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p-Conjecture for tame automorphisms of C3
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Communicated by I. Shestakov

Abstract. The famous Jung-van der Kulk [4, 11] theorem
says that any polynomial automorphism of C2 can be decomposed
into a finite number of affine automorphisms and triangular auto-
morphisms, i.e. that any polynomial automorphism of C2 is a tame
automorphism. In [5] there is a conjecture saying that for any
tame automorphism of C3, if (p, d2, d3) is a multidegree of this
automorphism, where p is a prime number and p ≤ d2 ≤ d3, then
p|d2 or d3 ∈ pN + d2N. Up to now this conjecture is unsolved. In
this note, we study this conjecture and give some results that are
partial results in the direction of solving the conjecture. We also
give some complimentary results.

1. Introduction

Let C be a field of complex numbers (although someone can think about

any field k of characteristic zero, since any given, in this note, results

and used notions are correct, or correctly defined, also in this context).

For any polynomial mapping F = (F1, . . . , Fm) : Cn → Cm by mul-

tidegree of F we mean the following sequence of integers mdegF =

(degF1, . . . ,degFm), where degP for any polynomial P ∈ C[X1, . . . , Xn]

denotes the usual degree of the polynomial P.
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Let us mention that in the Scotish Book [16, Problem 79] Mazur and

Orlicz posed the following question: “If F = (F1, . . . , Fn) : Cn → Cn is

a one-to-one polynomial map whose inverse is also a polynomial map,

is each Fi of degree one?” In other words, they asked whether every

polynomial automorphism of Cn has multidegree (1, . . . , 1) . The answer

to this question is obviously “no” (for n > 1 and obviously “yes” for

n = 1), and in the Scotish Book itself one can find the following example:

let 1 ≤ i ≤ n and a = a (X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈ C [X1, . . . , Xi−1,

Xi+1, . . . , Xn] with deg a > 1. Then

E : Cn ∋ (x1, . . . , xn) 7→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn) ∈ Cn

is a polynomial automorphism with multidegree (1, . . . , 1, deg a, 1, . . . , 1) .

A map as above is called an elementary polynomial map or shortly an

elementary map. Taking finite compositions of such elementary maps and

elements of the affine subgroup Aff (Cn) , i.e. the group of polynomial

automorphisms F = (F1, . . . , Fn) : Cn → Cn such that degFi = 1 for

all i (i.e. such that mdegF = (1, . . . , 1)), we get automorphisms called

tame. The other (equivalent) definition of a tame automorphism is as

follows: an automorphism of Cn is called tame if it is a composition of

finite number of affine automorphisms and triangular automorphisms,

where triangular automorphisms are automorphisms of the form

T : Cn ∋


x1
x2
...

xn

 7→


x1
x2 + f2(x1)
...

xn + fn(x1, . . . , xn−1)

 ∈ Cn.

By the famous theorem of Jung [4] and Van der Kulk [11], it is known

that if n = m = 2 and F ∈ Aut(C2), where Aut(Cn) denotes the group

of polynomial automorhisms of Cn, then for (d1, d2) = mdegF we have

d1|d2 or d2|d1. The theorem of Jung and van der Kulk says even more,

that is, that any polynomial automorphism of C2 is actually a tame

automorphism, in other words Aut(C2) = Tame(C2).

On the other hand, if d1, d2 are positive integers such that d1|d2 then

F = Φ2 ◦ Φ1, where

Φ1 : C2 ∋ (x, y) 7→ (x + yd1 , y) ∈ C2,

Φ2 : C2 ∋ (u,w) 7→ (u,w + u
d2
d1 ) ∈ C2,
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is an automorphism of C2 with mdegF = (d1, d2). Similarly if d2|d1 we

can give an appropriate automorphism of C2. Thus a sequence of positive

integers (d1, d2) is the multidegree of some polynomial automorphism of

C2 if and only if d1|d2 or d2|d1.
The other important consequence of the Jung-van der Kulk theorem

is that in dimension two there is no wild automorphisms, where an auto-

morphism F ∈ Aut(Cn) is called wild if F /∈ Tame(Cn). One of the

remarkable, and for the very long time unsolved, problem was whether

there are wild automorphisms in dimension n > 2. The first known exam-

ple of hypothetical wild automorphism was proposed by Nagata [17] in

1972. Now, this example is called Nagata automorphism:

σ : C3 ∋ (x, y, z) 7→ (x+2y(y2+zx)−z(y2+zx)2, y−z(y2+zx), z) ∈ C3.

