \Di, x⟩ = IFn. Suppose that x = γrnαn−i+1γ

s
n. Dually, we get

Di ⊆ ⟨IFn \Di, x, γn, γnαn−i+1γn⟩ and ⟨IFn \Di, x⟩ = IFn. Altogether,
we can conclude that IFn \Di is a maximal subsemigroup of IFn.

Lemma 6. IFn \ Ei,j is a maximal subsemigroup of IFn for all i, j ∈
{1, 3, . . . , n} with 4 ≤ j − i < n− 1 and i ≤ n− j + 1, whenever n ≥ 7.

Proof. Let i, j ∈ {1, 3, . . . , n} with 4 ≤ j − i < n− 1 and i ≤ n− j + 1.
First, we show that IFn \Ei,j is a subsemigroup of IFn. Note that i = 1
and j = n is not possible.

Suppose that i = 1. Then j ∈ {5, 7, . . . , n − 2}. Suppose that there
are α, β ∈ IFn \ E1,j with

αβ = α1,j .
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Since im(α1,j) ⊆ im(β), by Remark 1, it is easy to verify that there are
four possible cases for β:

(1) β = α1,j ∈ E1,j ;

(2) β =

(
n n− j + 2 . . . n− 1 n− j + 1 n− j . . . 1
− 2 . . . j − 1 − j + 1 . . . n

)
= γnα1,j ∈ E1,j ;

(3) β is partial identity with im(α1,j) ⊆ im(β), and

(4) γnβ is partial indentity with im(α1,j) ⊆ im(β).

It is easy to see that the cases (3) and (4) imply α = α1,j ∈ E1,j and
α = α1,jγn ∈ E1,j , respectively. These observations show that α ∈ E1,j or
β ∈ E1,j , which contradicts with α, β ∈ IFn \E1,j . So, α1,j /∈ ⟨IFn \E1,j⟩
which implies that α1,j , γnα1,j , α1,jγn, γnα1,jγn /∈ ⟨IFn\E1,j⟩. Therefore,
IFn \ E1,j is a subsemigroup of IFn.

If j = n, then i ∈ {3, 5, . . . , n − 1} and we can show by the same
arguments that IFn \ Ei,n is a subsemigroup of IFn.

We have still to consider the case that i ̸= 1 and j ̸= 1. Assume that
there are α, β ∈ IFn \ Ei,j with

αβ = αi,j .

Since im(αi,j) ⊆ im(β), by Remark 1, it is easy to verify that there are
four possible cases for β:

(1) β = αi,j ∈ Ei,j ;

(2) β =

(
n . . . n− i+ 2 in n− j + 2 . . . n− i jn n− j . . . 1
1 . . . i− 1 − i+ 1 . . . j − 1 − j + 1 . . . n

)
= γnαi,j ∈ Ei,j with kn = n− k + 1 for k ∈ {i, j};

(3) β is a partial identity with im(αi,j) ⊆ im(β), and

(4) γnβ is a partial identity with im(αi,j) ⊆ im(β).

Considering the cases (3) and (4), it is easy to see that α = αi,j ∈ Ei,j

and α = αi,jγn ∈ Ei,j , respectively. These observations show that α ∈
Ei,j or β ∈ Ei,j , a contradiction. So, αi,j /∈ ⟨IFn \ Ei,j⟩ which implies
that αi,j , γnαi,j , αi,jγn, γnαi,jγn /∈ ⟨IFn \ Ei,j⟩. Hence, IFn \ Ei,j is a
subsemigroup of IFn.

It remains to show that IFn \Ei,j is a maximal subsemigroup of IFn.
For this, let x ∈ Ei,j . Then there are r, s ∈ {1, 2} such that x = γrnαi,jγ

s
n

and Ei,j = {αi,j , γnαi,j , αi,jγn, γnαi,jγn} ⊆ ⟨IFn \Ei,j , x, γn⟩. Since γn /∈
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Ei,j , this show that ⟨IFn \ Ei,j , x⟩ = IFn, i.e., IFn \ Ei,j is maximal
subsemigroup of IFn.

Since γn and idn̄ = γ2n are only permutations in IFn, we can conclude:

Lemma 7. IFn \ {γn} is a maximal subsemigroup of IFn.

It remains to show that the maximal subsemigroup of IFn, presented
in the previous lemmas, are exactly the maximal ones.

Theorem 4. Let T be a maximal subsemigroup of IFn. Then T has one
of the following forms:

(1) T = IFn \ {γn};

(2) T = IFn \Ai for some i ∈ {1, 3, . . . ,
(
n+ 1

2

)
o

};

(3) T = IFn \Bi or T = IFn \Ci for some i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

};

(4) T = IFn \Di for some i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

};

(5) T = IFn \ Ei,j for some i, j ∈ {1, 3, . . . , n− 1}
with 4 ≤ j − i < n− 1 and i ≤ n− j + 1.

Proof. By Lemmas 3-7, all the given sets are maximal subsemigroups of
IFn.

