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Abstract. J. S. Wilson proved in 1971 an isomorphism
between the structural lattice associated to a group belonging to
his second class of groups with every proper quotient finite and
the Boolean algebra of clopen subsets of Cantor’s ternary set. In
this paper we generalize this isomorphism to the class of branch
groups. Moreover, we show that for every faithful branch action of
a group G on a spherically homogeneous rooted tree T there is a
canonical G-equivariant isomorphism between the Boolean algebra
associated to the structure lattice of G and the Boolean algebra of
clopen subsets of the boundary of T .

1. Introduction

Branch groups are groups acting level-transitively on spherically homo-
geneous rooted trees whose subnormal subgroup structure resembles the
one of the full automorphism group of the tree. The class of branch
groups was introduced by the second author in 1997, as a common gene-
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ralization of the different examples of Burnside groups and groups of in-
termediate growth introduced in the 1980s by the second author, Gupta
and Sidki, and Suschansky among others; compare [5, 6, 8, 13].

Just-infinite branch groups constitute one of the three classes of just-
infinite groups, i.e. those infinite groups whose proper quotients are all
finite; see [4]. This classification of just-infinite groups by the second
author in [4] relies on Wilson’s classification in terms of their structure
lattice in [14]. A closely related object to the structure lattice of a branch
group G is the structure graph, which is the subgraph of the structure
lattice consisting of the basal subgroups of G. The structure graph of a
branch group was introduced by Wilson in [15].

In the last decades, the study of the structure graph of a branch
group has attracted a lot of attention, as the structure graph encodes
all the different branch actions of the group on a spherically homoge-
neous rooted tree; compare [2,7,9,15,16]. For instance, Hardy proved in
[9, Theorem 15.4.2] (see also [16, Theorem 5.2]) that a group admits a
unique branch action on the p-adic tree for a prime p ≥ 2 if and only if
its structure graph is isomorphic as a graph to the p-adic tree. Sufficient
conditions for the uniqueness of branch actions on the p-adic tree were
given by the second author and Wilson in [7]. A complete description of
the structure graph of a branch group was given by Hardy in his PhD
thesis [9, Lemma 15.1.1]; see also [16, Lemma 5.1(a)].

In contrast, there is no explicit description of the structure lattice of
a branch group. Indeed, to the best of our knowledge, the only known
structural result on the structure lattice of a branch group is the following
theorem proved by Wilson in 1971:

Theorem 1.1 (see [14, Theorem 6]). Let G ≤ Aut T be a just-infinite
branch group. Then its structure lattice L(G) is isomorphic to the lattice
of clopen subsets of Cantor’s ternary set.

The isomorphism in Theorem 1.1 is given by Stone’s representation
theorem and the homeomorphism in [10, Theorem 2.97] between the
Stone space of the structure lattice and Cantor’s ternary set. However,
the isomorphism in Theorem 1.1 does neither preserve the branch ac-
tion of the group G nor describe explicitly the equivalence classes in the
structure lattice L(G).

Our goal is to give a complete description of the structure lattice of a
branch group. Indeed, we obtain a G-equivariant and explicit canonical
isomorphism of Boolean algebras characterising the structure lattice of
a (non-necessarily just-infinite) branch group G:
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Theorem A. Let ρ : G → Aut T be a branch action of a group G on a
spherically homogeneous rooted tree T and Bool(∂T ) the Boolean algebra
of clopen subsets of the boundary of T . Then there exists a canonical
G-equivariant isomorphism Φ : L(G) → Bool(∂T ) with inverse Φ−1 :
Bool(∂T ) → L(G) given by

Φ : L(G) → Bool(∂T ) and Φ−1 : Bool(∂T ) → L(G)

[H] 7→ Supp(H), C 7→
[ ∏
v∈C

ristρ(G)(v)
]
,

where Supp(H) is the support of H, i.e. the elements in ∂T not fixed by
ρ(H).

Theorem A shows that for a branch group G every G-action on ∂T
induced by a branch action ρ : G → Aut T is equivalent to the action
of G by conjugation on its structure lattice L(G). In particular the
action of G on the Stone space of its structure lattice is equivalent to the
action of G on ∂T . Theorem A also gives an explicit description of the
structure lattice analogous to the one of the structure graph by Hardy
in [9, Lemma 15.1.1].

