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Fundamental theorem of (A,G,H )-comodules

Thomas Guédénon

Communicated by R. Wisbauer

Abstract. Let k be a field, H a Hopf algebra with a bijec-
tive antipode, G an H-comodule Lie algebra and A a commutative
(G, H)-comodule algebra. We assume that there is anH-colinear al-
gebra map fromH to AG . We generalize the Fundamental Theorem
of (A,H)-Hopf modules to (A,G, H)-comodules, and we deduce re-
lative projectivity in the category of (A,G, H)-comodules. In many
applications, A could be a commutative G-graded G-module algeb-
ra, where G is an abelian group and G is a G-graded Lie algebra;
or a rational (G, G)-module algebra, where G is an affine algebraic
group and G is a rational G-module Lie algebra.

Introduction

Throughout this paper, k will be a field and all algebras and linear spaces
will be over k. Let H be a Hopf algebra and A a right H-comodule
algebra (A, ρA). A right (A,H)-Hopf module is a right A-module and
a right H-comodule ρM : M → M ⊗H such that the A-action and the
H-coaction are compatible in a natural way, that is,

ρM (ma) = ρM (m)ρA(a) ∀a ∈ A,m ∈M.

A homomorphism of (A,H)-Hopf modules is a right A-linear map which
is also a right H-colinear map. For an (A,H)-Hopf module M , the sub-
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spaceM coH of coinvariants ofM is a right AcoH -module,M coH⊗AcoHA is
a right (A,H)-Hopf module. The Fundamental Theorem of (A,H)-Hopf
modules [3, Theorem 3] states that if there is an H-colinear algebra map
ϕ : H → A, then the k-linear map

M coH ⊗AcoH A→M ;m⊗AcoH a 7→ ma

is an isomorphism of (A,H)-Hopf modules. Let H be a Hopf algebra
with a bijective antipode and G a right H-comodule Lie algebra and A a
(G, H)-comodule algebra. We introduce the notion of left-right (A,G, H)-
comodule: a precise definition is given in Section 1. A homomorphism of
left-right (A,G, H)-comodules is a left A-linear map which is also G-linear
and right H-colinear.

We denote by A,GMH the category of left-right (A,G, H)-comodules
with morphisms the homomorphisms of left-right (A,G, H)-comodules.
Assume that there is an H-colinear algebra map ϕ from H to the subal-
gebra AG of G-invariants of A. LetM be a left-right (A,G, H)-comodule.
We have a projection map pM : M → M coH which enables us to equip
M with a new G-action ⋄′ for whichM coH is a G-submodule ofM . If this
G-action is trivial onM coH and AcoH , we show thatM coH is equal to the
vector subspace MGcoH of simultaneously G-invariant and H-coinvariant
elements of M , and we prove the Fundamental Theorem for left-right
(A,G, H)-comodules; more precisely, we show that the k-linear map

α : A⊗B M
coH →M ; a⊗B m 7→ am

is an isomorphism of (A,G, H)-comodules with inverse

β :M → A⊗B M
coH ;m 7→ ϕ(m1)⊗B pM (m0),

where B = AcoH . We also show (not assuming the existence of a map ϕ)
that the functor

F = A⊗AGcoH − : AGcoHM → A,GMH ;M 7→ A⊗AGcoH M

is left adjoint to the functor

G = (−)AcoH : A,GMH → AGcoHM;M 7→MGcoH .

Using this result and the Fundamental Theorem, we prove that the func-
tor G is dual Maschke, that is, every left-right (A,G, H)-comodule is
G-relative projective. We refer to [2] for details on Maschke functors.
Here are some examples of (G, H)-comodule algebras:
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(i) a G-graded G-module algebra [9], where G is an abelian group and
G is a G-graded Lie algebra is a (G, kG)-comodule algebra, where
kG is the group algebra of G (Example 1);

(ii) a commutative rational (G, G)-module algebra [10], where G is an
affine algebraic group and G is a rational G-module Lie algebra is
a (G, k[G])-comodule algebra, where k[G] is the affine coordinate
ring of G (Example 2);

(iii) an H-comodule Poisson algebra A [10] is a (G, H)-comodule Lie
algebra, where H is a Hopf algebra with a bijective antipode and
G is equal to A as a Lie algebra (Example 4).

We refer to [20] for the Fundamental Theorem of Hopf modules in the
category of Yetter-Drinfeld modules, to [11] for the Fundamental Theo-
rem for quasi-Hopf H-bimodules, to [1] for the Fundamental Theorem of
two-sided Hopf modules over quasi-Hopf algebras, to [10] for the Funda-
mental Theorem of Poisson (A,H)-Hopf modules which is the motivation
of the present work, to [14] for the Fundamental Theorem of Poisson Hopf
modules for weak Hopf algebra and to [15] for the Fundamental Theorem
of Poisson Hopf modules for Hopf group coalgebras.

1. The Category of (A,G,H )-comodules

A Hopf algebra is an algebra H that possesses a multiplication mH :
H ⊗ H → H, a comultiplication ∆H : H → H ⊗ H, an antipode SH :
H → H and a counit ϵH : H → k, satisfying the defining relations

(∆H ⊗ idH) ◦∆H = (idH ⊗∆H) ◦∆H ,

(ϵH ⊗ idH) ◦∆H = (idH ⊗ ϵH) ◦∆H = idH , and

mH ◦ [(SH ⊗ idH)⊗∆H ] = mH ◦ [(idH ⊗ SH)⊗∆H ] = ϵH .

For background on Hopf algebras and coactions of Hopf algebras on
rings, we refer to [19] and [18]. We will use Sweedler-Heyneman notation,
writing:

∆H(h) = h1 ⊗ h2 for all h ∈ H.

By an H-comodule, we will mean a right H-comodule. We will con-
sider H as an H-comodule via ∆H . When M is an H-comodule with
structure map ρM , the vector subspace

M coH = {m ∈M ; ρM (m) = m⊗ 1H}
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of M is called the subspace of H-coinvariants of M .

A k-algebra A is an H-comodule algebra if A is an H-comodule satis-
fying

(aa′)0⊗(aa′)1 = (a0a
′
0)⊗(a1a

′
1), (1A)0⊗(1A)1 = 1A⊗1H ∀a, a′ ∈ A, (1)

that is, ρA is an algebra homomorphism.

If A is an H-comodule algebra, then the subspace AcoH of H-coinva-
riants of A is a subalgebra of A called the subalgebra of H-coinvariants of
A. When kG is the group algebra of an arbitrary group G, kG-comodule
algebras are just G-graded algebras.

Definition 1. Let A be an H-comodule algebra. A vector space M is
an (A,H)-Hopf module if M is an A-module and an H-comodule such
that

(am)0 ⊗ (am)1 = (a0m0)⊗ (a1m1) ∀a ∈ A,m ∈M. (2)

It is easy to see that A is an (A,H)-Hopf module whenever A is an
H-comodule algebra. If A is an H-comodule algebra and T is a sub-
H-comodule algebra of A, then A is a (T,H)-Hopf module. An (A,H)-
Hopf submodule of an (A,H)-Hopf moduleM is an A-submodule and an
H-subcomodule of M .

Let G be a Lie algebra with Lie bracket [, ] : G⊗G → G. The elements
of G will be denoted X,Y, ... . A vector space M is a G-module if there
is a k-linear map ⋄ : G ⊗M →M satisfying

[X,Y ] ⋄m = X ⋄ (Y ⋄m)− Y ⋄ (X ⋄m) ∀X,Y ∈ G,m ∈M. (3)

IfM and N are two G-modules, a k-linear map f fromM to N is G-linear
if

f(X ⋄m) = X ⋄ f(m) ∀m ∈M,X ∈ G.

A subalgebra of a Lie algebra G is a vector subspace of G which is stable
under the Lie bracket.

A vector space A is a left G-module algebra if A is a G-module (the
action is denoted ⋄) such that

X ⋄ (aa′) = (X ⋄ a)a′ + a(X ⋄ a′) ∀a, a′ ∈ A,X ∈ G. (4)

The relation (4) means that G acts on A by derivations.
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Note that A is a left G-module algebra means that we have a Lie algeb-
ra homomorphism from G to the Lie algebra Derk(A) of k-derivations of
A: the bracket of Derk(A) is

[D,D′] = D ◦D′ −D′ ◦D ∀D,D′ ∈ Derk(A).

A left G-module algebra is exactly a left U(G)-module algebra, where
U(G) is the universal enveloping algebra of G. We know that U(G)
is a (cocommutative) Hopf algebra. Thus we have the smash product
A#U(G) of A with U(G). A vector space M is a left A#U(G)-module
or an (A,G)-module if and only if M is a left A-module and a G-module
(the action is denoted again ⋄) such that

X ⋄ (am) = (X ⋄ a)m+ a(X ⋄m) ∀a ∈ A,m ∈M,X ∈ G. (5)

In the following definition, the coaction of H on G⊗G is the diagonal
coaction.

