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Abstract. We study the copolynomials, i.e. K-linear map-
pings from the ring of polynomials K[x1, ..., xn] into the commuta-
tive ring K. With the help of the Cauchy-Stieltjes transform of a
copolynomial we introduce and study a multiplication of copolyno-
mials. We build a counterpart of formal functional calculus for the
case of a finite number of copolynomials. We obtain an analogue of
the spectral mapping theorem and analogues of the Taylor formula
and the Riesz-Dunford formula.

1. Introduction

Due to the classical Riesz-Dunford holomorphic functional calculus [6] for
a holomorphic function f in a neighborhood of the spectrum of a conti-
nuous linear operator A in a Banach space one can determine the opera-
tor f(A). In [10], assuming that A is a weakly locally nilpotent operator
in a Fréchet space [11], we extended this functional calculus to the case
of all formal power series. In [9] we introduced the multiplication opera-
tion for K-linear functionals in the ring of polynomials K[x] over the
commutative ring K such that this operation is consistent with the dif-
ferentiation (see also Section 3 of the present paper, where it is considered
the case of several variables). The resulting ring K[x]′ has been called
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the ring of copolynomials (see also [13]). We consider the ring K[x]′ as an
algebraic analogue of a space of distributions (see [9, 12, 13]). We note
that several non-equivalent constructions of a multiplication are conside-
red in classical theories of distributions. For example, in the Colombeau
theory [5] the square of the δ-function is well-defined, but in some other
theories it is not defined [1]. Presence of multiplication and natural topo-
logy in K[x]′ make it possible to consider power series in the ring K[x]′.
It appeared that many properties of copolynomials associated with for-
mal power series are similar to corresponding properties of weakly locally
nilpotent operators. In the present paper we build a counterpart of a for-
mal functional calculus for the case of a finite number of copolynomials
(see theorems 4.8 and 4.9). Furthermore, we obtain a counterpart of the
spectral mapping theorem (Corollary 4.7) and analogues of the Taylor
formula (Theorem 4.11) and the Riesz-Dunford formula (Theorem 4.12).
In Section 4 we consider examples of the evaluation f(δ), where δ is
a copolynomial δ-function (see examples 4.1–4.3), for some interesting
formal power series.

Linear functionals in the space of polynomials were extensively stu-
died from different points of views in algebra, combinatorics, and the
theory of orthogonal polynomials (cf., for example, [8, 17, 7, 19]). In a
classical case (K = R or K = C), series with respect to derivatives of the
δ-function are intensively studied because of their applications to diffe-
rential and functional-differential equations and the theory of orthogonal
polynomials [7].

2. Preliminaries

Let K be an arbitrary commutative integral domain with identity and
let K[x1, ..., xn] be a ring of polynomials with coefficients in K.

Definition 2.1. By a copolynomial over the ring K we mean a K-linear
functional defined on the ring K[x1, ..., xn], i.e. a homomorphism from
the module K[x1, ..., xn] into the ring K.

We denote the module of copolynomials overK byK[x1, .., xn]
′. Thus

T ∈ K[x1, ..., xn]
′ if and only if T : K[x1, ..., xn] → K and T has the pro-

perty ofK-linearity: T (ap+bq) = aT (p)+bT (q) for all p, q ∈ K[x1, ..., xn]
and a, b ∈ K. If T ∈ K[x1, .., xn]

′ and p ∈ K[x1, ..., xn], the for the value
of T on p we use the notation (T, p). We also write the copolynomial
T ∈ K[x1, ..., xn]

′ in the form T (x), where x = (x1, ..., xn) is regarded as
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the argument of polynomials p(x) ∈ K[x1, ..., xn] subjected to the action
of the K-linear mapping T . In this case, the result of action of T upon
p can be represented in the form (T (x), p(x)).

Let N0 be the set of nonnegative integers. For a multi-index α =
(α1, ..., αn) ∈ Nn

0 we put

Dα =
∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

, |α| =
n∑

j=1

αj ,

xα = xα1
1 xα2

2 · · ·xαn
n , α! = α1!α2! · · ·αn!.

For multi-indexes α, β ∈ Nn
0 the relation α ≤ β means that αj ≤ βj for all

j = 1, ..., n. If α ≤ β, then we will use the notation

(
β
α

)
=

n∏
j=1

(
βj
αj

)
.