It took more than thirty years to prove that the Nagata automorphism

is indeed a wild automorphism. This remarkable result was obtained

by Shestakov and Umirbaev [18] in 2004. It should be noted that the

problem of existence of wild automorphisms in dimension n > 3 is still

unsolved. In particular, the existence of wild automorphism in dimension

n = 3 do not imply the existence of such automorphism in higher dimen-

sions. To illustrate this phenomenon, let us notice that the Nagata exam-

ple is stably tame automorphism. More precisely, the automorphism of

C4 = C3 × C obtained from Nagata example σ : C3 → C3 as follows

σ̃ : C3 × C ∋ ((x, y, z), w) 7→ (N(x, y, z), w) ∈ C3 × C

is a tame automorphism of C4. To prove this result, Martha Smith used

locally nilpotent derivations of the polynomial ring C[X,Y, Z,W ] and

the construction of the exponential map of such a derivations (for more

details see [20]).

The multidegree of a polynomial automorphisms seems to be use-

ful tool for recognition of wild automorphism. For example the second

author of this note together with Jakub Zygad lo proved [9], using the

multidegree, that for any s = 1, 2, . . . the automorphism N s = N ◦· · ·◦N
(composition, s times, of N with itself) is a wild automorphism of C3,

where N is the following slight modification of the Nagata example

N : C3 ∋ (x, y, z) 7→ (z, y−z(y2+zx), x+2y(y2+zx)−z(y2+zx)2) ∈ C3.

Since N is the composition of the Nagata automorphism with the fol-
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lowing affine automorphism C3 ∋ (x, y, z) 7→ (z, y, x) ∈ C3, it follows, by

the result of Shestakov and Umirbaev, that N = N1 is a wild automor-

phism. The proof of the wildness of N s for s ≥ 2 goes as follows. One

can calculate that mdegN s = (4s − 3, 4s − 1, 4s + 1) and observe that

gcd(4s − 3, 4s − 1) = 1 and 4s + 1 /∈ (4s − 3)N + (4s − 1)N. Thus the

wildness of N s for s ≥ 2 is a consequense of the following result.

Theorem 1 ([9, Thm. 2.1]). Let d3 ≥ d2 > d1 ≥ 3 be positive integers. If

d1 and d2 are odd numbers such that gcd (d1, d2) = 1, then (d1, d2, d3) is

a multidegree of tame automorphism of C3 if and only if d3 ∈ d1N+d2N,
i.e. if and only if d3 is a linear combination of d1 and d2 with coefficients

in N.

Let us notice, also, that for the above mentioned slight modification

N of the Nagata automorphism σ, we have that N is wild but mdegN =

(1, 3, 5) ∈ mdeg
(
Tame(C3)

)
, where we here mdeg consider as a map

Aut(C3) ∋ F 7→ mdegF ∈ N3. Indeed, the mapping F : C3 ∋ (x, y, z) 7→
(x, y + x3, z + x5) ∈ C3 is a tame automorphism with mdegF = (1, 3, 5).

The existence of tame automorphism with multidegree (1, 3, 5) can also

be obtained from the following result.

Proposition 1 ([5, Prop. 2.2]). If for a sequence of integers 1 ≤ d1 ≤
. . . ≤ dn there is i ∈ {1, . . . , n} such that

di =

i−1∑
j=1

kjdj with kj ∈ N,

then there exists a tame automorphism F of Cn with mdegF = (d1, . . . , dn).

And its consequence

Corollary 1 ([5, Cor. 2.3]). If for a sequence of integers 1≤ d1≤ . . . ≤dn
we have d1 ≤ n−1, then there exists a tame automorphism F of Cn with

mdegF = (d1, . . . , dn).

Fortunately, for Nagata automorphism N we can use the weighted

multidegrees to show that N is wild [1].