Organization. In Section 2 we introduce Boolean algebras and Stone
spaces. The special case of the Boolean algebra of clopen subsets of the
boundary of a spherically homogeneous rooted tree is treated in Section 3.
Finally, branch groups and their structure lattice are defined in Section 4
and we conclude the section with a proof of Theorem A.

Notation. We use the exponential notation for the right action of a group
on a tree and on its boundary. We write H ≤f G if H is a finite-index
subgroup of G.

2. Boolean algebras and Stone spaces

In this section, we introduce the main concepts and results on Boolean
algebras and Stone spaces which shall be needed later on in the paper.
We follow mainly [3].

2.1. Boolean algebras. Here we introduce the main concepts needed
in order to define Boolean algebras.

Definition 2.1 (Poset). Let A be a set and ≤ a relation satisfying the
following properties:
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(i) reflexive: for any a ∈ A we have a ≤ a;

(ii) transitive: for any a, b, c ∈ A if a ≤ b and b ≤ c then a ≤ c;

(iii) anti-symmetric: for any a, b ∈ A if a ≤ b and b ≤ a then a = b.

Then the pair (A,≤) is said to be a partially-ordered set or poset.

Definition 2.2 (Meet and join). Let (A,≤) be a poset. We define the
meet of F ⊆ A as the unique element

∧
F (if it exists) such that

(i) for any f ∈ F we have
∧
F ≤ f ;

(ii) for any a ∈ A if a ≤ f for all f ∈ F then a ≤
∧
F .

Similarly, we define the join of F as the unique element
∨
F (if it

exists) such that

(i) for any f ∈ F we have f ≤
∨
F ;

(ii) for any a ∈ A if f ≤ a for all f ∈ F then
∨
F ≤ a.

For single elements a, b ∈ A we shall denote their meet and join by
a ∧ b and a ∨ b respectively.

Definition 2.3 (Distributive lattice). Let (A,≤) be a poset. If for any
finite subset F ≤ A both the meet and the join of F exist in A then we
say that (A,≤) is a lattice. We say a lattice (A,≤) is distributive if for
any a, b, c ∈ A we have

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

The simplest example of a distributive lattice is the power set of a
finite set ordered by inclusion. Here the meet and the join correspond
to the intersection and the union of subsets respectively. In particular,
for a singleton {a}, its power set has simply two elements, namely ∅ and
{a}. We shall write 0 := ∅ and 1 := {a} and denote by 2 the distributive
lattice ({0, 1},≤), where 0 ≤ 1. Note that

0 ∨ 0 = 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∨ 1 = 1 ∧ 1 = 1 ∨ 0 = 0 ∨ 1 = 1.

More generally in a distributive lattice (A,≤), we define the distinguished
elements 0, 1 ∈ A as the unique elements (if they exist) such that

a ∧ 0 = 0, a ∧ 1 = a, a ∨ 0 = a, and a ∨ 1 = 1

for every a ∈ A. Note that for the power set of a finite set S we have
0 = ∅ and 1 = S.
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Definition 2.4 (Complement). Let (A,≤) be a distributive lattice ad-
mitting the distinguished elements 0 and 1. Then for a ∈ A we define its
complement (if it exists) as the unique element ¬a satisfying the follo-
wing:

(i) a ∧ ¬a = 0;

(ii) a ∨ ¬a = 1.

Note that by definition ¬0 = 1 and ¬1 = 0 and recall that for every
a, b ∈ A we have de Morgan’s laws: ¬(a ∨ b) = ¬a ∧ ¬b and ¬(a ∧ b) =
¬a ∨ ¬b.

Definition 2.5 (Boolean algebra). Let (A,≤) be a distributive lattice
admitting the distinguished elements 0 and 1. If every element a ∈ A
admits a complement we say that (A,≤) is a Boolean algebra.