Definition 2. A Lie algebra G in the category MH (or an H-comodule
Lie algebra) is a Lie algebra G, (with Lie bracket [, ] : G ⊗ G → G) which
is also an H-comodule such that the structure map [, ] is an H-colinear
map, that is,

[X,Y ]0 ⊗ [X,Y ]1 = [X0, Y0]⊗X1Y1 ∀X,Y ∈ G. (6)

We will call a Lie algebra in MH an H-comodule Lie algebra. We
refer to [8] for the definition of an H-comodule Lie algebra. Because of
the antisymmetry of the bracket, we have

[X0, Y0]⊗X1Y1 = [X0, Y0]⊗ Y1X1 ∀X,Y ∈ G.

Let G be an H-comodule Lie algebra. An H-subcomodule Lie algebra
of G is a Lie subalgebra of G which is also an H-subcomodule of G.

The Lie-center of G is defined to be

Z(G) = {X ∈ G; [X,G] = 0}.

Lemma 1. Let G be an H-comodule Lie algebra. Let H be an H-subco-
module of G, and L the centralizer of H in G, that is,

L = {X ∈ G; [X,H] = 0}.

Then L is an H-subcomodule Lie algebra of G. If H = G, then L is the
Lie-center of G.
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Proof. Let Y ∈ L, X ∈ H, ρ(Y ) = Y0 ⊗ Y1 and ρ(X) = X0 ⊗X1. Using
the relation (6), we have

[Y0, X]⊗ Y1 = [Y,X0]0 ⊗ ([Y,X0]1SH(X1)).

Each [Y,X0] is equal to 0 since Y ∈ L and X0 ∈ H. It follows that the
right term is equal to 0. We deduce that [Y0, X] ⊗ Y1 = 0. Now taking
the summands {Y1} to be linearly independant, we have [Y0, X] = 0 for
each summand Y0. So L is an H-subcomodule of G. It is well known
that L is a Lie subalgebra of G.

The reader will find another proof of the above lemma in [8, Lem-
ma 7], where G is finite dimensional over a field of characteristic 0.

Definition 3 ([9]). Let G be an H-comodule Lie algebra. A vector space
M is a (G, H)-comodule ifM is a G-module which is also an H-comodule
such that

(X ⋄m)0 ⊗ (X ⋄m)1 = (X0 ⋄m0)⊗ (X1m1) ∀X ∈ G,m ∈M. (7)

The H-comodule Lie algebra G considered as a G-module via the
adjoint action on itself is a (G, H)-comodule. If k is considered as a trivial
G-module and a trivial H-comodule, then k is a (G, H)-comodule which
we will call a trivial (G, H)-comodule. A (G, H)-subcomodule of a (G, H)-
comodule M is a G-submodule of M which is also an H-subcomodule
of M . A (G, H)-comodule homomorphism is a G-linear map which is
also H-colinear. We denote by GMH the category of (G, H)-comodules
with (G, H)-comodule homomorphisms. A (G, H)-comodule is called an
(H,G)-module in [8]. When H is the group algebra of a group G, a
(G, H)-comodule is called a (G,G)-module in [8].

Definition 4. Let G be anH-comodule Lie algebra. A vector spaceA is a
(G, H)-comodule algebra if A is a (G, H)-comodule which is also a G-mo-
dule algebra and an H-comodule algebra, that is, a G-module algebra,
an H-comodule algebra and the relation (7) is satisfied.

The base field k is a (G, H)-comodule algebra with a trivial Lie
bracket and a trivial H-coaction: we will call it a trivial (G, H)-comodule
algebra. A (G, H)-subcomodule algebra of a (G, H)-comodule algebra A
is an H-subcomodule algebra of A which is also a G-submodule of A,
that is, an H-subcomodule, a subalgebra and a G submodule of A.
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Definition 5. Let G be an H-comodule Lie algebra and A a (G, H)-
comodule algebra. A vector space M is an (A,G, H)-comodule if M is
an A#U(G)-module, an (A,H)-Hopf module and a (G, H)-comodule, or
equivalently, M is an A-module, a G-module, an H-comodule and the
relations (2), (5), and (7) are satisfied.

If G is anH-comodule Lie algebra andA is a (G, H)-comodule algebra,
then A is an (A,G, H)-comodule.

If M is an (A,G, H)-comodule, an (A,G, H)-subcomodule of M is
an A-submodule of M which is also a G-submodule of M , and a right
H-subcomodule of M , that is, an A-submodule of M which is also a
(G, H)-subcomodule of M .

An (A,G, H)-comodule homomorphism is an A-linear map which is
also G-linear and H-colinear, that is, an A#U(G)-linear map which is
also an (A,H)-Hopf module map.

We denote by A,GMH the category of (A,G, H)-comodules with
(A,G, H)-comodule homomorphisms. If k is considered as a trivial (G, H)-
comodule algebra, then k,GMH is exactly GMH . If A is a (G, H)-
comodule algebra, the categories GMH , AMH and A#U(G)M contain

A,GMH as a subcategory. This remark will enable us to use some well
known results of modules over smash products and of Hopf modules.

For the remainder of this section and in Section 2,H is a Hopf algebra,
G is an H-comodule Lie algebra, and A is a (G, H)-comodule algebra.

If M is an (A,G, H)-comodule, we set

MG = {m ∈M,X ⋄m = 0 ∀X ∈ G}.

M coH = {m ∈M,m0 ⊗m1 = m⊗ 1H}, and

MGcoH = {m ∈M,m ∈MG , and m ∈M coH}.

In other words, MGcoH =MG ∩M coH .

Lemma 2. If H is commutative, then AcoH is an H-subcomodule Lie
algebra of A: the H-action is trivial.

Proof. It is well known that AcoH is an H-subcomodule algebra of A.
For b, b′ ∈ AcoH , we have

[b, b′]0 ⊗ [b, b′]1 = [b0, b
′
0]⊗ (b1b

′
1) = [b, b′]⊗ 1H ,

so [b, b′] ∈ AcoH , that is, AcoH is a Lie subalgebra of A.
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For M and N two objects of A,GMH , we denote by A,GHom
H(M,N)

the vector space of (A,G, H)-comodule homomorphisms from M to N .
For every object M of A,GMH , we have

A,GHom
H(A,M) =MAcoH ∀M ∈ A,GMH .

Lemma 3. Assume the antipode of H is bijective. LetM be an (A,G, H)-
comodule. Then

(i) MG is an H-subcomodule of M ;

(ii) AG is a (G, H)-subcomodule algebra of A: the G-action is trivial;

(iii) AGcoH is a (G, H)-subcomodule algebra of AG: the G-action and the
H-coaction are trivial;

(iv) MGcoH is an AGcoH-submodule of M : the G-action and the H-coac-
tion are trivial.

Proof. (i) Let m ∈ MG , X ∈ G, ρ(m) = m0 ⊗m1 and ρ(X) = X0 ⊗X1.
Using the relation (7), we have

(X ⋄m0)⊗m1 = (1A ⊗ S−1
H (X1)).[(X0 ⋄m)0 ⊗ (X0 ⋄m)1].

Each X0 ⋄m is equal to 0 since m ∈ MG . It follows that the right term
is equal to 0. We deduce that (X ⋄ m0) ⊗ m1 = 0. Now taking the
summands {m1} to be linearly independant, we have X ⋄ m0 = 0 for
each summand m0, that is, each summand m0 belongs to MG . So MG is
an H-subcomodule of M .

(ii) By (i), AG is an H-subcomodule of A. The relation (4) implies
that AG is a subalgebra of A. Clearly, AG is a G-submodule of A.

(iii) It is clear that AGcoH is an H-subcomodule and a G-submodule
of A. The relation (4) implies that AGcoH is a subalgebra of A.

If H has a bijective antipode, we haveMGcoH = (MG)coH : this makes
sense since by Lemma 3 (i), MG is an H-comodule.

2. The main results

In this section, H is a Hopf algebra with a bijective antipode SH , G is
an H-comodule Lie algebra and A is a (G, H)-comodule algebra.

We denote by GM the category of G-modules with G-linear maps.

GMH is a subcategory of GM.
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Lemma 4. (i) Let N be a G-module. Then N⊗H is a (G, H)-comodu-
le: the H-coaction is idN ⊗∆H , while the G-action is given by

X ⋄ (n⊗ h) = (X0 ⋄ n)⊗ (X1h); X ∈ G, n ∈ N,h ∈ H.

(ii) If furthermore, N is an A#U(G)-module and H is commutative,
then N ⊗H is an (A,G, H)-comodule : the A-action is given by

a(n⊗ h) = (a0n)⊗ (a1h), a ∈ A,n ∈ N,h ∈ H.