The first result about multidegrees of polynomial automorphisms of

C3 or multidegrees of tame automorphisms of C3 was given in [5], and

says that (3, 4, 5) /∈ mdeg(Tame(C3)), in other words that there is no

tame automorphism of C3 with multidegree (3, 4, 5). For more informa-

tion of multidegrees of polynomial automorphisms the reader is referred

to [1–3,6–8,10,14,15,21].
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2. p-conjecture

We start this section with the following conjecture which was stated in [5]
for p ≥ 3 but of course it can be considered also for p = 2.

Conjecture 2 ([5, Conj. 5.1]). For any prime number p ≥ 2 and d3 ≥
d2 ≥ p the following is true (p, d2, d3) ∈ mdeg(Tame(C3)) if and only if
p|d2 or d3 ∈ pN + d2N.

Up to now, this conjecture is proved for p = 2 [5, Example 3.1], p = 3
[7, Thm. 1.1], p = 5 [8, Cor. 7.8] and for any other prime numbers p but
with some additional restrictions for d2 :

Theorem 3 ([8, Thm. 7.1]). Let 2 ≤ p ≤ d2 ≤ d3 be integers, and let p
be a prime. If
(1) d3

d2
̸= 3

2 or

(2) d3
d2

= 3
2 and d2

2 > p− 2,

then (p, d2, d3) ∈ mdeg
(
Tame

(
C3
))

if and only if p|d2 or d3 ∈ pN+d2N.

Theorem 4 ([8, Thm. 7.9]). Let p ≥ 5 be a prime such that p ≤ 35.
Then (p, 2 (p− 2) , 3 (p− 3)) /∈ mdeg

(
Tame

(
C3
))

.

For example, by the above theorems, we have that for p = 7 only un-
known case is the triple (7, 8, 12). Similarly, for p = 11, the only unknown
cases are (11, 12, 18), (11, 14, 21) and (11, 16, 24).

Besides of stating Conjecture 2 in [5] it was observed that one can not
expect the similar result in the case d1 is not a prime number. Namely,
it was shown that

Proposition 2 ([5, Prop. 5.2]). For any number d3 ≥ 6, we have
(4, 6, d3) ∈ mdeg(Tame(C3)).

In the next section we give some generalization of the above propo-
sition (see Theorems 10 and 11).

Up to the end of this section, we will prove that there is ’only’ one
step in order to prove that there is no tame automorphism F of C3 with
multidegree equal to (7, 8, 12) (and so there is ’only’ one step to prove
the Conjecture 2 in the case p = 7). Namely, we have the following fact.

Theorem 5. If there exists a tame automorphism F = (F1, F2, F3) of
C3 with mdegF = (7, 8, 12), then there are polynomials P,Q ∈ C[x, y, z]
of the form

P = y+P2 + · · ·+P8, Q = z+Q2 + · · ·+Q12, P8, Q12 ̸= 0, (1)
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where Pi, Qi are homogeneous of degree i, that satisfy the condition

deg[P,Q] = 3, (2)

where, by definition, deg[f, g] is equal to

2+max

{
deg

(
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x

)
,deg

(
∂f

∂x

∂g

∂z
− ∂f

∂z

∂g

∂x

)
,deg

(
∂f

∂y

∂g

∂z
− ∂f

∂z

∂g

∂y

)}
. (3)

The above theorem means that the ’only’ step in proving that there is
no tame automorphism F of C3 with mdegF = (7, 8, 12) is to prove that
there is no pair of polynomials P,Q ∈ C[x, y, z] such in the proposition.
Unfortunately, this step is not easy and up to now we do not know how
this step should be done, but we hope that someone else can do it in the
future.

Before we prove the above proposition, we recall some results that
we will need in the proof. The first one is the following.

Theorem 6 ([8, Thm. 3.15]). Let (d1, d2, d3) ̸= (1, 1, 1) , d1 ≤ d2 ≤ d3,
be a sequence of positive integers. To prove that there is no tame auto-
morphism F of C3 with mdegF = (d1, d2, d3) it is enough to show that a
(hypothetical) automorphism F of C3 with mdegF = (d1, d2, d3) admits
neither a reduction of type III nor an elementary reduction. Moreover,
if we additionally assume that d3

d2
= 3

2 or 3 ∤ d1, then it is enough to show

that no (hypothetical) automorphism of C3 with multidegree (d1, d2, d3)
admits an elementary reduction. In both cases we can restrict our atten-
tion to automorphisms F : C3 → C3 such that F (0, 0, 0) = (0, 0, 0) .