The lattice 2, and more generally the power set of a finite set, are
examples of Boolean algebras. Another important example of Boolean
algebras comes from topology. Given a topological space X, the set of
clopen subsets of X forms a Boolean algebra with meet and join given by
intersection and union respectively and the distinguished elements 0 = ∅
and 1 = X.

2.2. Homomorphisms of Boolean algebras. In order to link Boolean
algebras to Stone spaces we need the concept of homomorphisms of
Boolean algebras:

Definition 2.6 (Homomorphism of Boolean algebras). Let A and B be
two Boolean algebras. We say a map f : A → B is a homomorphism
of Boolean algebras if it preserves meets, joins, and the distinguished
elements 0, 1 respectively. In other words

f(a ∧ b) = f(a) ∧ f(b), f(a ∨ b) = f(a) ∨ f(b), f(0) = 0, and f(1) = 1

for every a, b ∈ A.

A direct consequence of the above definition is that a homomorphism
f : A → B preserves complements, i.e. f(¬a) = ¬f(a) for every a ∈ A.

Definition 2.7 (Ideals and maximal ideals). Let A be a Boolean algebra.
A non-empty subset I ⊆ A is called an ideal if it satisfies the following
properties:
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(i) for all a, b ∈ I, we have a ∨ b ∈ I;

(ii) for all a ∈ A and b ∈ I, we have a ∧ b ∈ I.

Furthermore, a proper ideal I ⊂ A is said to be maximal if for any
proper ideal J ⊂ A the inclusion I ⊆ J implies I = J .

A first example of an ideal in a Boolean algebra A is the kernel of
any Boolean algebra homomorphism f : A → B. Indeed, every ideal in
A arises as the kernel of a Boolean algebra homomorphism f : A → B
for some B; see [3, Chapter 18].

The following lemma [3, Chapter 20, Lemma 1] characterizes when
an ideal is maximal.

Lemma 2.8 (see [3, Chapter 20, Lemma 1]). Let A be a Boolean algebra
and I ⊆ A an ideal. Then I is maximal if and only if for every a ∈ A
either a ∈ I or ¬a ∈ I but not both.

We can use Lemma 2.8 to characterize when a map f : A → 2 is a
homomorphism of Boolean algebras.

Lemma 2.9. Let A be a Boolean algebra and f : A → 2 a map. Then f
is an homomorphism of Boolean algebras if and only if the set {a ∈ A |
f(a) = 0} is a maximal ideal in A.

Proof. First note that if f is a homomorphism of boolean algebras then
the set I := {a ∈ A | f(a) = 0} is an ideal of A as it is the kernel of
the homomorphism f . Furthermore it is maximal by Lemma 2.8 as for
every a ∈ A either f(a) = 0 or f(¬a) = ¬f(a) = ¬1 = 0 but not both
f(a) = f(¬a) = 0, as otherwise f(1) = f(a ∨ ¬a) = f(a) ∨ f(¬a) = 0.
Now let us assume that the set I is a maximal ideal of A and let us prove
that f is then a homomorphism. We only need to show that if a, b /∈ I
then a ∧ b /∈ I and that for every a ∈ A if b /∈ I then a ∨ b /∈ I, as the
other conditions follow directly from the axioms on the definition of an
ideal and I being maximal. If a, b /∈ I then ¬(a ∧ b) = ¬a ∨ ¬b ∈ I
by Lemma 2.8 and thus a ∧ b /∈ I again by Lemma 2.8. Lastly if a ∈ A
and b /∈ I then ¬(a∨ b) = ¬a∧¬b ∈ I by Lemma 2.8 and hence a∨ b /∈ I
also by Lemma 2.8.

2.3. Stone spaces. We conclude the section by defining Stone spaces
and stating some of their useful properties.
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Definition 2.10 (Stone space). Let X be a topological space. We say
that X is a Stone space if it is Hausdorff, compact and totally discon-
nected.

A Stone space is also widely known as a profinite space; see [12]. The
following lemma tells us how the clopen subsets of a Stone space look
like:

Lemma 2.11. Let X be a Stone space and let U be a basis of opens for
the topology in X. Then any clopen subset C ⊆ X is a finite union of
opens in U . Furthermore, if U consists of clopen subsets of X such that
for every pair U1, U2 ∈ U either U1 ⊆ U2, U2 ⊆ U1 or U1 ∩ U2 = ∅, then
C may be represented as the finite disjoint union of clopen subsets in U .