Let p(x) =
∑

|α|≤m

aαx
α ∈ K[x1, ..., xn]. If h = (h1, ..., hn), then the

polynomial p(x + h) ∈ K[x1, ..., xn][h1, ..., hn] can be represented in the
form

p(x+ h) =
∑

|α|≤m

pα(x)h
α,

where pα(x) ∈ K[x1, ..., xn]. Since in the case of a field with zero charac-

teristic pα(x) = Dαp(x)
α! , we also assume that, by definition, Dαp(x)

α! =
pα(x), |α| ≤ m is true for any commutative ring K. For m < |α| we
assume that Dαp(x)

α! = 0.
Now we introduce the notion of shift for a copolynomial [13]. For

T ∈ K[x1, ..., xn]
′ and fixed h = (h1, ..., hn) ∈ Kn we define the copoly-

nomial T (x+ h) by

(T (x+ h), p) = (T, p(x− h)), p ∈ K[x1, ..., xn].

Definition 2.2. The partial derivative ∂T
∂xj

of a copolynomial T ∈
K[x1, ..., xn]

′ with respect to the variable xj (j = 1, ..., n) is defined as in
the classical case by the formula(

∂T

∂xj
, p

)
= −

(
T,

∂p

∂xj

)
, p ∈ K[x1, ..., xn]. (2.1)

By using this formula, we arrive at the following expression for the
derivative DαT :

(DαT, p) = (−1)|α|(T,Dαp), p ∈ K[x1, ..., xn].
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Therefore

(DαT, p) = 0, where p ∈ K[x1, ..., xn] and |α| > degp.

By virtue of the equality(
DαT

α!
, p

)
= (−1)|α|

(
T,

Dαp

α!

)
, p ∈ K[x1, ..., xn],

the copolynomials DαT
α! are well defined for any T ∈ K[x1, ..., xn]

′ and
α ∈ Nn

0 .

Example 2.3. The copolynomial δ-function is given by the formula

(δ, p) = p(0), p ∈ K[x1, ..., xn].

Therefore

(Dαδ, p) = (−1)|α|(δ,Dαp) = (−1)|α|Dαp(0), α ∈ Nn
0 . (2.2)

Example 2.4. Let K = R and let f : Rn → R be a Lebesgue-integrable
function such that ∫

Rn

|xαf(x)|dx < +∞, α ∈ Nn
0 .

Then f generates the regular copolynomial Tf :

(Tf , p) =

∫
Rn

p(x)f(x)dx, p ∈ R[x1, ..., xn].

Note that, in this case, unlike the classical theory, all copolynomials are
regular [7, Theorem 7.3.4].

We now consider the problem of convergence in the spaceK[x1, ..., xn]
′.

In the ring K, we consider the discrete topology. Further, in the module
of copolynomials K[x1, ..., xn]

′, we consider the topology of pointwise
convergence. It is easy to show that the last topology is generated by
the following metric:

d(T1, T2) =

∞∑
|α|=0

d0((T1, x
α), (T2, x

α))

2|α|
,
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where d0 is the discrete metric on K. The metric d provides K[x1, ..., xn]
′

in a complete metric space. The convergence of a sequence {Tk}∞k=1 to T
in K[x1, ..., xn]

′ means that for every polynomial p ∈ K[x1, ..., xn] there
exists a number k0 ∈ N such that

(Tk, p) = (T, p), k = k0, k0 + 1, k0 + 2, ... .

The series
∞∑
k=0

Tk converges in K[x1, ..., xn]
′ if a sequence of its partial

sums
N∑
k=0

Tk converges in K[x1, ..., xn]
′.

The following lemma shows the possibility of the decomposition of
an arbitrary copolynomial in series about the system Dαδ

α! , α ∈ Nn
0 (see

[8, Proposition 2.3] in the case n = 1 and K = C).

Lemma 2.5. Let T ∈ K[x1, ..., xn]
′. Then

T =
∞∑

|α|=0

(−1)|α|(T, xα)
Dαδ

α!
. (2.3)

We now consider the following linear differential operator of infinite
order on K[x1, ..., xn]

′:

F =

∞∑
|α|=0

aαD
α,

where aα ∈ K. This operator acts upon a copolynomial T ∈ K[x1, ..., xn]
′

by the following rule: if p ∈ K[x1, ..., xn] and m = degp, then

(FT, p) =

 ∞∑
|α|=0

aαD
αT, p

 =

=
∑

|α|≤m

(−1)|α|aα(T,D
αp) =

∑
|α|≤m

aα(D
αT, p).