The second one is the following.

Theorem 7 ([8, Thm. 3.18]). For every sequence of positive integers
(d1, . . . , dn) ̸= (1, . . . , 1) , if there is a tame automorphism F : Cn → Cn

such that F admits an elementary reduction, F (0, . . . , 0) = (0, . . . , 0) and
mdegF =(d1, . . . ,dn), then there is also a tame automorphism F̃ :Cn→Cn

such that F̃ admits an elementary reduction, mdeg F̃ = (d1, . . . , dn),
F̃ (0, . . . , 0) = (0, . . . , 0) and the linear part of F̃ is equal to idCn .

Now, we can make the first step in the proof of Theorem 5. Using
the above two theorems, if we assume (to make a prove by a contradic-
tion) that there is a tame automorphisms F = (F1, F2, F3) of C3 with
mdegF = (7, 8, 12), then we can assume, without lose of generality, that
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F admits an elementary reduction and

F1 = x + F1,2 + · · · + F1,7, F1,7 ̸= 0, (4)

F2 = y + F2,2 + · · · + F2,8, F2,8 ̸= 0, (5)

F3 = z + F3,2 + · · · + F3,12, F3,12 ̸= 0, (6)

where Fi,j denotes the homogeneous component of degree j of the poly-
nomial Fi.

To make a next step in the proof, let us recall that F = (F1, F2, F3)
admits an elementary reduction means that there exists a polynomial G
in two variables over C such that at least one of the following inequalities
hold

deg (F1 −G(F2, F3)) < degF1, (7)

deg (F2 −G(F1, F3)) < degF2, (8)

deg (F3 −G(F1, F2)) < degF3. (9)

To exclude the possibility of the last two inequalities, we use the
following result due to Umirbaev and Shestakov.

Theorem 8 ([18, Thm. 2]). Let f, g ∈ C[X1, . . . , Xn] be a p-reduced
pair, and let G(X,Y ) ∈ k[X,Y ] with degY G(X,Y ) = pq + r, 0 ≤ r < p.
Then

degG(f, g) ≥ q (p deg g − deg g − deg f + deg[f, g]) + r deg g.

The notion of p-reduced pair of polynomials is also due to Umirbaev
and Shestakov.

Definition 1 ([18, Def. 1]). A pair f, g ∈ C[X1, . . . , Xn] is called *-
reduced if
(i) f, g are algebraically independent;
(ii) f, g are algebraically dependent, where h means the homogenous part
of h of maximal degree;
(iii) f /∈ C[g] and g /∈ C[f ].
Moreover, we say that f, g is a p-reduced pair if f, g is a *-reduced pair
with deg f < deg g and p = deg f

gcd(deg f,deg g) .

Some generalization of the above inequalty can be found in [12,13].
One can easily check that the inequality in Theorem 8 is also true if

f and g are algebraically independent.
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Let us, also, recall that for f, g ∈ C[X1, . . . , Xn], by definition, we
have

deg[f, g] = 2 + max
1≤i<j≤n

deg

(
∂f

∂Xi

∂g

∂Xj
− ∂f

∂Xj

∂g

∂Xi

)
. (10)

In particular, if f and g are algebraically independent we have deg[f, g]≥
2.

Now, assume that our hypothetical tame automorphism F=(F1,F2,F3)
of C3 with mdegF = (7, 8, 12) admits an elementary reduction of the
form (F1, F2 − G(F1, F3), F3), i.e. for some polynomial G in two vari-
ables over C, we have deg (F2 −G(F1, F3)) < degF2. This means, in
particular, that

8 = degF2 = degG(F1, F3). (11)

Since p = degF1

gcd(degF1,degF3)
= 7, it follows from Theorem 8, that we have

degG(F1, F3) ≥ q (p degF3 − degF3 − degF1 + deg[F1, F3]) + r degF3 (12)

= q (7 · 12 − 12 − 7 + deg[F1, F3]) + 12r,

where degy G(x, y) = pq + r with 0 ≤ r < p. Since 7 · 12 − 12 − 7 +
deg[F1, F3]>8 and 12>8, it follows from (11) and (12) that q = r = 0.
But, this means that G is actually a polynomial in one variable, and
G(F1, F3) = G(F1). This, of course, contradicts with the facts that
degF1 = 7 and degG(F1) = degG(F1, F3) = 8.

