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Abstract. Let C+(a, b) be the submonoid of the bicyclic
monoid which is studied in [8]. We describe monoid endomorphisms
of the semigroup C+(a, b) which are generated by the family of
all congruences of the bicyclic monoid and all injective monoid
endomorphisms of C+(a, b).

Introduction

We shall follow the terminology of [1,2,7]. By ω we denote the set of all
non-negative integers, by N the set of all positive integers.

A semigroup S is called inverse if for any element x ∈ S there exists a
unique x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element
x−1 is called the inverse of x ∈ S. If S is an inverse semigroup, then the
function inv : S → S which assigns to every element x of S its inverse
element x−1 is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents
in S by E(S). If S is an inverse semigroup, then E(S) is closed under
multiplication and we shall refer to E(S) as a band (or the band of S).
Then the semigroup operation on S determines the following partial order
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≼ on E(S): e ≼ f if and only if ef = fe = e. This order is called the
natural partial order on E(S). A semilattice is a commutative semigroup
of idempotents.

If S is an inverse semigroup then the semigroup operation on S de-
termines the following partial order ≼ on S: s ≼ t if and only if there
exists e ∈ E(S) such that s = te. This order is called the natural partial
order on S [9].

The bicyclic monoid C (p, q) is the semigroup with the identity 1
generated by two elements p and q subjected only to the condition pq = 1.
The semigroup operation on C (p, q) is determined as follows:

qkpl · qmpn = qk+m−min{l,m}pl+n−min{l,m}.

It is well known that the bicyclic monoid C (p, q) is a bisimple (and hence
simple) combinatorial E-unitary inverse semigroup and every non-trivial
congruence on C (p, q) is a group congruence [1].

Let h : S → T be a homomorphism of semigroups. Then for any
s ∈ S and A ⊆ S by (s)h and (A)h we denote the images of s and A,
respectively, under the homomorphism h. Also, for any t ∈ T by (s)h−1

we denote the full preimage of s under the map h. A homomorphism
h : S → T of monoids which preserves the unit elements of S is called a
monoid homomorphism. A homomorphism h : S → S of a semigroup (a
monoid) is called an endomorphism (a monoid endomorphism) of S, and
in the case when h is an isomorphism then h is said to be an automorphism
of S.

It is well-known that every automorphism of the bicyclic monoid
C (p, q) is the identity self-map of C (p, q) [1], and hence the group
Aut(C (p, q)) of automorphisms of C (p, q) is trivial. In [6] all endomor-
phisms of the bicyclic semigroup are described and it is proved that the
semigroups End(C (p, q)) of all endomorphisms of the bicyclic semigroup
C (p, q) is isomorphic to the semidirect products (ω,+)⋊φ (ω, ∗), where
+ and ∗ are the usual addition and the usual multiplication on ω.

Subsemigroups of then bicyclic monoid were studied in [3,4,8]. In [8]
the following anti-isomorphic subsemigroups of the bicyclic monoid

C+(a, b) =
{
biaj ∈ C (a, b) : i ⩽ j, i, j ∈ ω

}
and

C−(a, b) =
{
biaj ∈ C (a, b) : i ⩾ j, i, j ∈ ω

}
are studied. In the paper [5] topologizations of the semigroups C+(a, b)
and C−(a, b) are studied.
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Later in this paper by End(C+(a, b)) we denote the semigroup of all
monoid endomorphisms of the semigroup C+(a, b).

In this paper we describe monoid endomorphisms of the semigroup
C+(a, b) which are generated by the family of all congruences of the
bicyclic monoid and all injective monoid endomorphisms of C+(a, b).

1. On monoid endomorphisms of C+(a, b) which are re-
strictions of homomorphisms of the bicyclic monoid

In [6] was proved that every monoid endomorphism ε : C (a, b) → C (a, b)
of the bicyclic monoid is one of the following forms:

(i) ε = λk for some positive integer k, where (biaj)λk = bkiakj for any
i, j ∈ ω;

(ii) ε = λ0 is the annihilating endomorphism of C (a, b), i.e., (biaj)λ0 =
1 for any i, j ∈ ω.

Simple verifications show that in the both cases each of these monoid
endomorphisms of the bicyclic semigroup induces the monoid endomor-
phism of C+(a, b), which we denote by the similar way:

λk : C+(a, b) → C+(a, b), b
iaj 7→ bkiakj , i, j ∈ ω

for some k ∈ ω.
For any k1, k2 ∈ ω we have that

(biaj)(λk1 ◦ λk2) = ((biaj)λk1)λk2 = (bk1iak1j)λk2 = bk1k2iak1k2j , i, j ∈ ω.