Thus, the differential operator F : K[x1, ..., xn]
′ → K[x1, ..., xn]

′ is
well defined and for any polynomial p of degree at most m the equality

(FT, p) =
∑

|α|≤m

aα(D
αT, p). (2.4)

is true.
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Remark 2.6. Let n = 1 and h ∈ K. It was shown in [16] that shift
T (x + h) of the copolynomial T ∈ K[x]′ generates the following infinite

order differential operator τh =
∞∑
k=0

hk 1
k!

dk

dxk , i.e.

T (x+ h) = τh(T ) =

∞∑
k=0

hk
1

k!

dkT

dxk
, T ∈ K[x]′. (2.5)

3. Multiplication of copolynomials

3.1. The Cauchy-Stieltjes transform

Let z = (z1, ..., zn) and let K
[[
z1, ..., zn,

1
z1
, ..., 1

zn

]]
be the module of

formal Laurent series with coefficients in K. For the multi-index α =
(α1, ..., αn) ∈ Zn we put zα = zα1

1 zα2
2 · · · zαn

n . For g(z) =
∑

α∈Zn

gαz
α ∈

K
[[
z1, ..., zn,

1
z1
, ..., 1

zn

]]
we naturally define the formal residue:

Res(g(z)) = g(−1,...,−1).

Definition 3.1. Let T ∈ K[x1, ..., xn]
′ and s = (s1, ..., sn). Consider the

following formal Laurent series from the ring 1
s1s2···snK[[ 1s1 ,

1
s2
, ..., 1

sn
]]:

C(T )(s) =
∞∑

|α|=0

(T, xα)

sα+ι
,

where ι = (1, ..., 1) ∈ Nn
0 . The Laurent series C(T )(s) will be called the

Cauchy-Stieltjes transform of a copolynomial T .

We may write informally as follows:

C(T )(s) =

(
T,

1

(s1 − x1)(s2 − x2) · · · (sn − xn)

)
.

Obviously, that the mapping

C : K[x1, ..., xn]
′ → 1

s1s2 · · · sn
K

[[
1

s1
,
1

s2
, ...,

1

sn

]]
is an isomorphism of K-modules.
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Proposition 3.2 (the inversion formula). Let T ∈ K[x1, ..., xn]
′ and

p ∈ K[x1, ..., xn]. Then

(T, p) = Res(C(T )(s)p(s)).

Proof. It is sufficient to consider the case p(x) = xβ for some multi-index
β ∈ Nn

0 . We have

C(T )(s)sβ =
∞∑

|α|=0

(T, xα)sβ

sα+ι
.

Therefore, Res(C(T )(s)sβ) = (T, xβ).

Example 3.3 (the “integral” Cauchy formula). We put (δz, p) =

p(z1, ..., zn) for z = (z1, ..., zn) ∈ Kn. Then C(δz)(s) =
∞∑

|α|=0

zα

sα+ι . In

particular,

C(δ)(s) =
1

s1s2 · · · sn
. (3.1)

We may write informally p(z1, ..., zn) = Res( p(s1,...,sn)
(s1−z1)(s2−z2)···(sn−zn)

), if

to identify the rational function 1
(s1−z1)(s2−z2)···(sn−zn)

with the Laurent

series
∞∑

|α|=0

zα

sα+ι .

The following assertion yields commutativity of the Cauchy-Stieltjes
transform and the differentiating operation.

Proposition 3.4. For each T ∈ K[x1, ..., xn]
′ the following equality

C

(
∂T

∂xj

)
=

∂

∂sj
C(T ), j = 1, ..., n (3.2)

holds.