Proof. Since C is open it is an arbitrary union of open subsets in U , i.e.
C =

⋃
i∈I

Ui. Since C is closed in X and X is a Stone space C is compact,

thus there exists a finite refinement C =
n⋃

i=1
Ui. To obtain a disjoint union,

we remove unnecessary terms from the finite decomposition C =
n⋃

i=1
Ui

using the fact that for 1 ≤ j < k ≤ n, the intersection Uj ∩ Uk is clopen
and equal to either Uj , Uk or ∅.

An important example of a Stone space is the Stone space associated
to a Boolean algebra. Given a Boolean algebra A its Stone space is simply
Hom(A), i.e. the space consisting of all Boolean algebra homomorphisms
A → 2, which is a Stone space for the topology of pointwise convergence
of nets. This topology is no more than the Tychonoff topology in Hom(A)
when seen as the cartesian product 2A.

Lemma 2.12. Let X be a topological space such that Bool(X) ̸= 2.
Then for every homomorphism of Boolean algebras f : Bool(X) → 2
there exists some non-empty proper clopen C such that f(C) = 1.

Proof. Since Bool(X) ̸= 2 there must exist a proper clopen subset ∅ ̸=
U ⊂ X. Thus, its complement ¬U is also a non-empty proper clopen
subset of X. Then we have

1 = f(X) = f(U ∨ ¬U) = f(U) ∨ f(¬U),

which implies that either f(U) = 1 or f(¬U) = 1.
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We conclude the section with a folklore result on Cantor sets, which
seems to not be recorded anywhere:

Proposition 2.13. Let X be a Cantor set. Then the automorphism
group of the Boolean algebra Bool(X) is isomorphic to the group of home-
omorphisms of X.

Proof. Let f ∈ Homeo X. Then for any clopen subset C ⊆ X the image
f(C) ⊆ X is again clopen. Since f(X) = X and f(∅) = ∅ and for
any pair of clopens C1 ⊆ C2 ⊆ X we have f(C1) ⊆ f(C2) ⊆ X, the
homeomorphism f induces an automorphism f ′ of the Boolean algebra
Bool(X). Now note that a Cantor set X is totally separated, i.e. any
point x ∈ X is given by the intersection x =

⋂
C, where C ranges

over all the of clopen subsets containing x. Thus, an automorphism
f ∈ Aut(Bool(X)) induces a map f̃ : X → X given by

f̃(x) :=
⋂

f(C).

The map f̃ is bijective and continuous (with continuous inverse) by defi-
nition, thus f̃ ∈ Homeo X. The map F ′ : Homeo X → Aut(Bool(X))
given by f 7→ f ′ is a group homomorphism and similarly the map F̃ :
Aut(Bool(X)) → Homeo X given by f 7→ f̃ is a group homomorphism.
Finally F̃ ◦ F ′ = idHomeo X and F ′ ◦ F̃ = idAut(Bool(X)) as

(̃f ′)(x) =
⋂

f(C) = f
(⋂

C
)
= f(x)

for any x ∈ X and f ∈ Homeo X, and

(g̃)′(C) = g(C)

for any clopen subset C ⊆ X and g ∈ Aut(Bool(X)). Hence Homeo X
is isomorphic to Aut(Bool(X)).

3. The boundary of a spherically homogeneous rooted
tree

In this section we introduce spherically homogeneous rooted trees and
their boundaries and study the Boolean algebra of clopens of the latter.

3.1. Spherically homogeneous rooted trees and their boun-
daries. A spherically homogeneous rooted tree T is a rooted tree such
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that every vertex in T at the same distance from the root has the same
degree. For every n ≥ 1, the vertices at distance n from the root con-
stitute the nth level of T , denoted Ln. For a vertex v ∈ T , the subtree
rooted at v, denoted Tv, consists of the vertices in T below v.