Proof. (i) We have

[X,X ′] ⋄ (n⊗ h) = ([X,X ′]0 ⋄ n)⊗ ([X,X ′]1h)

= ([X0, X
′
0] ⋄ n)⊗ ((X1X

′
1)h)

= [(X0 ⋄ (X ′
0 ⋄ n))− (X ′

0 ⋄ (X0 ⋄ n))]⊗ ((X1X
′
1)h)

= [(X0 ⋄ (X ′
0 ⋄ n))⊗ ((X1X

′
1)h)]

− [(X ′
0 ⋄ (X0 ⋄ n))⊗ ((X ′

1X1)h)]

= [(X0 ⋄ (X ′
0 ⋄ n))⊗X1(X

′
1h)]

− [(X ′
0 ⋄ (X0 ⋄ n))⊗X ′

1(X1h)]

= [X ⋄ (X ′ ⋄ (n⊗ h))]− [X ′ ⋄ (X ⋄ (n⊗ h))],

and the relation (3) is satisfied. We have

(X ⋄ (n⊗ h))0 ⊗ (X ⋄ (n⊗ h))1 = [(X0 ⋄ n)⊗ (X1h)]0

⊗ [(X0 ⋄ n)⊗ (X1h)]1

= (X0 ⋄ n)⊗ (X1h)1 ⊗ (X1h)2

= (X0 ⋄ n)⊗ (X11h1)⊗ (X12h2)

= (X00 ⋄ n)⊗ (X01h1)⊗ (X1h2)

= (X0 ⋄ (n⊗ h1))⊗ (X1h2)

= (X0 ⋄ (n⊗ h)0)⊗ (X1(n⊗ h)1),

and the relation (7) is satisfied.
(ii) By (i), the relations (3) and (7) are satisfied. N ⊗ H is an

A-module for the given A-action. The relation (2) is satisfied: the proof
is similar to that given for the relation (7) in part (i). We have

X ⋄ (a′(n⊗ h)) = X ⋄ [(a′0n)⊗ (a′1h)]

= [X0 ⋄ (a′0n)]⊗ [X1(a
′
1h)]

= [(X0 ⋄ a′0)n]⊗ (X1(a
′
1h)) + [(a′0(X0 ⋄ n))⊗ (X1(a

′
1h))]

= [(X0 ⋄ a′0)n]⊗ ((X1a
′
1)h) + [(a′0(X0 ⋄ n))⊗ (a′1(X1h))]

= [(X0 ⋄ a′0)n+ a′0(X0 ⋄ n)]⊗ (X1(a
′
1h))
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= [(X ⋄ a′)0n]⊗ ((X ⋄ a′)1h) + a′[(X0 ⋄ n)⊗ (X1h)]

= [(X ⋄ a′)(n⊗ h) + a′[X ⋄ (n⊗ h)]

and the relation (5) is satisfied.

From Lemma 4 (ii), if H is commutative, then A⊗H is an (A,G, H)-
comodule: the H-coaction is idA ⊗ ∆H , the A-action and the G-action
are given by

a(a′ ⊗ h) = (a0a
′)⊗ (a1h), X ⋄ (a⊗ h) = (X0 ⋄ a)⊗ (X1h),

X ∈ G, a, a′ ∈ A, h ∈ H.

ForM and N in A#U(G)M (resp., GM), we denote by A#U(G)Hom(M,N)
(resp., GHom(M,N)) the vector space of A#U(G)-linear (resp., G-linear)
maps from M to N .

Lemma 5. (i) Let M be a (G, H)-comodule and N a G-module. We
have a k-linear isomorphism

γ : GHom
H(M,N ⊗H) → GHom(M,N)

for all M ∈ GMH and N ∈ GM. This map γ is defined by γ(f) =
(idN⊗ϵH)◦f . The inverse γ′ of γ is given by γ′(g) = (g⊗idH)◦ρM .

(ii) Let H be commutative, M an (A,G, H)-comodule and N an
A#U(G)-module. We have a k-linear isomorphism

γ : A,GHom
H(M,N ⊗H) → A,GHom(M,N)

for all M ∈ A,GMH and N ∈ A,GM. This map γ and its inverse
γ′ are defined as in (i).

Proof. (i) By Lemma 4 (i), N ⊗ H is a (G, H)-comodule. Choose f ∈
GHom

H(M,N ⊗ H) and m ∈ M . Set f(m) =
∑
i∈I

(ni ⊗ hi) for some

ni ∈ N and hi ∈ H, where I a family set of indexes. Then γ(f)(m) =∑
i∈I

(niϵH(hi)). For a ∈ A, m ∈M , we have

f(X ⋄m) = X ⋄ f(m) =
∑
i∈I

(X0 ⋄ ni)⊗ (X1hi).

and
γ(f)(X ⋄m) =

∑
i∈I

((X0 ⋄ ni)ϵH(X1hi))

=
∑
i∈I

((X0 ⋄ ni)ϵH(X1)ϵH(hi))
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=
∑
i∈I

(((X0ϵH(X1)) ⋄ ni)ϵH(hi))

=
∑
i∈I

((X ⋄ ni)ϵH(hi))

= X ⋄ (
∑
i∈I

(niϵH(hi)))

= X ⋄ (γ(f)(m)).

Thus γ(f) is G-linear. Let g ∈ GHom(M,N). We have

γ′(g)(m)0 ⊗ γ′(g)(m)1 = (g(m0)⊗m1)0 ⊗ (g(m0)⊗m1)1

= g(m0)⊗m11 ⊗m12

= g(m00)⊗m01 ⊗m1

= γ′(g)(m0)⊗m1.

So γ′(g) is H-colinear. We also have

γ′(g)(X ⋄m) = g((X ⋄m)0)⊗ (X ⋄m)1

= g(X0 ⋄m0)⊗ (X1m1)

= (X0 ⋄ g(m0))⊗ (X1m1)

= X ⋄ (g(m0)⊗m1)

= X ⋄ (γ′(g)(m)).

So γ′(g) is G-linear. We have

[(γ ◦ γ′)(g)](m) = [γ(γ′(g))](m)

= (idN ⊗ ϵH)[γ′(g)(m)]

= (idN ⊗ ϵH)[(g ⊗ idH)(m0 ⊗m1)]

= (idN ⊗ ϵH)[g(m0)⊗m1]

= g(m0)⊗ ϵH(m1) = g(m).

So γ ◦ γ′ = idGHom(M,N). We remark that

f(m)0 ⊗ f(m)1 =
∑
i∈I

(ni ⊗ hi1 ⊗ hi2).

Applying this formula, we obtain

[(γ′ ◦ γ)(f)](m) = [γ′(γ(f))](m)

= [γ(f)⊗ idH ](m0 ⊗m1)

= [γ(f)(m0)]⊗m1

= (idN ⊗ ϵH)(f(m0))⊗m1
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= (idN ⊗ ϵH)(f(m)0)⊗ f(m)1

=
∑
i∈I

(idN ⊗ ϵH)(ni ⊗ hi1)⊗ hi2

=
∑
i∈I

(niϵH(hi1))⊗ hi2

=
∑
i∈I

(ni ⊗ hi) = f(m).

The fifth equality is true since f is H-colinear. So γ′◦γ = idGHomH(M,N).
The proof of (i) is finished.

(ii) By Lemma 4 (ii), N ⊗ H is an (A,G, H)-comodule. One easily
check that that γ(f) and γ′(g) are A-linear.

The following result is an immediate consequence of Lemma 5.

Corollary 1. (i) If N is an injective G-module, then N ⊗ H is an
injective (G, H)-comodule.

(ii) Let H be commutative. If N is an injective A#U(G)-module, then
N ⊗H is an injective (A,G, H)-comodule.

We arrive to the first main result of the paper.

Theorem 1. Assume that there is an H-colinear map ϕ : H → AG such
that ϕ(1H) = 1A.

(i) If H is commutative or if A is commutative and ϕ is an algebra
map, then every (A,G, H)-comodule which is injective as a G-modu-
le is an injective (G, H)-comodule;

(ii) If H and A are commutative, then every (A,G, H)-comodule which
is injective as an A#U(G)-module is an injective (A,G,H)-comodule.

Proof. (i) Let M be an (A,G, H)-comodule. Let us consider the k-linear
map λ :M ⊗H →M defined by

λ(m⊗ h) = ϕ(hS−1
H (m1))m0 ∀m ∈M, h ∈ H.

Clearly, λ is a k-linear map. We have

(λ ◦ ρM )(m) = λ(ρM (m)) = λ(m0 ⊗m1)

= ϕ(m1S
−1
H (m01))m00

= ϕ(m12S
−1
H (m11))m(0)

= ϕ(ϵH(m1)1H)m(0)
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= ϕ(1H)(ϵH(m(−1))m(0))

= ϕ(1H)m = 1Am = m since ϕ(1H) = 1A.