Proof. Without loss of generality we assume j = 1. We have

C

(
∂T

∂x1

)
(s) =

∞∑
|α|=0

( ∂T
∂x1

, xα)

sα+ι
= −

∑
α:α1≥1

α1(T, x
α1−1
1 xα2

2 · · · xαn
n )

sα1+1
1 sα2+1

2 · · · sαn+1
n

=

= −
∞∑

|α|=0

(α1 + 1)(T, xα1
1 xα2

2 · · · xαn
n )

sα1+2
1 sα2+1

2 · · · sαn+1
n

,
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∂

∂s1
C(T )(s) =

∂

∂s1

∞∑
|α|=0

(T, xα1
1 xα2

2 · · · xαn
n )

sα1+1
1 sα2+1

2 · · · sαn+1
n

=

= −
∞∑

|α|=0

(α1 + 1)(T, xα1
1 xα2

2 · · · xαn
n )

sα1+2
1 sα2+1

2 · · · sαn+1
n

.

3.2. Multiplication of copolynomials and its properties

The Cauchy-Stieltjes transform and Proposition 3.4 allow to introduce
the multiplication operation on the module of copolynomials such that
this operation is consistent with the differentiation.

Definition 3.5. Let T1, T2 ∈ K[x1, ..., xn]
′, i.e. T1, T2 are copolynomials.

Define their product by the following equality:

C(T1T2) = C(T1)C(T2), (3.3)

i.e.
T1T2 = C−1 (C(T1)C(T2)) ,

where C : K[x1, ..., xn]
′ → 1

s1s2···snK[[ 1s1 ,
1
s2
, ..., 1

sn
]] is a Cauchy-Stieltjes

transform.

In the following lemma the action of the product of copolynomials on
monomials is expressed through the action of multipliers on monomials.

Lemma 3.6. Let T1, T2 ∈ K[x1, ..., xn]
′ and α ∈ Nn

0 . Then

(T1T2, x
α) =

{ ∑
β≤α−ι

(T1, x
β)(T2, x

α−ι−β), α ≥ ι,

0, in another case.
(3.4)

Proof. By Formula (3.3) we have

C(T1T2)(s) = C(T1)(s)C(T2)(s) =

∞∑
|β|=0

∞∑
|γ|=0

(T1, x
β)(T2, x

γ)

sβ+γ+2ι
=

=
∑
α≥ι

∑
β≤α−ι

(T1, x
β)(T2, x

α−ι−β)
1

sα+ι
.

Applying the inversion formula to both sides of this equality (See Propo-
sition 3.2), we obtain (3.4).
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Remark 3.7. Definition 3.5 means that the module of copolynomi-
als K[x1, ..., xn]

′ with the introduced product is an associative com-
mutative ring, which isomorphic to the ring of formal Laurent series

1
s1s2···snK[[ 1s1 ,

1
s2
, ..., 1

sn
]] with a natural product operation. In particular,

the ring of copolynomials is an integral domain and this is a ring without
identity.

Example 3.8. Let n = 1. We find the square of δ-function:

C(δ2)(s) = (C(δ))2(s) =
1

s2
=

(
−1

s

)′
= (−C(δ))′ = C(−δ′),

i.e.
δ2 = −δ′.

Moreover, by (2.2) and (3.1) we have

C

(
δ(k)

k!

)
(s) =

∞∑
j=0

(
δ(k)

k!
, xj

)
1

sj+1
=

∞∑
j=0

(
δ,

1

k!

dkxj

dxk

)
(−1)k

sj+1
=

=
(−1)k

sk+1
= (−1)k(C(δ))k+1,

so that
(−1)kδ(k)

k!
= δk+1, k = 0, 1, 2, ... . (3.5)

The generalization of equalities (3.5) on n variables is the following
formulas:

∂nkδ

∂xk1 . . . ∂x
k
n

= (−1)nk(k!)nδk+1, k = 0, 1, 2, ... . (3.6)

Definition 3.5 implies that for any multi-index β ∈ Nn
0 and for any

copolynomials T1, ..., Tm ∈ K[x1, ..., xn]
′ the formula(

m∏
k=1

Tk, x
β

)
= 0, m > |β|+ 1 (3.7)

holds. Let T1, ..., Tm ∈ K[x1, ..., xn]
′ and γ = (γ1, ..., γm) ∈ Nm

0 , γ ̸= 0.
We define T γ by the equality

T γ =
m∏

j=1,γj ̸=0

T
γj
j . (3.8)
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In particular, T ι =
m∏
j=1

Tj . If γ = 0 and S ∈ K[x1, ..., xn]
′, then we

define T γS = S. Equality (3.7) implies that for any multi-indexes β ∈ Nn
0

and γ ∈ Nm
0 the formula

(T γ , xβ) = 0, |γ| > |β|+ 1 (3.9)

is satisfied.