The tree T can be identified with the set of finite words
∏
n≥1

Xn, where

the cardinality of each set Xn coincides with the degree of the vertices at
level n−1 for n ≥ 1. Note that under this identification the root is simply
the empty word. Also this identification induces a graded lexicographical
order in T , by fixing a lexicographical order in Xn for every n ≥ 1.

Two vertices u, v ∈ T are said to be incomparable if none is a descen-
dant of the other.

Let T be a spherically homogeneous rooted tree. We define its boun-
dary ∂T as the set of ends in T . In other words, an element of the
boundary γ ∈ ∂T is simply an infinite path in T . For each vertex v ∈ T
we define the cone set Cv ⊆ ∂T as the subset of all paths in ∂T passing
through v. We write v ∈ γ if the path γ passes through v. Note that

γ =
⋂
v∈γ

Cv.

The boundary ∂T is a Stone space with respect to the compact topo-
logy generated by the cone sets {Cv}v∈T . Cone sets are clopen sets in
this topology and they satisfy all the assumptions in Lemma 2.11. Thus
any clopen in ∂T may be represented as a finite disjoint union of cone
sets. For a vertex v ∈ T and a clopen C ⊆ ∂T we write v ∈ C if Cv ⊆ C.

3.2. The Boolean algebra of clopen sets of ∂T. Let Bool(∂T ) be
the Boolean algebra of clopen subsets of ∂T . Let γ ∈ ∂T and let us
define the map φγ : Bool(∂T ) → 2 via

φγ(A) :=

{
1, if γ ∈ A;

0, if γ /∈ A.

Lemma 3.1. For any γ ∈ ∂T the map φγ : Bool(∂T ) → 2 is a well-
defined homomorphism of Boolean algebras.

Proof. It is enough to prove that the set I := {A ∈ Bool(∂T ) | γ /∈ A} is
a maximal ideal in Bool(∂T ) by Lemma 2.9. If A,B ∈ I, then A∪B ∈ I
as γ is neither contained in A nor in B. Also if A ∈ I and B ∈ Bool(∂T )
then A ∩ B ∈ I as A does not contain γ. Lastly ∅ ∈ Bool(∂T ) does not
contain γ so I is non-empty. Thus the set I is an ideal in Bool(∂T ).
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Now for any A ∈ Bool(∂T ) either γ ∈ A or γ /∈ A but not both, so
by Lemma 2.8 the ideal I is maximal in Bool(∂T ).

Lemma 3.2. For any homomorphism f : Bool(∂T ) → 2 there exists a
unique γ ∈ ∂T such that f = φγ.

Proof. Let us restrict the homomorphism f to the subgraph {Cv}v∈T ⊂
Bool(∂T ), which is isomorphic as a graph to T . By Lemmata 2.11 and
2.12 there exists a vertex v ∈ T distinct from the root such that f(Cv) =
1. Again by Lemmata 2.11 and 2.12 there exists a vertex v2 ∈ Tv1 \ {v1}
such that f(Cv2) = 1. Applying this argument inductively shows that
the set S := {Cv | f(Cv) = 1} is infinite. Furthermore since f is a
homomorphism, for any C,D ∈ S we have

f(C ∩D) = 1.

However, two cone sets are either disjoint or contained one in the other.
Thus since C ∩D = ∅ would imply f(C ∩D) = 0, we must have either
C ⊆ D or D ⊆ C for any pair C,D ∈ S. This implies that the countable
set S is completely linearly ordered. Therefore γ :=

⋂
C∈S

C is a well-

defined uniquely determined element in the boundary ∂T . Note that
Cv ∈ S if and only if γ ∈ Cv.

Let us conclude by showing f = φγ . Let A ∈ Bool(∂T ). If A contains
γ, then A must contain a cone set C ∈ S by Lemma 2.11 and f(A) =
f(A ∪ C) = f(A) ∨ f(C) = 1. On the other hand, if A does not contain
γ, then ¬A must contain γ and we get f(A) = ¬f(¬A) = ¬1 = 0. Thus
f = φγ .

Theorem 3.3. The map

F : ∂T → Hom(Bool(∂T ))

γ 7→ φγ

is a homeomorphism.