Therefore λ ◦ ρM = idM . We have

λ(m⊗ h)0 ⊗ λ(m⊗ h)1 = [ϕ(hS−1
H (m1))m0]0 ⊗ [ϕ(hS−1

H (m1))m0]1

= [ϕ(hS−1
H (m1))0m00]⊗ [ϕ(hS−1

H (m1))1m01]

= [ϕ((hS−1
H (m1))0)m00]⊗ [(hS−1

H (m1))1m01]

= [ϕ(h1S−1
H (m1)1)m00]⊗ [h2S−1

H (m1)2m01]

= [ϕ(h1S−1
H (m12))m00]⊗ [h2S−1

H (m11)m01]

= [ϕ(h1S−1
H (m3))m0]⊗ [h2S−1

H (m2)m1]

= [ϕ(h1S−1
H (m2))m0]⊗ [h2ϵH(m1)]

= [ϕ(h1S−1
H (m1))m0]⊗ h2

= λ(m⊗ h1)⊗ h2

= λ((m⊗ h)0)⊗ (m⊗ h)1

and λ is H-colinear. We have

λ(X ⋄ (m⊗ h)) = λ((X0 ⋄m)⊗ (X1h))

= ϕ[(X1h)S−1
H ((X0 ⋄m)1)](X0 ⋄m)0

= ϕ[X1hS−1
H (X01m1)](X00 ⋄m0)

= ϕ[X2hS−1
H (X1m1)](X0 ⋄m0)

= ϕ[X2hS−1
H (m1)S−1

H (X1)](X0 ⋄m0).

On the other hand, we have

X ⋄ [λ(m⊗ h)] = X ⋄ [ϕ(hS−1
H (m1))m0]

= [X ⋄ (ϕ(hS−1
H (m1)))]m0 + [ϕ(hS−1

H (m1))](X ⋄m0)

= ϕ(hS−1
H (m1))(X ⋄m0),

since [X ⋄ ϕ(hS−1
H (m1))]m0 = 0. From the computations above, if H is

commutative, we have

λ(X ⋄ (m⊗ h)) = X ⋄ λ(m⊗ h).

It follows that λ is G-linear. Thus λ is a homomorphism of (G, H)-como-
dules. Again, from the computations above, if ϕ is an algebra map and
A is commutative, we have

λ(X ⋄ (m⊗ h)) = X ⋄ λ(m⊗ h).
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It follows that λ is G-linear. Thus λ is a homomorphism of (G, H)-como-
dules. By Corollary 1 (i), M ⊗ H is an injective (G, H)-comodule. It
is easy to see that the comodule structure map ρM is H-colinear and
G-linear for the given H-coaction and G-action on M ⊗H; that is, ρM is
a homomorphism of (G, H)-comodules. It is well known that ρM :M →
M ⊗H is an injective map. So M is a direct summand of M ⊗H as a
(G, H)-comodule. This implies that M is an injective (G, H)-comodule,
being a direct summand of the injective (G, H)-comodule M ⊗H.

(ii) A similar computation as above shows that

λ(a(m⊗ h)) = ϕ[a2hS−1
H (m1)S−1

H (a1)](a0m0).

We have

aλ(m⊗ h) = a[ϕ(hS−1
H (m1))m0] = ϕ(hS−1

H (m1))(am0),

since A is commutative. From these two relations, and since H is com-
mutative, we get

λ(a(m⊗ h)) = aλ(m⊗ h).

It follows that λ is A-linear. Thus λ is a homomorphism of (A,G, H)-
comodules. By Corollary 1 (ii),M⊗H is an injective (A,G, H)-comodule.
It is easy to see that the comodule structure map ρM is A-linear for the
given A-action on M ⊗H. Thus, ρM is a homomorphism of (A,G, H)-
comodules. We also know that ρM :M →M⊗H is an injective map. So
M is a direct summand of M ⊗H as an (A,G, H)-comodule. It follows
that M is an injective (A,G, H)-comodule, being a direct summand of
the injective (A,G, H)-comodule M ⊗H.

Note that in the first part of Theorem 1, we have assumed that H
is commutative or A is commutative and ϕ is an algebra map to ensure
that the map λ is G-linear. In the second part of Theorem 1, we have
assumed that H and A are commutative to ensure that λ is A-linear. By
Lemma 4 (ii), the commutativity of H is needed for M ⊗ H to be an
(A,G, H)-comodule.

From Theorem 1, we get the following corollary whose part (i) is a
left-right hand version of a result of Doi [3, Theorem 1].

Corollary 2. Let A be an H-comodule algebra, and M an (A,H)-Hopf
module. Assume that there is an H-colinear map ϕ : H → A such that
ϕ(1H) = 1A.

(i) Then every (A,H)-Hopf module is an injective H-comodule.
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(ii) Let H be commutative. Then every (A,H)-Hopf module which is
injective as an A-module is an injective (A,H)-Hopf module.

Proof. Take G = k with a trivial Lie algebra structure.
(i) Any associative algebra A is a G-module. Thus, A = AG . It is

easy to see that any H-comodule algebra A is a (G, H)-comodule algeb-
ra. Any H-comodule is a (G, H)-comodule. Any (A,H)-Hopf module is
an (A,G, H)-comodule. Any homomorphism of H-comodules is a homo-
morphism of (G, H)-comodules. The map λ in the proof of Theorem 1 (i)
is always G-linear (we don’t need H to be commutative or ϕ to be an
algebra map). The result follows from Theorem 1 (i).

(ii) Any homomorphism of (A,H)-Hopf modules is a homomorphism
of (A,G, H)-comodules.

For our second main result we need some preparatory results.

Lemma 6. Set B = AGcoH . Let M be a B-module. Then A ⊗B M is
an (A,G, H)-comodule: The associative A-action is the natural one, the
G-action is given by

X ⋄ (a⊗B m) = (X ⋄ a)⊗B m ∀X ∈ G, a ∈ A,m ∈M,

the coaction is given by

ρA⊗BM (a⊗B m) = a0 ⊗B m⊗ a1, ∀a ∈ A,m ∈M.

Proof. It is well known that the coaction is well defined. Let a, a′ ∈ A
and m ∈M . We have

ρA⊗BM (a′(a⊗B m)) = ρA⊗BM ((a′a)⊗B m)

= (a′a)0 ⊗B m⊗ (a′a)1

= (a′0a0)⊗B m⊗ (a′1a1)

= a′0(a0 ⊗B m)⊗ (a′1a1)

= a′0(a⊗B m)0 ⊗ (a′1(a⊗B m)1);

so the relation (2) is satisfied, i.e. A⊗B M is an (A,H)-Hopf module.
Let X ∈ G, a ∈ A, b ∈ B and m ∈M . We get

X ⋄ ((ab)⊗B m) = (X ⋄ (ab))⊗B m

= [(X ⋄ a)b+ a(X ⋄ b)]⊗B m

= [(X ⋄ a)b+ 0]⊗B m

= (X ⋄ a)b⊗B m

= (X ⋄ a)⊗B (bm)

= X ⋄ (a⊗B (bm)).
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So the G action is well defined.
We have

X ⋄ [a′(a⊗B m)] = X ⋄ (a′a⊗B m)

= (X ⋄ (a′a))⊗B m

= [(X ⋄ a′)a+ a′(X ⋄ a)]⊗B m

= [(X ⋄ a′)a]⊗B m+ [a′(X ⋄ a)]⊗B m

= (X ⋄ a′)(a⊗B m) + a′[(X ⋄ a)⊗B m]

= (X ⋄ a′)(a⊗B m) + a′[X ⋄ (a⊗B m];

so the relation (5) is satisfied, i.e. A⊗B M is an A#U(G)-module.
Now we have

ρA⊗BM (X ⋄ (a⊗B m)) = ρA⊗BM [(X ⋄ a)⊗B m]

= (X ⋄ a)0 ⊗B m⊗ (X ⋄ a)1
= (X0 ⋄ a0)⊗B m⊗ (X1a1)

= (X0 ⋄ (a0 ⊗B m))⊗ (X1a1)

= [X0 ⋄ (a⊗B m)0]⊗ [X1(a⊗B m)1];

so the relation (7) is satisfied.

We deduce from Lemma 6 that A⊗BM
GcoH is an (A,G, H)-comodule

for every (A,G, H)-comodule M .

Lemma 7. Set B = AGcoH . Let M be an (A,G, H)-comodule. Then the
k-linear map α : A⊗B M

GcoH →M ; a⊗B m 7→ am is a homomorphism
of (A,G, H)-comodules.

Proof. Clearly, α is well defined and left A-linear. Let X ∈ G, a ∈ A and
m ∈MGcoH . We have

α(X ⋄ (a⊗B m)) = α((X ⋄ a)⊗B m) = (X ⋄ a)m
= (X ⋄ a)m+ a(X ⋄m) = X ⋄ (am)

= X ⋄ α(a⊗B m).

The third equality is true since X ⋄m = 0; m being an element ofMGcoH .
To get the fourth equality, we use the relation (5). Thus α is a G-module
map. Finally, we have

α(a⊗B m)0 ⊗ α(a⊗B m)1 = (am)0 ⊗ (am)1

= (a0m0)⊗ (a1m1) = (a0m)⊗ a1

= α((a⊗B m)0)⊗ (a⊗B m)1.