Conversely, let T be a maximal subsemigroup of IFn. Then by
Lemma 2, there is a set J ⊆ {α ∈ IFn : rank(α) = r} for some
r ∈ {0, 1, . . . , n} such that T = IFn\J . First, we observe that J∩Gn ̸= ∅,
since Gn is a generating set of IFn by Theorem 2. This implies that
r ∈ {n, n− 1, n− 2}.
Suppose that r = n. Then γn ∈ J since IFn \ J is a (maximal)
subsemigroup of IFn by Lemma 7, we conclude that J = {γn}, i.e.,
T = IFn \ {γn}.
Suppose that r = n− 1. Then J ∩Gn ̸= ∅ implies αi ∈ Jn for some i ∈

{1, 3, . . . ,
(
n+ 1

2

)
o

} or i ∈ {2, 4, . . . , n−3}. If i ∈ {1, 3, . . . ,
(
n+ 1

2

)
o

},

then we have γnai, aiγn, γnaiγn ∈ J , i.e., Ai ⊆ J . Since IFn \ Ai is
a maximal subsemigroup of IFn (by Lemma 3) and Ai ⊆ J , we con-
clude that J = Ai, and hence, T = IFn \ Ai. If i ∈ {2, 4, . . . , n − 3},
then γnαi, αiγn, γnαiγn ∈ J . Let b1, b2, . . . ,bp ∈ IFn \ {idn̄, αiγnαi, αiγn,
γnαiγn} such that αi = b1b2 . . . bp. Then dom(bi)= n̄\{i} or dom(γnbi) =
n̄ \ {i} and im(bi)= n̄ \ {i} or im(biγn) = n̄ \ {i} for all i ∈ {1, 2, . . . , p}.
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Moreover, there is k ∈ {1, 2, . . . , p} such that bk is not a partial identity.
Hence, bk ∈ {αn−i+1, αn−i+1γn, γnαn−i+1, γnαn−i+1γn}. This implies
{αn−i+1, αn−i+1γn, γnαn−i+1, γnαn−i+1γn} ∩ J ̸= ∅, and thus, {αn−i+1,
αn−i+1γn, γnαn−i+1, γnαn−i+1γn} ⊆ J since γn /∈ J . Let

j =


i, if i ≤

(
n+ 1

2

)
e

;

n− i, if i >

(
n+ 1

2

)
e

.

Note that if i >

(
n+ 1

2

)
e

, then we can consider two cases:

If

(
n+ 1

2

)
e

=
n+ 1

2
, then we get n− i < n−

(
n+ 1

2

)
e

= n− n+ 1

2
=

n+ 1

2
− 1 <

(
n+ 1

2

)
e

.

If

(
n+ 1

2

)
e

=
n+ 1

2
− 1, then we get n − i ≤ n − (

(
n+ 1

2

)
e

) − 1 =

n− n+ 1

2
+ 1− 1 =

n+ 1

2
− 1 =

(
n+ 1

2

)
e

.

This implies that αn−i+1 ∈ Dj = {αj , γnαj , αjγn, γnαjγn, αn−j+1,

γnαn−j+1, αn−j+1γn, γnαn−j+1γn} with j ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

}. Hence,

Dj ⊆ J . Since IFn\Dj is a maximal subsemigroup of IFn (by Lemma 5),
we can conclude that J = Dj , i.e., T = IFn \Dj .

Suppose that r = n − 2. Then there is x ∈ Gn ∩ J . Let i, j ∈
{1, 3, . . . , n} with 4 ≤ j − i < n − 1 and i ≤ n − j + 1 such that x =
αi,j . Then γnαi,j , αi,jγn, γnαi,jγn ∈ J . Since IFn \ Ei,j is a maximal
subsemigroup of IFn by Lemma 6, we conclude that J = Ei,j , i.e., T =
IFn \ Ei,j .

Suppose that x = βodd
i or x = βeven

i for some i ∈ {2, 4, . . . ,
(
n+ 1

2

)
e

}.

Then γnβ
odd
i , βodd

i γn, γnβ
odd
i γn ∈ J and γnβ

even
i , βeven

i γn, γnβ
even
i γn ∈ J .

Assume that α2β
odd
i /∈ J , i.e., α2β

odd
i ∈ T . Since rank(α2) = n − 1, we

can conclude that α2 ∈ T . So, βodd
i = α2α2β

odd
i ∈ T = IFn \ J . This

contradicts βodd
i ∈ J . So, we have

α2β
odd
i , γnα2β

odd
i , α2β

odd
i γn, γnα2β

odd
i γn ∈ J .

We obtain by the same arguments that βeven
i α2 ∈ J . Hence,

βeven
i α2, γnβ

even
i α2, β

even
i α2γn, γnβ

even
i α2γn ∈ J .
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Since IFn \Bi and IFn \ Ci, respectively, is a maximal subsemigroup of
IFn by Lemma 4, we can conclude that J = Bi and J = Ci, respectively,
i.e., T = IFn \Bi and T = IFn \ Ci, respectively.
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