In a similar way one can check that a hypothetical tame automor-
phism F = (F1, F2, F3) of C3 with mdegF = (7, 8, 12) can not admit an
elementary reduction of the form (F1, F2, F3 −G(F1, F2)). The only dif-
ference to the above case is that we obtain q = 0 and r ≤ 1, which means
that G(F1, F2) is of the form g0(F1)+F2g1(F1) for some polynomials g0, g1
in one variable over C. But, this means that degG(F1, F2) ∈ 7N∪(8+7N)
which is a contradiction with degG(F1, F2) = degF3 = 12.

Up to now, we have showed that if there exists a hypothetical tame
automorphism F = (F1, F2, F3) of C3 with mdegF = (7, 8, 12), then
such an automorphism admits an elementary reduction of the form (F1−
G(F2, F3), F2, F3) and satisfies (4)–(6). If this is the case, we have

7 = degF1 = degG(F2, F3) (13)

and for p = degF2

gcd(degF2,degF3)
= 2, by virtue of the inequality from Theo-

rem 8, we have

degG(F2, F3) ≥ q (p degF3 − degF3 − degF2 + deg[F2, F3]) + r degF3 (14)

= q (2 · 12 − 12 − 8 + deg[F2, F3]) + 12r,
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where degy G(x, y) = pq + r with 0 ≤ r < p. Since 12 > 7, it follows that
r = 0. Similarly, if we would have deg[F2, F3] ≥ 4, we would have q = 0
because in this situation we would have 2 · 12− 12− 8 + deg[F2, F3] > 7.
Thus, if such an automorphism F exists it must satisfy, additionally, that
deg[F2, F3] ≤ 3.

Since F2 and F3, as components of an automorphism F, are algeb-
raically independent, we have two cases: deg[F2,F3]=2 or deg[F2,F3] = 3.
To exclude the first one, we use the following result.

Theorem 9 ([8, Thm. 3.21]). Let f, g ∈ C[X1, . . . , Xn] be such that

f = X1 + f2 + · · · + fl, g = X2 + g2 + · · · + gm,

where fi, gi are homogeneous forms of degree i.If deg [f, g]=d ≤ min {l,m},
d ≥ 2, and fi, gi for i = 1, . . . , d− 1 do not involve Xr, where r > 2, then
f and g do not involve Xr.

Applying the above theorem for d = 2, n = 3, C[X1, . . . , Xn] =
C[x, y, z], X1 = y, X2 = z and

f = F2 = y + F2,2 + · · · + F2,8 ∈ C[x, y, z],

g = F3 = z + F3,2 + · · · + F3,12 ∈ C[x, y, z],

we obtain that in the case deg[F2, F3] = 2 we have F2, F3 ∈ C[y, z].
Since (F1, F2, F3) is an automorphism of C3, we have that (F2, F3) is
an automorphism of C2, but degF2 = 8 ∤ 12 = degF3 which gives a
contradiction with the Jung-van der Kulk theorem.

Thus, we have proved that the only possible (more precisely, the only
not excluded case) is the case when deg[F2, F3] = 3. This completes the
proof of the theorem.

3. Some complimentary results

In this section we will show the following two theorems which are com-
plimentary to Conjecture 2 and generalize Proposition 2.

Theorem 10. For any composite number d1 = ab with a, b > 1 there
are infinitely many pairs of integers (d2, d3) ∈ N2

+ such that d3 > d2 > d1,
d1 ∤ d2, gcd(d1, d2) = a, d3 /∈ d1N+d2N and (d1, d2, d3) ∈ mdeg(Tame(C3)).

Theorem 11. For any non-coprime positive integers d2 > d1 > 1 with
d1 ∤ d2 the following set

mdeg
(
Tame(C3)

)
∩ {(d1, d2, d3) |d3 /∈ d1N + d2N }
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is infinite.