So α is an H-colinear map.
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Assume that there is a right H-colinear map ϕ : H → A such that
ϕ(1H) = 1A. For any M ∈ A,GMH , let us consider the k-linear map

pM :M →M ;m 7→ ϕ(S−1
H (m1))m0.

Thus for any M ∈ A,GMH , we have pM (m) = m for every m ∈M coH .

Lemma 8. Let M ∈ A,GMH . Assume that there is a right H-colinear
map ϕ : H → A such that ϕ(1H) = 1A. We have

(i) pM (M) =M coH ;

(ii) pM ◦ pM = pM , and pM is a projection map.

Proof. (i) Let m′ ∈ pM (M). Then there is m ∈ M such that m′ =
ϕ(S−1

H (m1))m0. We have

[ϕ(S−1
H (m1))m0]0 ⊗ [ϕ(S−1

H (m1))m0]1

= [ϕ(S−1
H (m1))0m00]⊗ [ϕ(S−1

H (m1))1m01]

= [ϕ(S−1
H (m1))0m00]⊗ (S−1

H (m1)1m01)

= ϕ(S−1
H (m1)1)m00 ⊗ S−1

H (m1)2m01

= ϕ(S−1
H (m12))m00 ⊗ S−1

H (m11)m01

= ϕ(S−1
H (m3))m0 ⊗ S−1

H (m2)m1

= ϕ(S−1
H (m1))m0 ⊗ 1H .

So m′ ∈ M coH , and pM (M) ⊆ M coH . It is clear that M coH ⊆ pM (M)
since pM (m) = m for every m ∈M coH .

(ii) Let m ∈M . We have

pM (pM (m)) = pM (ϕ(S−1
H (m1))m0)

= ϕ(S−1
H ((ϕ(S−1

H (m1))m0)1))(ϕ(S−1
H (m1))m0)0

= ϕ(S−1
H (ϕ(S−1

H (m1))1m01))[ϕ(S−1
H (m1))0m00]

= ϕ(S−1
H (S−1

H (m1)2m01))[ϕ(S−1
H (m1)1)m00]

= ϕ(S−1
H (S−1

H (m11)m01))[ϕ(S−1
H (m12))m00]

= ϕ(S−1
H (S−1

H (m2)m1))[ϕ(S−1
H (m3))m0]

= ϕ(S−1
H (ϵH(m1)1H))[ϕ(S−1

H (m2))m0]

= ϕ(1H)[ϕ(S−1
H (m1))m0]

= 1A[ϕ(S−1
H (m1))m0]

= ϕ(S−1
H (m1))m0 = pM (m).
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The result also follows from (i) since pM (m) ∈ M coH for every m ∈ M
and pM (m′) = m′ for every m′ ∈M coH .

Let M ∈ A,GMH . For every X ∈ G and m ∈M , put

X ⋄′ m = pM (X ⋄m).

Let us record in the following lemma some properties of the projector
pM and the Lie action ⋄′.
Lemma 9. Let A be a commutative (G, H)-comodule algebra. Let M ∈
A,GMH .Assume that there is a right H-colinear algebra map ϕ :H→AG.
Let X,Y ∈ G, a ∈ A and m ∈M . Then

(i) pM (am) = pA(a)pM (m);

(ii) X ⋄′ pM (m) = pM (X ⋄m) = X ⋄′ m;

(iii) [X,Y ] ⋄′ m = X ⋄′ (Y ⋄′ m)− Y ⋄′ (X ⋄′ m);

(iv) X ⋄ pM (m) = ϕ(X1)(X0 ⋄′ pM (m));

(v) ϕ(m1)pM (m0) = m.

Proof. (i) Let a ∈ A and m ∈M . Then we have

pM (am) = ϕ(S−1
H ((am)1))(am)0

= ϕ(S−1
H (a1m1))(a0m0)

= ϕ(S−1
H (m1)S−1

H (a1))(a0m0)

= ϕ(S−1
H (m1))ϕ(S−1

H (a1))(a0m0)

= [ϕ(S−1
H (a1))a0][ϕ(S−1

H (m1))m0]

= pA(a)pM (m).

The fifth equality is true since A is commutative.
(ii) Let X ∈ G and m ∈M . Then we have

X ⋄′ pM (m) = pM (X ⋄ pM (m))

= pM [X ⋄ (ϕ(S−1
H (m1))m0)]

= pM [(X ⋄ ϕ(S−1
H (m1)))m0 + ϕ(S−1

H (m1))(X ⋄m0)]

= pM [0 + ϕ(S−1
H (m1))(X ⋄m0)]

= pM [ϕ(S−1
H (m1))(X ⋄m0)]

= ϕ[S−1
H [ϕ(S−1

H (m1))(X ⋄m0)1]][ϕ(S−1
H (m1))(X ⋄m0)]0

= ϕ[S−1
H [ϕ(S−1

H (m1))1X1m01]][ϕ(S−1
H (m1))0(X0 ⋄m00)]

= ϕ[S−1
H [S−1

H (m1)2X1m01]][ϕ(S−1
H (m1)1)(X0 ⋄m00)]
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= ϕ[S−1
H [S−1

H (m11)X1m01]][ϕ(S−1
H (m12))(X0 ⋄m00)]

= ϕ[S−1
H [S−1

H (m2)X1m1]][ϕ(S−1
H (m3))(X0 ⋄m0)]

= ϕ[S−1
H (X1m1)S−1

H (S−1
H (m2))]ϕ[S−1

H (m3)](X0 ⋄m0)

= ϕ[S−1
H (X1m1)]ϕ[S−1

H (S−1
H (m2))]ϕ[S−1

H (m3)](X0 ⋄m0)

= ϕ[S−1
H (X1m1)]ϕ[S−1

H (S−1
H (m2))S−1

H (m3)](X0 ⋄m0)]

= ϕ[S−1
H (X1m1)]ϕ[S−1

H (m3S−1
H (m2))](X0 ⋄m0)]

= ϕ[S−1
H (X1m1)]ϕ[S−1

H (ϵH(m2)1H)](X0 ⋄m0)

= ϕ[S−1
H (X1m1ϵH(m2))]ϕ[S−1

H (1H)](X0 ⋄m0)

= ϕ[S−1
H (X1m1ϵH(m2))]ϕ(1H)(X0 ⋄m0)

= ϕ[S−1
H (X1m1)]1A(X0 ⋄m0)

= ϕ[S−1
H (X1m1)](X0 ⋄m0)

= ϕ[S−1
H ((X ⋄m)1)](X ⋄m)0

= pM (X ⋄m) = X ⋄′ m.

To get the third equality, we use the relation (5). The fourth equality
is true since Imϕ ⊆ AG . The sixth equality follows from the definition of
pM . To get the eighth equality, we use the colinearity of ϕ. The twelfth
and thirteenth equalities follow from the algebra map structure of ϕ. The
fourteenth equality is true since the antipode is an anti-algebra map.

(iii) Let X,Y ∈ G and m ∈M . Then we have

[X,Y ] ⋄′ m = [X,Y ] ⋄′ pM (m)

= pM ([X,Y ] ⋄ pM (m))

= pM [X ⋄ (Y ⋄ pM (m))− Y ⋄ (X ⋄ pM (m))]

= pM [X ⋄ (Y ⋄ pM (m))]− pM [Y ⋄ (X ⋄ pM (m))]

= X ⋄′ (Y ⋄ pM (m))− Y ⋄′ (X ⋄ pM (m))

= X ⋄′ pM (Y ⋄ pM (m))− Y ⋄′ pM (X ⋄ pM (m))

= X ⋄′ (Y ⋄′ pM (m))− Y ⋄′ (X ⋄′ pM (m))

= X ⋄′ (Y ⋄′ m)− Y ⋄′ (X ⋄′ m).

The first equality follows from (ii). We have used the definition of ⋄′ in
the second, the fifth and the seventh equalities. To get the sixth and
eighth equalities, we have used (ii). The third equality is true since M
is a G-module under ⋄.
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(iv) Let X ∈ G and m ∈M . Then we have

ϕ(X1)(X0 ⋄′ pM (m)) = ϕ(X1)(X0 ⋄′ m)

= ϕ(X1)pM (X0 ⋄m)

= ϕ(X1)ϕ(S−1
H ((X0 ⋄m)1))(X0 ⋄m)0

= ϕ(X1)ϕ(S−1
H (X01m1))(X00 ⋄m0)

= ϕ(X1S−1
H (X01m1))(X00 ⋄m0)

= ϕ(X2S−1
H (X1m1))(X0 ⋄m0)

= ϕ(X2S−1
H (m1)S−1

H (X1))(X0 ⋄m0)

= ϕ(X2)ϕ(S−1
H (m1))ϕ(S−1

H (X1))(X0 ⋄m0)

= ϕ(X2)ϕ(S−1
H (X1))ϕ(S−1

H (m1))(X0 ⋄m0)

= ϕ(X2S−1
H (X1))ϕ(S−1

H (m1))(X0 ⋄m0)

= ϕ(ϵH(X1)1H)ϕ(S−1
H (m1))(X0 ⋄m0)

= ϕ(1H)ϕ(S−1
H (m1))(X ⋄m0)

= 1Aϕ(S−1
H (m1))(X ⋄m0)

= ϕ(S−1
H (m1))(X ⋄m0)

= X ⋄ (ϕ(S−1
H (m1))m0)

= X ⋄ pM (m).