This implies that λk1 ◦ λk2 = λk1k2 for all k1, k2 ∈ ω, and hence the set
{λk : k ∈ ω} of endomorphisms of C+(a, b) is closed under the operation
of composition.

By End⟨λ⟩(C+(a, b)) we denote the subsemigroup of End(C+(a, b)),
which is generated by the family {λk : k ∈ ω} of endomorphisms of the
monoid C+(a, b).

Proposition 1. The semigroup End⟨λ⟩(C+(a, b)) is isomorphic to the
multiplicative semigroup (ω, ∗) of non-negative integers.

Proof. We define the map I : End⟨λ⟩(C+(a, b)) → (ω, ∗) by the formula
(λk)I = k for any λk ∈ End⟨λ⟩(C+(a, b)). The above arguments and
simple verifications show that so defined map I is a semigroup isomor-
phism.
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It is well known that any inverse semigroup S admits the smallest
(minimal) group congruence Cmg: aCmgb if and only if there exists e ∈
E(S) such that ea = eb (see [7]). The smallest group congruence Cmg

on the bicyclic semigroup C (a, b) is determined in the following way:
bi1aj1Cmgb

i2aj2 if and only if i1−j1 = i2−j2 [7]. Since the quotient semi-
group C (a, b)/Cmg is isomorphic to the additive group of integers Z(+),
the natural homomorphism hCmg : C (a, b) → C (a, b)/Cmg generates the
homomorphism hCmg : C (a, b) → Z(+) by the formula (biaj)hCmg = j− i,
i, j ∈ ω. By (ω,+) we denote the additive group of non-negative integers.
This implies that the restriction hCmg↿C+(a,b) : C+(a, b) → (ω,+) of the
homomorphism hCmg is a homomorphism, as well.

Lemma 1. For any i, j, k ∈ ω with j ⩾ i the set

Si,j,k =
{
biai

}
∪
{
(bjaj+k)n : n ∈ N

}
with the induced semigroup operation from the bicyclic monoid C (a, b) is
isomorphic to the semigroup (ω,+).

Proof. We define the mapping Ji,j,k : (ω,+) → Si,j,k by the formula

(n)Ji,j,k =

{
biai, if n = 0;
(bjaj+k)n, if n > 0.

Simple verifications show that such defined map Ji,j,k is a bijective ho-
momorphism.

Definition 1. For arbitrary l ∈ ω and m ∈ N we define the map
σl,m : C+(a, b) → S0,l,m by the formula (biaj)σl,m = ((biaj)hCmg)J0,l,m,
i ⩽ j, i, j ∈ ω. Since hCmg and J0,l,m : (ω,+) → S0,l,m are homomor-
phisms, σl,m is a homomorphism, too. Simple verifications show that

(biaj)σl,m =

{
1, if i = j;

blal+m(j−i), if i < j

for all i, j ∈ ω.

We observe that every elements of the semigroup C+(a, b) can be
represented in the form biai+j for some i, j ∈ ω. Then for any positive
integer n we have that

(biai+j)n = biai+j · biai+j · (biai+j)n−2 =

= biai+2j · (biaj)n−2 =

= · · · =
= biai+nj .
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Lemma 2. σl1,m1 ◦σl2,m2 = σl2,m1m2 for arbitrary l1, l2 ∈ ω and m1,m2 ∈ N.

Proof. Fix an arbitrary biaj ∈ C+(a, b), i, j ∈ ω. Then we have that

((biaj)σl1,m1)σl2,m2 =

{
(1)σl2,m2 , if i = j;
((bl1al1+m1)j−i)σl2,m2 , if i < j

=

=

{
1, if i = j;

(bl1al1+(j−i)m1)σl2,m2 , if i < j
=

=

{
1, if i = j;

(bl2al2+m2)(j−i)m1 , if i < j
=

=

{
1, if i = j;

bl2al2+(j−i)m1m2 , if i < j
=

= (biaj)σl2,m1m2 .

By End⟨σ⟩(C+(a, b)) we denote the subsemigroup of End(C+(a, b)),
which is generated by the family {σl,m : l,m ∈ ω, m > 0} of endomor-
phisms of the monoid C+(a, b).

By RZ(ω) we denote the set ω with the right-zero multiplication,
i.e., xy = y for all x, y ∈ ω, and by (N, ∗) the multiplicative semigroup
of positive integers. We define the map I : End⟨σ⟩(C+(a, b)) → RZ(ω)×
(N, ∗) by the formula (σl,m)I = (l,m), l ∈ ω, m ∈ N. Lemma 2 implies
that such defined map I is a semigroup homomorphism, and moreover I
is bijective. Hence we get the following proposition.