4. Main results

Let K0[[z1, ..., zm]] = {g ∈ K[[z1, ..., zm]] : g(0) = g0 = 0} and g(z) =
∞∑

|γ|=1

gγz
γ ∈ K0[[z1, ..., zm]]. The ringK0[[z1, ..., zm]] is an algebra over the

ringK. We will consider the Krull topology on the algebraK0[[z1, ..., zm]]
[15, Chapter 1, §3, Section 4], [3, Chapter IV, §5, Section 10]. The

equality (3.9) implies that the series g(T1, ..., Tm) =
∞∑

|γ|=1

gγT
γ converges

in the topology K[x1, ..., xn]
′.

Example 4.1. Let n = 1 and a ∈ K. Consider the formal power series

g(z) =
∞∑
k=0

akk!zk+1 ∈ K0[[z]]. Then taking into account (3.5)

g(δ) =
∞∑
k=0

akk!δk+1 =
∞∑
k=0

(−1)kakδ(k).

If K = R and a > 0, then

g(δ) =
1

a
θ(x)e−x/a, (4.1)

where θ(x) is a Heaviside function and the equality (4.1) means that

(g(δ), p) =
1

a

∞∫
−∞

θ(x)e−x/ap(x)dx =
1

a

∞∫
0

e−x/ap(x)dx, p ∈ R[x]

(see examples 4 and 5 in [14] and Example 3.1 in [12]).

Example 4.2. Let n = 1 and a ∈ K. Consider the formal power series

g(z) =
∞∑
k=0

akzk+1 ∈ K0[[z]]. Then (3.5) implies

g(δ) =

∞∑
k=0

akδk+1 =

∞∑
k=0

(−1)kak
δ(k)

k!
= δ(x− a).
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Example 4.3. Assume that a ∈ K and F =
∞∑
k=0

ak ∂nk

∂xk
1 ...∂x

k
n
is an infinite

order differential operator. Then (3.6) implies

F(δ) =
∞∑
k=0

ak(−1)kn(k!)nδk+1.

Remind that we consider the construction g(T1, ..., Tm) for the series

g(z) ∈ K0[[z1, ..., zm]] only. If g(z) =
∞∑

|γ|=0

gγz
γ ∈ K[[z1, ..., zm]], where

g0 ̸= 0 and S ∈ K[x1, ..., xn]
′, then the product g(T1, ..., Tm)S means the

sum of following copolynomials:

g0S +
∞∑

|γ|=1

gγT
γS. (4.2)

Consider the ring AK[x1, ..., xn]
′, which is obtained by adjoining iden-

tity to the ring K[x1, ..., xn]
′ (see, for example, [3, Chapter VIII, Ap-

plications], where these arguments were conducted for a field). This
ring consists of elements (c, T ), where T ∈ K[x1, ..., xn]

′ and c ∈ K.
Moreover, (c1, T1) + (c2, T2) = (c1 + c2, T1 + T2), (c1, T1) · (c2, T2) =
(c1c2, T1T2 + c2T1 + c1T2) for all T1, T2 ∈ K[x1, ..., xn]

′ and c1, c2 ∈ K.
The identity of this ring is the element (1, 0). In what follows the ele-
ment (c, T ) ∈ AK[x1, ..., xn]

′ we will write as c+ T or T + c. We denote
by σ(T ) the spectrum of the copolynomial T ∈ K[x1, ..., xn]

′, i.e. the
set of λ ∈ K, for which T − λ is a non-invertible element of the ring
AK[x1, ..., xn]

′. We denote by K∗ the set of invertible elements of K.
The following theorem establishes the criterion of the invertibility of

T − λ in the ring AK[x1, ..., xn]
′.

Theorem 4.4. Let T ∈ K[x1, ..., xn]
′ and λ ∈ K. The element T − λ

is invertible in the ring AK[x1, ..., xn]
′ if and only if λ ∈ K∗. Therefore,

σ(T ) = K \K∗.