The first equality follows from (ii). The second equality uses the defini-
tion of ⋄′. To get the third equality, we have used the definition of pM .
The eighth and tenth equalities follow from the algebra map structure
of ϕ. The ninth equality uses the commutativity of A. The fifteenth
equality uses the relation (5) and the fact that each X ⋄ (ϕ(S−1

H (m1)) is
equal to 0.

(v) Let m ∈M . Then we have

ϕ(m1)pM (m0) = ϕ(m1)ϕ(S−1
H (m01))m00

= ϕ(m1S−1
H (m01))m00

= ϕ(m2S−1
H (m1))m0

= ϕ(ϵH(m1)1H)m0

= ϕ(ϵH(m1)1H)m0

= ϕ(1H)m = 1Am = m.

The second equality is true since ϕ is an algebra homomorphism.



T. Guédénon 47

IfA is commutative, it follows from Lemma 9 (iii) that every (A,G, H)-
comodule M is a G-module under the new G-action defined by

X ⋄′ m = pM (X ⋄m); a ∈ A,m ∈M

withM coH as a G-submodule. Since the (G, H)-comodule algebra A itself
is an (A,G, H)-comodule, A is a G-module under the G-action ⋄′ defined
by

X ⋄′ c = pA(X ⋄ c), ∀X ∈ G, c ∈ A,

and AcoH is a G-submodule of A under ⋄′. Note that M coH and AcoH

are not G-modules under ⋄.

Lemma 10. Let A be a commutative (G, H)-comodule algebra. Assume
that there is a right H-colinear algebra map ϕ : H → AG. Then

(i) AcoH considered as a G-module via ⋄′ is a left U(G)-module algebra,
and we can form the algebra smash product AcoH#U(G);

(ii) for any (A,G, H)-comodule M , M coH is a left AcoH#U(G)-module:
the G-module action is given by ⋄′.

Proof. (i) We know that AcoH is a subalgebra of A. We have mentioned
above that AcoH is a G-module via ⋄′. Let a ∈ A , and b, b′ ∈ AcoH . We
have

X ⋄′ (bb′) = pA(X ⋄ (bb′))
= pA((X ⋄ b)b′ + b(X ⋄ b′))
= pA((X ⋄ b)b′) + pA(b(X ⋄ b′))
= pA(X ⋄ b)pA(b′) + pA(b)pA(X ⋄ b′))
= pA(X ⋄ b)b′ + bpA(X ⋄ b′))
= (X ⋄′ b)b′ + b(X ⋄′ b′).

The fourth equality uses Lemma 9 (i). The fifth equality is true since
the elements of AcoH are invariant under pA. It is well known that
X ⋄′ 1A = 0A for all a ∈ A.

(ii) Set B = AcoH . It is well known that M coH is a B-module and
we have mentioned that it is a G-module with the given G- action. Let
X ∈ G, b ∈ B and m ∈M coH . We have

X ⋄′ (bm) = pM (X ⋄ (bm))

= pM ((X ⋄ b)m+ b(X ⋄m))

= pM ((X ⋄ b)m) + pM (b(X ⋄m))

= pA(X ⋄ b)pM (m) + pA(b)pM (X ⋄m)
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= pA(X ⋄ b)m+ bpM (X ⋄m)

= (X ⋄′ b)m+ b(X ⋄′ m).

So the relation (5) is satisfied. The second equality uses the relation (5)
forM under the G-action ⋄. The fourth equality follows from Lemma 9 (i).
The fifth equality is true since the elements ofM coH and AcoH are respec-
tively invariant under pM and pA. The last equality uses the definition
of ⋄′.

LetA be a commutative (G, H)-comodule algebra andM an (A,G, H)-
comodule. Then M coH is a trivial G-module under ⋄′ if and only if
pM (X ⋄m) = 0 for all X ∈ G and m ∈M coH .

Lemma 11. Let A be a commutative (G, H)-comodule algebra. Assume
that there is a right H-colinear algebra map ϕ : H → AG.

(i) LetM be an object of A,GMH . If the G-action ⋄′ onM coH is trivial,
then MGcoH =M coH .

(ii) If the G-action ⋄′ on AcoH is trivial, then AGcoH = AcoH .

Proof. (i) We know that MGcoH ⊆ M coH . Let X ∈ G, and m ∈ M coH .
We have

X ⋄m = X ⋄ pM (m) = ϕ(X1)(X0 ⋄′ pM (m)) = 0.

The second equality follows from Lemma 9 (iv). So m is an element of
MGcoH , that is, M coH ⊆MGcoH .

We are now in the position to provide the Fundamental Theorem for
(A,G, H)-comodules.

Theorem 2. Let A be a commutative (G, H)-comodule algebra. Set B =
AGcoH . Let M be an (A,G, H)-comodule. Assume that there is a right
H-colinear algebra map ϕ : H → AG. SupposeM coH and AcoH are trivial
G-modules under ⋄′. Then the k-linear map α : A ⊗B MGcoH → M ;
a⊗B m 7→ am is an isomorphism of (A,G, H)-comodules.

Proof. By Lemma 7, α is a homomorphism of (A,G, H)-comodules. Let
X ∈ G and m ∈M . By Lemma 9 (iv), we have X ⋄pM (m) = ϕ(X1)(X0⋄′
pM (m)) = 0, since the G-action ⋄′ onM coH is trivial and pM (m) ∈M coH .
It follows that pM (m) ∈MG . Thus, pM (m) ∈MGcoH . So we get a well-
defined k-linear map

β :M → A⊗B M
GcoH ;m 7→ ϕ(m1)⊗B pM (m0).
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Let m ∈M . We have

(α ◦ β)(m) = α(ϕ(m1)⊗B pM (m0))

= ϕ(m1)pM (m0)

= ϕ(m1)ϕ(S−1
H (m01))m00

= ϕ(m1S−1
H (m01))m00

= ϕ(m2S−1
H (m1))m0

= ϕ(1HϵH(m1))m0

= ϕ(1H)ϵH(m1)m0 = 1Am = m.

So α ◦ β = idM . Let a ∈ A and m ∈MGcoH . We have

(β ◦ α)(a⊗B m) = β(am)

= ϕ((am)1)⊗B pM ((am)0)

= ϕ((am)1)⊗B ϕ(S−1
H ((am)01))(am)00

= ϕ((am)2)⊗B ϕ(S−1
H ((am)1))(am)0

= ϕ(a2m2)⊗B ϕ(S−1
H (a1m1))(a0m0)

= ϕ(a21H)⊗B ϕ(S−1
H (a11H))(a0m)

= ϕ(a2)⊗B ϕ(S−1
H (a1))(a0m)

= ϕ(a1)⊗B ϕ(S−1
H (a01))(a00m)

= ϕ(a1)[ϕ(S−1
H (a01))a00]⊗B m

= ϕ(a2)[ϕ(S−1
H (a1))a0]⊗B m

= ϕ(a2S−1
H (a1))a0 ⊗B m

= ϕ(1HϵH(a1))a0 ⊗B m

= ϕ(1H)ϵH(a1)a0 ⊗B m

= 1Aa⊗B m = a⊗B m.

So β ◦ α = idA⊗BMGcoH . Thus, α is a k-isomorphism with inverse β.

Theorem 2 shows that there is a one-to-one correspondence (up to
equivalence) between B-modules and (A,G, H)-comodules. From Theo-
rem 2, we get the following left-right hand version of a result of Doi
[3, Theorem 3].

Corollary 3. Let A be an H-comodule algebra, and M an (A,H)-Hopf
module. Assume that there is a right H-colinear algebra map ϕ : H → A.
Set B = AcoH . Then the k-linear map α :A⊗BM

coH→M ; a⊗Bm 7→ am
is an isomorphism of (A,H)-Hopf modules.
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Proof. Take G = k with a trivial Lie algebra structure. Any vector
space is considered as a G-module via the trivial action. It follows that
AG = A. Any H-comodule (algebra) A is a (G, H)-comodule (algebra).
Any (A,H)-Hopf module is an (A,G, H)-comodule. Any homomorphism
of (A,H)-Hopf modules is a homomorphism of (A,G, H)-comodules. Sin-
ce the G-action on M is trivial, the G-action ⋄′ on M is trivial. Thus
Lemma 9 (ii), (iii), (iv) and Lemma 11 are true ifA is commutative or not.
We don’t use Lemma 10 and Lemma 9 (i) in the proof of the theorem.

By Lemma 1, Z(G) is an H-comodule Lie algebra. It is easy to see
that A is a (Z(G), H)-comodule algebra: the Z(G)-action is induced by
that of G. By Lemma 3, AZ(G) is a (Z(G), H)-comodule algebra.