Proposition 2. The semigroup End⟨σ⟩(C+(a, b)) is isomorphic to the
direct product RZ(ω)× (N, ∗).

Fix an arbitrary biaj ∈ C+(a, b), i, j ∈ ω, j ⩾ i. Then for any
σl,m ∈ End⟨σ⟩(C+(a, b)) and any λk ∈ End⟨λ⟩(C+(a, b)) we have that

((biaj)σl,m)λk =

{
(1)λk, if i = j;
((blal+m)j−i)λk, if i < j

=

=

{
1, if i = j;

(blal+m(j−i))λk, if i < j
=

=

{
1, if i = j;

bklakl+km(j−i), if i < j
=

= (biaj)σkl,km
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and

((biaj)λk)σl,m = (bkiakj)σl,m =

=

{
(bkiaki)σl,m, if ki = kj;
(blal+m)kj−ki, if ki < kj

=

=

{
(bkiaki)σl,m, if i = j;
(blal+m)kj−ki, if i < j

=

=

{
1, if i = j;

blal+km(j−i), if i < j
=

= (biaj)σl,km.

This implies the following

Proposition 3. σl,mλk = σkl,km and λkσl,m = σl,km for any σl,m ∈
End⟨σ⟩(C+(a, b)) and any λk ∈ End⟨λ⟩(C+(a, b)) \ {λ0}.

By End⟨λ,σ⟩(C+(a, b)) we denote the subsemigroup of End(C+(a, b)),
which is generated by the families {λk : k∈ω} and {σl,m : l,m ∈ ω,m > 0}
of endomorphisms of the monoid C+(a, b). We summarise the results of
this section in the following theorem.

Theorem 1. (1) λ1 is the identity element of the semigroup
End(C+(a, b)), and hence it is the identity element of the semi-
groups End⟨λ⟩(C+(a, b)) and End⟨λ,σ⟩(C+(a, b));

(2) λ0 is the zero of the semigroup End(C+(a, b)), and hence it is the
zero of End⟨λ⟩(C+(a, b)) and End⟨λ,σ⟩(C+(a, b));

(3) the set I = End⟨σ⟩(C+(a, b)) ∪ {λ0} is an ideal of the semigroup
End⟨λ,σ⟩(C+(a, b)).

Proof. Statements (1) and (1) are trivial.
(1) By Proposition 3 we have that σl,mλk, λkσl,m ∈ End⟨σ⟩(C+(a, b))

for any σl,m ∈ End⟨σ⟩(C+(a, b)) and λk ∈ End⟨λ⟩(C+(a, b)) \ {λ0}. Since
λ0 is the zero of the semigroup End(C+(a, b)), the above arguments imply
that I is an ideal of the semigroup End⟨λ,σ⟩(C+(a, b)).

2. On monoid injective endomorphisms of C+(a, b)

Example 1. For arbitrary positive integer n and arbitrary s=0, . . . , n−1
we define the mapping λn,s : C+(a, b) → C+(a, b) by the formula

(biaj)λn,s =

{
anj , if i = 0;
bni−sanj−s, if i ̸= 0
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for all i, j ∈ ω.

Proposition 4. For any positive integer n and any s = 0, . . . , n− 1 the
map λn,s is an injective monoid endomorphism of the monoid C+(a, b).

Proof. Fix any positive integers i, j, k, l such that i ⩽ j and k ⩽ l, and
non-negative integers m and q. Then we have that

(biaj · bkal)λn,s =


(bi−j+kal)λn,s, if j < k;
(bial)λn,s, if j = k;
(biaj−k+l)λn,s, if j > k

=

=


bn(i−j+k)−sanl−s, if j < k;
bni−sanl−s, if j = k;

bni−san(j−k+l)−s, if j > k,

(biaj)λn,s · (bkal)λn,s = bni−sanj−s · bnk−sanl−s =

=


b(ni−s)−(nj−s)+(nk−s)anl−s, if nj − s < nk − s;
bni−sanl−s, if nj − s = nk − s;

bni−sanj−s−(nk−s)+(nl−s), if nj − s > nk − s

=

=


bn(i−j+k)−sanl−s, if j < k;
bni−sanl−s, if j = k;

bni−san(j−k+l)−s, if j > k,

(biaj · am)λn,s = (biaj+m)λn,s =

= bni−san(j+m)−s =

= bni−sanj−s · amn =

= (biaj)λn,s · (am)λn,s,

(am · biaj)λn,s =

{
(bi−maj)λn,s, if m < i;
(am−i+j)λn,s, if m ⩾ i

=

=

{
bn(i−m)−sanj−s, if m < i;

an(m−i+j), if m ⩾ i,

(am)λn,s · (biaj)λn,s = amn · bni−sanj−s =

=

{
bni−s−nmanj−s, if mn < ni− s;

amn−(ni−s)+nj−s, if mn ⩾ ni− s
=
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=