Proof. (of Theorem 10) Let us take any positive integer k and define d2
as (kb+1)a. Then, we have d1 ∤ d2 and gcd(d1, d2) = gcd(ab, (kb+1)a) =
gcd(ab, kab+ a) = gcd(ab, a) = a. Notice that d1(kb+ 1) = lcm(d1, d2) =
d2b and consider the following polynomial(

X + Zr + Zd1
)kb+1

−
(
Y + Zd2

)b
=

kb+1∑
l=0

(
kb + 1

l

)
(X + Zr)l Z lcm(d1,d2)−ld1 −

b∑
l=0

(
b

l

)
Y lZ lcm(d1,d2)−ld2 .

Since, in the above two sums, for l = 0 we obtain the same summand
Z lcm(d1,d2), we see that:(

X + Zr + Zd1
)kb+1

−
(
Y + Zd2

)b
=

kb+1∑
l=1

(
kb + 1

l

)
(X + Zr)l Z lcm(d1,d2)−ld1 −

b∑
l=1

(
b

l

)
Y lZ lcm(d1,d2)−ld2 .

Because d1, d2 > 1 we have

deg

(
b∑

l=1

(
b

l

)
Y lZ lcm(d1,d2)−ld2

)
≤ lcm(d1, d2) − d2 + 1

and, if we take r ∈ {1, . . . , d1 − 1}, we also have

deg

(
kb+1∑
l=2

(
kb + 1

l

)
(X + Zr)l Z lcm(d1,d2)−ld1

)
≤ lcm(d1, d2) − 2d1 + 2r

< lcm(d1, d2) − d1 + r

and

deg

((
kb + 1

1

)
(X + Zr)Z lcm(d1,d2)−d1

)
= lcm(d1, d2) − d1 + r.

Since d1 < d2 and r ≥ 1, it follows that lcm(d1, d2)−d1+r > lcm(d1, d2)−
d2 + 1, and finally we obtain that

deg

((
X + Zr + Zd1

)kb+1
−
(
Y + Zd2

)b)
= lcm(d1, d2) − d1 + r.
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Now, one can take

F1(x, y, z) = (x + zr + zd1 , y + zd2 , z)

and

F2(u, v, w) =
(
u, v, w +

(
ukb+1 − vb

)
un
)

obtaining that:

mdeg (F2 ◦ F1) = (d1, d2, d3) ,

where

d3 = lcm(d1, d2) − d1 + r + nd1.

Since a| lcm(d1, d2) − d1 + r + nd1, it follows that a ∤ d3 whenewer
a ∤ r, for example if r ∈ {1, . . . , d1 − 1} \ {a, 2a, . . . , (b − 1)a}. Because
a = gcd(d1, d2), one can see that d3 /∈ d1N+ d2N. Of course, for different
pairs of integeres k, n, we obtain different pair of integers (d2, d3).

Proof. (of Theorem 11) Let d = gcd(d1, d2) and let d̃1, d̃2 be such that
d1 = d̃1d and d2 = d̃2d. Now, consider the following polynomial(

X + Zr + Zd1
)d̃2

−
(
Y + Zd2

)d̃1
=

d̃2∑
l=1

(
d̃2
l

)
(X + Zr)l Z lcm(d1,d2)−ld1 −

d̃1∑
l=1

(
d̃1
l

)
Y lZ lcm(d1,d2)−ld2

and the polynomial automorphism F2 ◦ F1, where

F1(x, y, z) = (x + zr + zd1 , y + zd2 , z),

F2(u, v, w) =
(
u, v, w +

(
ud̃2 − vd̃1

)
un
)
.

Since d2 > d1 > 1, it follows by the similar arguments as in the proof
of Theorem 10 that if r ∈ {1, . . . , d1 − 1} \ {d, 2d, d1 − d}, then

mdeg (F2 ◦ F1) = (d1, d2, lcm(d1, d2) − d1 + r + nd1)

and lcm(d1, d2) − d1 + r + nd1 /∈ d1N + d2N. Thus, we have

{ (d1, d2, lcm(d1, d2) − d1 + r + nd1) |n ∈ N}
⊂ mdeg

(
Tame(C3)

)
∩ {(d1, d2, d3) | d3 /∈ d1N + d2N }
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