Corollary 4. Let A be a commutative (G, H)-comodule algebra. LetM be
an (AZ(G), Z(G), H)-comodule. Set B = AZ(G)coH . Assume that there is a
right H-colinear algebra map ϕ : H → AZ(G). Suppose M coH is a trivial
Z(G)-module under ⋄′.Then the k-linear map α :AZ(G)⊗BM

Z(G)coH→M ;
a⊗B m 7→ am is an isomorphism of (AZ(G), Z(G), H)-comodules.

Proof. We want to show that (AZ(G))Z(G)coH = AZ(G)coH . Let a ∈
(AZ(G))Z(G)coH . Then a ∈ AZ(G), is Z(G)-invariant and H-coinvariant.
It follows that a ∈ A is Z(G)-invariant, and H-coinvariant. Then a ∈
AZ(G)coH . Let a ∈ AZ(G)coH . Then a ∈ AZ(G) and a ∈ AcoH . So a ∈ A
and a is Z(G)-invariant. So a ∈ AZ(G) and a is Z(G)-invariant. We dedu-
ce that a is Z(G)-invariant in AZ(G). Thus a ∈ (AZ(G))Z(G)coH . So we get
(AZ(G))Z(G)coH=AZ(G)coH . In the same way, we have(AZ(G))Z(G)=AZ(G).
We also have X ⋄ c = 0 for all X ∈ Z(G) and c ∈ (AZ(G))coH . So
X ⋄′ c = 0 for all X ∈ Z(G) and c ∈ (AZ(G))coH . The result follows from
Theorem 2.

Let A be a (G, H)-comodule algebra. Let I be a vector subspace of A.
We say that I is

(i) an H-ideal of A if I is an ideal of A and an H-subcomodule of A;

(ii) a G-ideal of A if I is an ideal of A and a G-submodule of A;

(iii) a (G, H)-ideal of A if I is an H-ideal of A and a G-ideal of A, that
is, an ideal of A, an H-subcomodule of A and a G-submodule of A.

We say that a (G, H)-comodule algebra A is (G, H)-simple if the only
(G, H)-ideals of A are 0 and A.
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Lemma 12. Let A be a commutative (G, H)-simple (G, H)-comodule al-
gebra. Then AGcoH is a field.

Proof. Let a be a nonzero element of AGcoH . Then Aa is an ideal of A.
For all X ∈ G and u ∈ A, we have

X ⋄ (ua) = (X ⋄ u)a+ u(X ⋄ a) = (X ⋄ u)a ∈ Aa;

this means that Aa is a G-submodule of A. Finally, we have

ρA(ua) = (ua)0 ⊗ (ua)1 = u0a0 ⊗ u1a1 = u0a⊗ u1 ∈ (Aa)⊗H;

this means that Aa is an H-subcomodule of A, that is, Aa is an H-ideal
of A. Therefore, Aa is a (G, H)-ideal of A containing the nonzero ele-
ment a. So Aa is nonzero. Thus Aa = A since A is (G, H)-simple. So
1A ∈ Aa and there is an element a′ ∈ A such that a′a = 1A, that is, a is
invertible.

From Theorem 2, we get the following corollary.

Corollary 5. Let A be a commutative (G, H)-simple (G, H)-comodule
algebra and M an (A,G, H)-comodule. Set B = AGcoH . Assume that
there is a right H-colinear algebra map ϕ : H → AG. Suppose M coH and
AcoH are trivial G-modules under ⋄′. Then M is free as an A-module
with rank the dimension of the vector space MGcoH over AGcoH .

Let A be a (G, H)-comodule algebra. Set B = AGcoH . For any
morphism f :M → N in A,GMH , it is not hard to show that f(MGcoH) ⊆
NGcoH . This gives rise to a functor

G = (−)GcoH : A,GMH → BM;M 7→MGcoH .

Using Lemma 6, we also have a functor

F = A⊗B − : BM → A,GMH ;M 7→ A⊗B M.

Proposition 1. Set B = AGcoH . Let M ∈ A,GMH and N ∈ BM. There
is a functorial isomorphism of (A,G, H)-comodules

ψ : A,GHom
H(A⊗BN,M) → BHom(N,MGcoH); f 7→ [n 7→ f(1A⊗B n)],

with inverse map ψ′ given by g 7→ [a⊗B n 7→ ag(n)].
Thus, the functors F and G form an adjoint pair with unit and counit

ηN : N → (A⊗B N)GcoH , n 7→ 1A ⊗B n

and
ϵM : A⊗B M

GcoH →M ; a⊗B m 7→ am.
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Proof. We show that f(1A ⊗B n) ∈M coH : we have

f(1A⊗Bn)0⊗f(1A⊗Bn)1 = f((1A⊗Bn)0)⊗(1A⊗Bn)1 = f(1A⊗Bn)⊗1H ,

since f is H-colinear. Next, we show that f(1A ⊗B n) is G-invariant:

X ⋄ f(1A ⊗B n) = f(X ⋄ (1A ⊗B n)) = f((X ⋄ 1A)⊗B n) = 0,

since f is G-linear and X ⋄1A = 0A. It follows that f(1A⊗B n) ∈MGcoH .
Now let us show that ψ(f) is B-linear: we have

ψ(f)(bn) = f(1A ⊗B (bn)) = f((1Ab)⊗B n)

= f((b1A)⊗B n) = f(b(1A ⊗B n))

= bf(1A ⊗B n) = b(ψ(f)(n)),

since f is A-linear, à fortiori B-linear. Thus, the map ψ is well defined.
Clearly, ψ′(g) is A-linear. We show that ψ′(g) is G-linear:

ψ′(g)(X ⋄ (a⊗B n)) = ψ′(g)((X ⋄ a)⊗B n) = (X ⋄ a)g(n)
= X ⋄ (ag(n)) = X ⋄ (ψ′(g)(a⊗B n)),

since g(n) ∈MGcoH . Next, we show that ψ′(g) is H-colinear:

ψ′(g)(a⊗B n)0 ⊗ ψ′(g)(a⊗B n)1 = (ag(n))0 ⊗ (ag(n))1

= a0g(n)0 ⊗ a1g(n)1

= a0g(n)⊗ a11H

= ψ′(g)(a0 ⊗B n)⊗ a1

= ψ′(g)((a⊗B n)0)⊗ (a⊗B n)1.

Thus the map ψ′ is well defined. It is easy to check that ψ ◦ψ′ and ψ′ ◦ψ
are respectively the identity of BHom(N,MGcoH) and A,GHom

H(A ⊗B

N,M). This means that ψ is bijective with inverse ψ′.

Corollary 6. Let A be a commutative (G, H)-comodule algebra. Let M
be an (A,G, H)-comodule. Assume that there is a right H-colinear algebra
map ϕ : H → AG. Suppose M coH and AcoH are trivial G-modules un-
der ⋄′. Then the functor G = (−)coH : A,GMH → BM is dual Maschke,
that is, every object of A,GMH is G-relative projective.

Proof. The result follows from Theorem 2, Proposition 1 and [2, Theo-
rem 3.4].
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Let us give four examples of (G, H)-comodule algebras.

Example 1. Let G be an abelian group. A G-graded vector space M is
a vector space M with a fixed decomposition M =

⊕
g∈G

M (g), where each

M (g) is a vector subspace of M . A G-graded algebra A is an algebra A
which is a G-graded vector space A =

⊕
g∈G

A(g) such that a(g)a(h) ∈ A(gh)

for all a(g) ∈ A(g) and a(h) ∈ A(h). It is well known that a G-graded
vector space is a kG-comodule, and a G-graded algebra is a kG-comodule
algebra.

AG-graded Lie algebra G is a Lie algebra G which is aG-graded vector
space G =

⊕
g∈G

G(g) such that [X(g), X(h)] ∈ G(gh) for all X(g) ∈ G(g) and

X(h) ∈ G(h).

Let G be a G-graded Lie algebra. By [8, Example 6] G is a kG-como-
dule Lie algebra, where ρ(X(g)) = X(g)⊗g for all g ∈ G and X(g) ∈ G(g).

A G-graded G-module M is a G-graded vector space M =
⊕
g∈G

M (g)

which is a G-module such that X(g) ⋄m(h) ∈ M (gh) for all X(g) ∈ G(g)

and m(h) ∈M (h).

AG-graded G-module algebraA is aG-graded G-moduleA =
⊕
g∈G

A(g)

which is a G-graded algebra such that

X(g) ⋄ (a(h)a(h′)) = (X(g) ⋄ (a(h)))a(h′) + a(h)(X(g) ⋄ (a(h′)))

for all X(g) ∈ G(g), a(h) ∈ A(h), and a(h
′) ∈ A(h′).

Let G be an abelian group and A a G-graded G-module algebra. Then
A is a (G, kG)-comodule algebra: ρ(a(g)) = a(g) ⊗ g for all g ∈ G and
a(g) ∈ A(g).