Proof. Indeed, T − λ is an invertible element if and only if there exist
S ∈ K[x1, ..., xn]

′ and µ ∈ K such that (T − λ)(S − µ) = 1. This means
that TS − λS − µT + λµ = 1, and it is equivalent to equalities

λµ = 1, TS − λS − µT = 0. (4.3)

The first equation of the system (4.3) implies that λ is an invertible
element of the ring K and µ = λ−1. The second equation of the system
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(4.3) is rewritten as
TS = λS + λ−1T.

By this taking into account (3.4) for any multi-index α ∈ Nn
0 we have

λ(S, xα) + λ−1(T, xα) =

{ ∑
β≤α−ι

(T, xβ)(S, xα−ι−β), α ≥ ι,

0, in the other case.

Then

(S, xα) = −λ−2(T, xα) +

{ ∑
β≤α−ι

(T, xβ)(S, xα−ι−β), α ≥ ι,

0, in the other case,

i.e. the copolynomial S is uniquely restored by the copolynomial T .

Theorem 4.4 implies the following assertion about a description of
spectra of T and g(T ), where g(z) ∈ K0[[z]] and K is a field.

Corollary 4.5. Assume that K is a field, T ∈ K[x1, ..., xn]
′ and g(z) ∈

K0[[z]]. Then σ(T ) = {0} and σ(g(T )) = {g(0)} = {0}, i.e. σ(g(T )) =
g(σ(T )). Moreover, AK[x1, ..., xn]

′ is a local ring with unique maximal
ideal K[x1, ..., xn]

′.

Proof. If K is a field then K∗=K \{0}. Then by Theorem 4.4 σ(T )={0}
and σ(g(T )) = {g(0)} = {0}, i.e.

σ(g(T )) = g(σ(T )). (4.4)

The locality of the ring AK[x1, ..., xn]
′ follows from the invertibility of

all elements T −λ, where λ ̸= 0 (see [2, Chapter 1, Proposition 1.6]).

Remark 4.6. In the case where K is not a field the equality (4.4) is
absurd, because the substitution g(λ) for λ ̸= 0 is not defined, if g(z) is
not a polynomial. Moreover, if even g ∈ K[z], g(0) = 0, then in general
g(K \K∗) ̸= K \K∗ and in this case the equality (4.4) is not correct.

For copolynomials T1,...,Tm ∈ K[x1, ..., xn]
′ we denote by σ(T1,..., Tm)

their joint spectrum, i.e. the set of elements (λ1, ..., λm) ∈ Km such
that the ideal generating by T1 − λ1, ..., Tm − λm is not contain with
AK[x1, ..., xn]

′ [4, Chapter 1, Section 3.5]. For m = 1 the notion of
the joint spectrum coincides with the notion of the spectrum, which was
considered above. Corollary 4.5 implies the following assertion which
generalizes the assertion of this corollary.
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Corollary 4.7 (Spectral mapping theorem). Assume that K is a field,
T1, ...., Tm ∈ K[x1, ..., xn]

′ and g(z) ∈ K0[[z1, ..., zm]]. Then

σ(T1, ..., Tm) = {0}

and σ(g(T1, ..., Tm)) = {g(0)} = {0}, i.e.

σ(g(T1, ..., Tm)) = g(σ(T1, ...., Tm)).

Proof. Indeed if λj ̸= 0 for some j = 1, ...,m, then by Corollary 4.5
the element Tj − λj is invertible in the ring AK[x1, ..., xn]

′. Then ideal
generating by this element coincides with the ring AK[x1, ..., xn]

′.

Now consider the mapping θT1,...,Tm : K0[[z1, ...., zm]] → K[x1, ..., xn]
′,

θT1,...,Tm(g) = g(T1, ..., Tm), g ∈ K0[[z1, ..., zm]]. In what follows for
T1, ..., Tm ∈ K[x1, ..., xn]

′ and γ ∈ Nm
0 the expression T γ is defined

by (3.8).

Theorem 4.8. The mapping θT1,...,Tm is a unique continuous homomor-
phism from the algebra K0[[z1, ..., zm]] to the algebra K[x1, ..., xn]

′, which
maps zj to Tj (j = 1, ...,m).

Proof. Obviously that θT1,...,Tm is a K-linear mapping. We show that

θT1,...,Tm(fg) = θT1,...,Tm(f)θT1,...,Tm(g)

for all f, g ∈ K0[[z1, ..., zm]], i.e.