Proof. By Lemmata 3.1 and 3.2 the map γ 7→ φγ is 1-to-1 and inver-
tible. Continuity follows from the definition for the topology of pointwise
convergence of nets in Hom(Bool(∂T )).



J. Fariña-Asategui, R. Grigorchuk 225

4. The structure lattice of a branch group

In this section we introduce firstly the class of branch groups and secondly
the structure lattice of a branch group. The remainder of the section is
devoted to proving Theorem A.

4.1. Branch groups. Let T be a spherically homogeneous rooted tree
and Aut T its group of graph automorphisms. Let us fix a subgroup
G ≤ Aut T . We say G is level-transitive if its action on every level of
T is transitive. The group G has a natural induced action on ∂T . We
define the support of G, denoted Supp(G), via

Supp(G) := {γ ∈ ∂T | there exists g ∈ G such that γg ̸= γ}.

For a vertex v ∈ T , we write stG(v) for the stabilizer of v in G. We
further define the rigid vertex stabilizer ristG(v) of v as the subgroup of
stG(v) consisting of elements whose support is contained in Cv. We get
from definition that

[ristG(v), ristG(w)] = 1

if v and w are incomparable vertices. Then for every n ≥ 1, the direct
product

RistG(n) :=
∏
v∈Ln

ristG(v)

is a well-defined subgroup of G, called the rigid level stabilizer of the nth
level.

We say that G ≤ Aut T is a branch group if G is level-transitive and
for every n ≥ 1 the subgroup RistG(n) is of finite index in G. A branch
action of a group G on T is simply a monomorphism ρ : G → Aut T
such that ρ(G) ≤ Aut T is a branch group.

4.2. The structure lattice. The structure lattice of a just-infinite
branch group was introduced by Wilson in [14]. Here we present a slight
modification which works for every branch group; compare [2, 15–17].

Let G ≤ Aut T be a branch group. Let L(G) be the collection of all
subnormal subgroups of G with finitely many conjugates, i.e. subnormal
subgroups whose normalizers are of finite index in G. Then L(G) can be
endowed with a lattice structure defining for every H,K ∈ L(G)

H ∧K := H ∩K ∈ L(G) and H ∨K := ⟨H,K⟩ ∈ L(G).

For H,K ∈ L(G) we write H ≤va K if H ≤ K and H contains the
commutator subgroup of a finite index subgroup of K. We define the
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equivalence relation ∼ in L(G) as follows: for every H,K ∈ L(G) we
have

H ∼ K if and only if H ∩K ≤va H,K.

Furthermore, the equivalence relation ∼ is a congruence in L(G), i.e. it
is compatible with meets and joins. Therefore L(G)/ ∼ is a well-defined
lattice via

[H] ∧ [K] := [H ∩K] and [H] ∨ [K] := [⟨H,K⟩]

for every H,K ∈ L(G). We shall write L(G) := L(G)/ ∼ and call this
lattice the structure lattice of G. The structure lattice L(G) satisfies the
following properties:

Proposition 4.1 (see [14, Section 4] or [16, Section 3.1]). Let G ≤ Aut T
be a branch group. Then the structure lattice L(G) satisfies:

(i) it admits the distinguished elements 0 := [{1}] and 1 := [G];

(ii) it is distributive;

(iii) it is uniquely complemented.

Thus L(G) is a Boolean algebra.

Finally, observe that for g ∈ G and H ∈ L(G), we have [H]g =
[Hg]. Thus there is a well-defined action of G on L(G) induced by the
conjugation action of G on its subgroups.

4.3. Proof of Theorem A. We conclude the section by proving Theo-
rem A. We shall fix a branch action ρ : G → Aut T and write G ≤ Aut T
for the remainder of the section. First we show that the support of a
subgroup with finite index normalizer is clopen. For that we shall need
the following lemma in [11]:

Lemma 4.2 (see [11, Lemma 2.5]). Let G ≤ Aut T be a branch group.
Then for every n ≥ 1, there exists Nn ≥ 1 such that RistG(n) acts level-
transitively on the subtrees rooted at level n+Nn.