Example 2. We refer to [4, 5, 12, 13, 16, 17] for further information on
rational actions of an algebraic group.

Let G be an affine algebraic group. By [17], a k-vector space M
is a rational G-module if it is a G-module, and for every m ∈ M , the
translates of m span a finite dimensional subspace N of M and the in-
duced map G→ Autk(N) is a morphism of algebraic groups. A rational
G-module algebra is a commutative algebra A which is a rational
G-module such that

g.(aa′) = (g.a)(g.a′) ∀a, a′ ∈ A, g ∈ G.
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For a rational G-module algebra A, a rational (A,G)-module M is an
A-module M which is a rational G-module such that

g(am) = (g.a)(gm) ∀g ∈ G, a ∈ A,m ∈M.

Let k[G] be the affine coordinate ring of G (it is a commutative Hopf
algebra). It is well known that rational G-modules are k[G]-comodules
with (right) coaction ρ :M →M ⊗ k[G] characterized by the condition

ρ(m) = m0 ⊗m1 ∈M ⊗ k[G] ⇔ g.m = m0m1(g) ∀g ∈ G.

A rational G-module algebra is a commutative k[G]-comodule algebra.
According to these definitions, we will say that a rational G-module Lie
algebra is a Lie algebra G which is a rational G-module such that

g.[X,X ′] = [g.X, g.X ′] ∀X,X ′ ∈ G, g ∈ G.

Let G be a rational G-module Lie algebra. Then G is a right k[G]-como-
dule. We have

ρ([X,X ′]) = [X,X ′]0 ⊗ [X,X ′]1

if and only if
g.[X,X ′] = [X,X ′]0[X,X

′]1(g)

for all g ∈ G. Since g.[X,X ′] = [g.X, g.X ′], we have

[X,X ′]0[X,X
′]1(g) = [X0, X

′
0](X1X

′
1)(g) ∀g ∈ G.

It follows that

[X,X ′]0 ⊗ [X,X ′]1 = [X0, X
′
0]⊗ (X1X

′
1),

that is, G is a right k[G]-comodule Lie algebra.
A k-vector space M is a rational (G, G)-module if it is a G-module, a

rational G-module, and

g(X ⋄m) = (g.X) ⋄ (gm), X ∈ G, g ∈ G,m ∈M.

A vector space A is a rational (G, G)-module algebra if A is a ra-
tional (G, G)-module which is also a G-module algebra and a rational
G-module algebra. We can show that a rational (G, G)-module algebra
is a (G, k[G])-comodule algebra.

Let A be a rational (G, G)-module algebra. A vector space M is a
rational (A,G, G)-module if M is an A#U(G)-module, a rational (A,G)-
module and a rational (G, G)-module. Clearly, A is a rational (A,G, G)-
module. The rational (A,G, G)-modules are exactly the (A,G, k[G])-
comodules.
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Example 3. Let G a Lie algebra, A a commutative G-module algebra
and T a multiplicative subset of A. Let us consider the localization
T−1A = AT−1 of A with product

(at−1)(a′t′−1) = (aa′)(tt′)−1 ∀a, a′ ∈ A, t, t′ ∈ T.

Define a G-action on T−1A by

X ⋄ (at−1) = [(X ⋄ a)t− a(X ⋄ t)]t−2 ∀a ∈ A, t ∈ T.

Then T−1A is an algebra and a G-module. We have

X ⋄ [(at−1)(a′t′−1)] = X ⋄ [(aa′)(tt′)−1]

= [(X ⋄ (aa′))(tt′)− (aa′)(X ⋄ (tt′))](tt′)−2

= [((X ⋄ a)a′ + a(X ⋄ a′))(tt′)
− (aa′)((X ⋄ t)t′ + t(X ⋄ t′))](tt′)−2

= [((X ⋄ a)a′ + a(X ⋄ a′))](tt′)−1

− (aa′)[((X ⋄ t)t′ − t(X ⋄ t′))](tt′)−2

= (X ⋄ a)(a′t−1t′−1) + (X ⋄ a′)(at−1t′−1)

− (X ⋄ t)(aa′t−2t′−1)− (X ⋄ t′)](aa′t−1t′−2).

We also have

(X ⋄ (at−1))(a′t′−1) + (at−1)(X ⋄ (a′t′−1))

= [(X ⋄ a)t− a(X ⋄ t)]t−2(a′t′−1)

+ (at−1)[(X ⋄ a′)t′ − a′(X ⋄ t′)]t′−2

= [(X ⋄ a)t]t−2(a′t′−1) + (at−1)[(X ⋄ a′)t′t′−2

− a(X ⋄ t)]t−2(a′t′−1)− (at−1)a′(X ⋄ t′)]t′−2

= (X ⋄ a)(a′t−1t′−1) + (X ⋄ a′)(at−1t′−1)

− (X ⋄ t)(aa′t−2t′−1)− (X ⋄ t′)(aa′t−1t′−2).

It follows from the above computations that

X ⋄ [(at−1)(a′t′−1)] = (X ⋄ (at−1))(a′t′−1) + (at−1)(X ⋄ (a′t′−1)) and

the relation (4) is satisfied. Thus T−1A is a commutative G-module
algebra.

Let H be a Hopf algebra with a bijective antipode, G an H-comodule
Lie algebra, and A a commutative (G, H)-comodule algebra which is an
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integral domain. Let T be the set of the nonzero H-coinvariant elements
of A. Then T is a multiplicative subset of A, and T−1A becomes an
H-comodule with the structure map given by

(at−1)0 ⊗ (at−1)1 = a0t
−1 ⊗ a1, ∀a ∈ A, t ∈ T.

Thus (setting 1A = 1), we get

(a1−1)0 ⊗ (a1−1)1 = a01
−1 ⊗ a1,

and the comodule structure map ρA is compatible with the localization
map A→ AT−1. We have

[(at−1)(a′t′−1)]0 ⊗ [(at−1)(a′t′−1)]1

= [(aa′)(tt′)−1]0 ⊗ [(aa′)(tt′)−1]1

= [(aa′)0(tt
′)−1]⊗ (aa′)1

= [(a0a
′
0)(t

−1t′−1)]⊗ (a1a
′
1)

= [(a0t
−1)(a′0t

′−1)]⊗ (a1a
′
1)

= [(at−1)0(a
′t′−1)0]⊗ [(at−1)1(a

′t′−1)1],

and the relation (1) is satisfied, that is, T−1A is an H-comodule algebra.
We have

(X⋄(at−1))0 ⊗ (X ⋄ (at−1))1

= ([(X ⋄ a)t− a(X ⋄ t)]t−2)0 ⊗ ([(X ⋄ a)t− a(X ⋄ t)]t−2)1

= ([(X ⋄ a)t− a(X ⋄ t)]0t−2)⊗ ([(X ⋄ a)t− a(X ⋄ t)]1)
= ([(X ⋄ a)t]0t−2 ⊗ [(X ⋄ a)t]1)− (([a(X ⋄ t)]0)t−2 ⊗ [a(X ⋄ t)]1)
= ([(X ⋄ a)0t0]t−2 ⊗ [(X ⋄ a)1t1])− ([a0(X ⋄ t)0]t−2 ⊗ [a1(X ⋄ t)1])
= ([(X ⋄ a)0t]t−2 ⊗ [(X ⋄ a)1])− ([a0(X ⋄ t)0]t−2 ⊗ [a1(X ⋄ t)1])
= [[(X0 ⋄ a0)t]t−2 ⊗ (a1X1)]− [[a0(X0 ⋄ t0)]t−2 ⊗ [a1(X1t1)]]

= [[(X0 ⋄ a0)t]t−2 ⊗ (a1X1)]− [[a0(X0 ⋄ t)]t−2]⊗ (a1X1)

= ([(X0 ⋄ a0)tt−2]− [a0(X0 ⋄ t)t−2])⊗ (a1X1)

= ([(X0 ⋄ a0)t−1]− [a0(X0 ⋄ t)t−2])⊗ (a1X1)

= [(X0 ⋄ (at−1)0]⊗ [X1(at
−1)1],

and the relation (7) is satisfied. We deduce that if H is a Hopf algebra
with a bijective antipode, G anH-comodule Lie algebra, A a commutative
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(G, H)-comodule algebra which is an integral domain and if T is the set
of the nonzero H-coinvariant elements of A, then T−1A is a commutative
(G, H)-comodule algebra.

We refer to [6] and [7] for interesting results on Poisson algebras and
Poisson modules.

Example 4. Let A be a Poisson algebra with Poisson bracket {, }.
We say that A is an H-comodule Poisson algebra (see [10]) if A is an
H-comodule algebra such that the H-coaction is compatible with the
Poisson bracket; that is, A is an H-comodule algebra satisfying the rela-
tion

{a, a′}0 ⊗ {a, a′}1 = {a0, a′0} ⊗ a1a
′
1 ∀a, a′ ∈ A.

Clearly, an H-comodule Poisson algebra is a (G, H)-comodule algebra,
where G = A as a Lie algebra.
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