(f · g)(T1, ..., Tm) = f(T1, ..., Tm)g(T1, ..., Tm). (4.5)

Let h = fg. Then h ∈ K0[[z1, ..., zm]],

h(z) =

∞∑
|α|=0

hαz
α, where hα =

∑
β≤α

fβgα−β.

Therefore,

h(T1, ..., Tm) =
∞∑

|α|=0

hαT
α =

∞∑
|α|=0

∑
β≤α

fβgα−βT
α =

∞∑
|β|=0

∑
α≥β

fβgα−βT
α =

=
∞∑

|β|=0

∞∑
|γ|=0

fβgγT
β+γ =

∞∑
|β|=0

fβT
β

∞∑
|γ|=0

gγT
γ =
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= f(T1, ..., Tm)g(T1, ..., Tm),

where the all expressions of the kind cT 0 means as zero by definition, if
c = 0.

Now we prove the continuous of the homomorphism θT1,...,Tm . Let
{gk(z)}∞k=0 be a sequence of formal power series from K0[[z1, ..., zm]],
which converges to zero as k → ∞. By (3.9) for any β ∈ Nn

0 we have

(θT1,...,Tn(gk), x
β) =

|β|+1∑
|γ|=1

gkγ(T
γ , xβ), k ∈ N. (4.6)

If gk(z) =
∞∑

|γ|=0

gkγz
γ , then there exists a number k0 = k0(β) ∈ N such

that gkγ = 0 for all k ≥ k0 and 1 ≤ |γ| ≤ |β| + 1. Now by (4.6)
lim
k→∞

θT1,...,Tn(gk) = 0 in the topology of K[x1, ..., xn]
′.

Now let T1, ..., Tm ∈ K[x1, ..., xn]
′ and let

θ : K0[[z1, .., zm]] → K[x1, ..., xn]
′

be a continuous homomorphism of algebras such that θ(zj) = Tj (j =
1, ...,m). We show that

θ(g) = g(T1, ..., Tm), g ∈ K0[[z1, ..., zm]]. (4.7)

For all g(z) =
∞∑

|γ|=1

gγz
γ ∈ K0[[z1, ..., zm]] the sequence fk(z) =

k∑
|γ|=1

gγz
γ

converges in the topology of K0[[z1, ..., zm]] to g as k → ∞. Since θ is

a continuous homomorphism and the series
∞∑

|γ|=1

gγT
γ converges in the

topology of K[x1, ..., xn]
′, we have

θ(g) = lim
k→∞

θ(fk) = lim
k→∞

k∑
|γ|=1

gγθ(z
γ) =

∞∑
|γ|=1

gγT
γ = g(T1, ..., Tm).

This implies (4.7). The proof is complete.

The following theorem establishes a connection between the homo-
morphism θT1,...,Tm and the composition of formal power series.
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Theorem 4.9. Assume that T1, ...Tm ∈ K[x1, ..., xn]
′, f(z) =

∞∑
|γ|=1

fγz
γ ∈

K0[[z1, ..., zm]] and g(s) =
∞∑
k=1

gks
k ∈ K0[[s]]. Then g◦f ∈ K0[[z1, ..., zm]]

and
g(f(T1, ...Tm)) = (g ◦ f)(T1, ...Tm), (4.8)

i.e. θT1,...,Tm(g ◦ f) = θf(T1,...,Tm)(g).

Proof. Since f(0) = 0 and g(0) = 0, the following series is well defined:

g(f(z)) =

∞∑
k=1

gk(f(z))
k

and g ◦ f ∈ K0[[z1, ..., zm]]. If g(s) = sN (N ∈ N), then (g ◦ f)(z) =
(f(z))N , and the equality (4.8) directly follows from Theorem 4.8 (see
Formula (4.5)). Therefore the equality (4.8) holds also for any polynomial
g(s) ∈ K[s], where g(0) = 0.