Proposition 4.3. Let G ≤ Aut T be a branch group and let H ≤ G be
a subgroup with finitely many conjugates in G. Then Supp(H) is clopen.

Proof. For any vertex v ∈ T either v is fixed by H or Cv ⊆ Supp(H).
Thus since G ≤ Aut T , we can check which vertices are moved and which
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ones are fixed by H at each level of T and hence decompose Supp(H) as
the disjoint countable union

Supp(H) =
⊔
v∈V

Cv (4.1)

for some subset V ⊂ T of pairwise incomparable vertices all moved by H.
Note that in particular Equation (4.1) shows that Supp(H) is always open
in ∂T . It remains to prove that Supp(H) is closed. We claim that the
subset V ⊆ T in Equation (4.1) is finite. This implies that Supp(H) is a
finite union of clopen sets and thus it is clopen itself. Then let us prove
our claim.

Assume by contradiction that V is infinite. We shall assume that V
is ordered by graded lexicographical order. Furthermore we may assume
that V does not become finite if for any subset W ⊆ V such that⊔

w∈W
Cw = Cv (4.2)

for some v ∈ T , one replaces W with v in V . Note that for any g ∈ G
we have

Supp(Hg) =
⊔
v∈V

Cvg =
⊔

w∈V g

Cw, (4.3)

where V g consists of infinitely many pairwise incomparable vertices all
moved by Hg.

We shall construct infinitely many distinct conjugates of H which
yields a contradiction. For that, it is enough to find an infinite sequence
of levels {ℓn}n≥1 and of elements {gn}n≥1 ⊆ G such that for every n ≥ 1
the subgroups Hgn+1 and Hgn have the same action on level ℓn but they
move different vertices at level ℓn+1. We fix ℓ1 = 1 and g1 = 1. We
construct these two sequences by induction on n ≥ 1. Let Nn ≥ 1 be
such that RistG(ℓn) acts level-transitively on the subtrees rooted at level
ℓn + Nn, which is well-defined by Lemma 4.2. Now, there is wn ∈ V gn ,
i.e. wn is moved by Hgn , at some level ℓn+1 such that:

(i) ℓn+1 > ℓn +Nn;

(ii) if vn denotes the unique vertex at level ℓn+Nn above wn then there
is a descendant w̃n of vn at level ln+1 fixed by Hgn .
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Note that condition (i) is guaranteed by V gn being infinite while condi-
tion (ii) is guaranteed by Equation (4.3) and the assumption in Equa-
tion (4.2). Let un be the unique vertex at level ℓn above both wn and vn.
Consider hn ∈ ristG(un) such that whn

n = w̃n, which exists by the level-
transitivity of ristG(un) on the subtree rooted at vn. Let gn+1 := gnhn.
Then w̃n is moved by Hgn+1 but it is fixed by Hgn . Indeed, there exists
h ∈ H such that whgn

n ̸= wn, and thus

w̃hgn+1

n = whnh
−1
n g−1

n hgnhn
n = wg−1

n hgnhn
n ̸= whn

n = w̃n.

However, both subgroups Hgn+1 and Hgn have the same action on level
ℓn, concluding the proof.

Note that the proof above shows that the support of an arbitrary
subgroup H ≤ Aut T is open.

We need the following lemma in [1], which is stated more generally for
weakly branch groups, where a weakly branch group G is a level-transitive
subgroup of Aut T such that RistG(n) ̸= 1 for every n ≥ 1.

Lemma 4.4 (see [1, Lemma 2.16]). Let G ≤ Aut T be a weakly branch
group and H a k-subnormal subgroup of G. Then H ≥ ristG(v)

(k) for
any v ∈ T moved by H.

Now we can give an explicit description of the structure lattice of a
branch group:

Proposition 4.5. Let G ≤ Aut T a branch group and let H ∈ L(G).
Then

[H] =
[ ∏
v∈Supp(H)

ristG(v)
]

in the structure lattice L(G).