Now let g(s) =
∞∑
k=1

gks
k be an arbitrary element of K0[[s]]. Put

gN (s) =
N∑
k=1

gks
k. Since g(s) = lim

N→∞
gN (s) in the topology K0[[s]],

we have (g ◦ f)(z) = lim
N→∞

(gN ◦ f)(z) (see [18, Chapter 1, §1, Section 4;

Chapter 4, §1, Section 1]). The continuity of the homomorphism θT1,...,Tm

implies

(g ◦ f)(T1, ..., Tm) = θT1,...,Tm(g ◦ f) = lim
N→∞

θT1,...,Tm(gN ◦ f) =

= lim
N→∞

gN (f(T1, ..., Tm)) = g(f(T1, ..., Tm)).

The proof is complete.

Now we obtain a counterpart of the Taylor expansion for the con-
structed formal functional calculus. The formal power series

Dβg

β!
=
∑
γ≥β

(
γ
β

)
gγz

γ−β ∈ K[[z1, ..., zm]] (4.9)

is well-defined for the multi-index β ∈ Nm
0 and the formal power series

g(z) =
∞∑

|γ|=0

gγz
γ ∈ K[[z1, ..., zm]]. If T1, ..., Tm, S1, ..., Sm ∈ K[x1, ..., xn]

′

and γ = 0 ∈ Nm
0 , then by definition T γS = ST γ = S.

The following lemma is one of counterparts for the binomial formula
[3, Chapter 1, Section 5.1].
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Lemma 4.10. Let T1, ..., Tm, S1, ..., Sm ∈ K[x1, ..., xn]
′. Then

m∏
j=1,βj ̸=0

(Tj + Sj)
βj =

∑
γ≤β

(
β
γ

)
T β−γSγ (4.10)

for any nonzero multi-index β ∈ Nm
0 .

Theorem 4.11. Let T1, ..., Tm, S1, ..., Sm ∈ K[x1, ..., xn]
′ and let f(z) =

∞∑
|γ|=1

fγz
γ ∈ K0[[z1, ..., zm]]. Then the series

∞∑
|γ|=0

Dγf(T1,..,Tm)
γ! Sγ con-

verges in the topology of K[x1, ..., xn]
′ to the copolynomial f(T1 + S1, ...,

Tm + Sm), i.e. the following Taylor expansion holds:

f(T1 + S1, ..., Tm + Sm) =
∞∑

|γ|=0

(Dγf)(T1, ..., Tm)

γ!
Sγ . (4.11)

Proof. The convergence of the series in right-hand part of (4.11) follows
from (3.7), (3.9). By virtue of (4.9), of the Newton binomial formula
(4.10) and of Definition 4.2, we have

∞∑
|γ|=0

(Dγf)(T1, ..., Tm)

γ!
Sγ =

∞∑
|γ|=0

∑
β≥γ

(
β
γ

)
fβT

β−γSγ =

=

∞∑
|β|=0

fβ
∑
γ≤β

(
β
γ

)
SγT β−γ =

∞∑
|β|=0

fβ
∑
γ≤β

(
β
γ

)
SγT β−γ =

= f(T1 + S1, ..., Tm + Sm).

Now we turn to the counterpart of the Riesz-Dunford formula for the
formal functional calculus. Consider formal Laurent series

RT1,...,Tm(z) =

∞∑
|γ|=1

T γ

zγ+ι
∈ 1

z1z2 · · · zm
K[x1, ..., xn]

′
[[

1

z1
, ...,

1

zm

]]
for copolynomials T1, ...., Tm ∈ K[x1, ..., xn]

′. Then we can define the

product f(z)RT1,...,Tm(z), where f(z) =
∞∑

|γ|=1

fγz
γ ∈ K0[[z1, ..., zm]]:

f(z)RT1,...,Tm(z)
def
=

∑
β∈Zm

 ∞∑
γ∈Nm

0 \{0}:γ≥β−ι

fγ+ι−βT
γ

 1

zβ
,
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which is an element of the ring K[x1, ..., xn]
′
[[
z1, ..., zm, 1

z1
, ..., 1

zm

]]
, be-

cause coefficients at each powers z are convergent series in K[x1, ..., xn]
′.

Calculating the formal residue of the series f(z)RT1,...,Tm(z), we obtain
the following counterpart of the Riesz-Dunford formula.

Theorem 4.12. Let T1, ..., Tm ∈ K[x1, ...., xn]
′ and f(z) =

∞∑
|γ|=1

fγz
γ ∈

K0[[z1, ..., zm]]. Then

f(T1, ..., Tm) = Res(f(z)RT1,...,Tm(z)).
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