Proof. If H = {1} then Supp(H) = ∅ and the result is clear. Thus, let
H ≤ G be a non-trivial k-subnormal subgroup with finitely many conju-
gates. Then there exists a vertex v ∈ T moved by H and by Lemma 4.4
we have

H ≥ ristG(v)
(k).

Now we show that ristG(v)
(k) is subnormal in G and that it has the same

number of distinct conjugates as H. First ristG(v) is subnormal in G
as it is normal in the corresponding rigid level stabilizer, which is itself
normal in G. Thus ristG(v)

(k) is subnormal in G too as it is itself normal
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in ristG(v). We know that NG(ristG(v)) = stG(v), which is of finite index
in G. Now, since ristG(v)

(k) is characteristic in ristG(v), it is normal in
stG(v) and therefore

NG(ristG(v)
(k)) = stG(v)

as Supp(ristG(v)
(k)) is contained in Cv. Thus ristG(v)

(k) has the same
number of distinct conjugates as ristG(v), namely the number of ver-
tices in the G-orbit of v by the orbit-stabilizer theorem. By the level-
transitivity of G this is precisely the number of vertices at the same level
as v.

Now by Proposition 4.3, the support of H is clopen and a disjoint

union of cone sets. Let Supp(H) =
n⊔

i=1
Cvi , where we assume as before

that each vi is moved by H. Then the above reasoning applies to each
vi and we get

H ≥
n∏

i=1

ristG(vi)
(k).

We may assume v1, . . . , vn are all at the same level by replacing if ne-
cessary a vertex with all its descendants at a lower level. Then

H ≥
n∏

i=1

ristG(vi)
(k) =

( n∏
i=1

ristG(vi)
)(k)

(4.4)

as the derived subgroup of a direct product is no more than the direct
product of the derived subgroups of the factors. Now

( n∏
i=1

ristG(vi)
)(k) ≤va

( n∏
i=1

ristG(vi)
)(k−1) ≤va · · · ≤va

n∏
i=1

ristG(vi)

and thus[( n∏
i=1

ristG(vi)
)(k)]

=
[( n∏

i=1

ristG(vi)
)(k−1)

]
= · · · =

[ n∏
i=1

ristG(vi)
]

(4.5)

in the structure lattice. Hence by Equations (4.4) and (4.5) we obtain

H ∩
n∏

i=1

ristG(vi) ≤va

n∏
i=1

ristG(vi).
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Now we have
n∏

i=1

ristG(vi) ≤f StabG(∂T \ Supp(H)) ≤ G

as G is branch and
n∏

i=1

ristG(vi) = RistG(N) ∩ StabG(∂T \ Supp(H)),

where N is the common level of T at which all the vertices v1, . . . , vn lie.
Since H ≤ StabG(∂T \ Supp(H)), we also get

H ∩
n∏

i=1

ristG(vi) ≤f H.

Therefore

[H] =
[ n∏
i=1

ristG(vi)
]
=

[ ∏
v∈Supp(H)

ristG(v)
]

in the structure lattice, where the second equality follows from

n∏
i=1

ristG(vi) = RistG(N) ∩
∏

v∈Supp(H)

ristG(v) ≤f

∏
v∈Supp(H)

ristG(v).

Corollary 4.6. Let G ≤ Aut T be a branch group and let H,K ∈ L(G)
be such H ∼ K. Then Supp(H) = Supp(K).

Proof. By Proposition 4.5[ ∏
v∈Supp(H)

ristG(v)
]
= [H] = [K] =

[ ∏
v∈Supp(K)

ristG(v)
]
.

Now if Supp(H) ̸= Supp(K) we may assume without loss of generality
that there exists v ∈ Supp(H) such that Cv ∩ Supp(K) = ∅. Then

( ∏
w∈Supp(H)

ristG(w)
)
∩
( ∏

w∈Supp(K)

ristG(w)
)
̸≤va

∏
w∈Supp(H)

ristG(w)

as ristG(v) is not virtually abelian. This contradicts H ∼ K.

Proof of Theorem A. First Φ is well-defined by Proposition 4.3 and Corol-
lary 4.6. Proposition 4.5 yields that Φ is both surjective and injective.
Finally G-equivariance of Φ follows from Equation (4.3).
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