{
bn(i−m)−sanj−s, if m < i− s/n;

an(m−i+j), if m ⩾ i− s/n
=

=

{
bn(i−m)−sanj−s, if m < i;

an(m−i+j), if m ⩾ i,

because s = 0, . . . , n− 1, and

(am · aq)λn,s = (am+q)λn,s = a(m+q)n = amn · aqn = (am)λn,s · (aq)λn,s.

Hence the map λn,s is a monoid endomorphism. The condition that
s = 0, . . . , n− 1 implies that λn,s is an injective map.

By End⟨λ∞⟩(C+(a, b)) we denote the subset of End(C+(a, b)), which
consists of the elements of the family {λn,s : n ∈ ω, s = 0, . . . , n− 1} of
endomorphisms of the monoid C+(a, b).

Let S and T be arbitrary semigroups. Let φ : T → End(S), t 7→ φt be
a homomorphism from T into the semigroup End(S) of endomorphisms
of S. The semidirect product of S and T defined on the product S × T
with the semigroup operation

(s1, t1) · (s2, t2) = (s1 · (s2)φt1 , t1 · t2),

and it is denoted by S ⋊φ T .

Theorem 2. The set End⟨λ∞⟩(C+(a, b)) is a submonoid of End(C+(a, b))
and End⟨λ∞⟩(C+(a, b)) is isomorphic to a submonoid of the semidirect
product (N, ∗)⋊φ (ω,+), where (p)φn = np.

Proof. Fix arbitrary positive integers n1, n2, s1 = 0, . . . , n1 − 1 and
s2 = 0, . . . , n2 − 1. Then for any biaj ∈ C+(a, b) we have that

((biaj)λn1,s1)λn2,s2 =

{
(an1j)λn2,s2 , if i = 0;
(bn1i−s1an1j−s1)λn2,s2 , if i ̸= 0

=

=


an1n2j , if i = 0;

an2(n1j−s1), if i ̸= 0 and n1i− s1 = 0;

bn2(n1i−s1)−s2an2(n1j−s1)−s2 , if i ̸= 0 and n1i− s1 ̸= 0

=

=

{
an1n2j , if i = 0;

bn2n1i−(s1n2+s2)an2n1j−(s1n2+s2), if i ̸= 0
=

= (biaj)λn1n2,s1n2+s2 .

Since s1 < n1 and s2 < n2, we have that

s1n2 + s2 ⩽ (n1 − 1)n2 + s2 < (n1 − 1)n2 + n2 = n1n2 − n2 + n2 = n1n2,
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and hence s1n2 + s2 < n1n2. This implies that End⟨λ∞⟩(C+(a, b)) is a
subsemigroup of End(C+(a, b)). Since λn,0 = λn for any positive integer
n, End⟨λ⟩(C+(a, b)) is a submonoid of End⟨λ∞⟩(C+(a, b)).

We define the map Φ : End⟨λ∞⟩(C+(a, b)) → (N, ∗) ⋊φ (ω,+) by the
formula (λn,s)Φ = (n, s). The above arguments imply that

(λn1,s1λn2,s2)Φ = (λn1n2,s1n2+s2)Φ =

= (n1n2, s1n2 + s2) =

= (n1n2, (s1)φn2 + s2) =

= (n1, s1)(n2, s2) =

= (λn1,s1)Φ(λn2,s2)Φ,

and hence Φ is a homomorphism.

Example 2. We define the map ς : C+(a, b) → C+(a, b) by the formula

(biaj)ς =

{
1, if i = j = 0;
bi+1aj+1, otherwise

for any i, j ∈ ω.

Lemma 3. The map ς : C+(a, b) → C+(a, b) is an injective monoid en-
domorphism.

Proof. A simple verification shows that ς is an injective map. Obviously
that it is sufficient to show that for any biaj ̸= 1 and bkal ̸= 1 the
following equality (biaj · bkal)ς = (biaj)ς · (bkal)ς holds. Indeed,

(biaj · bkal)ς =


(bi−j+kal)ς, if j < k;
(bial)ς, if j = k;
(biaj−k+l)ς, if j > k

=

=


bi−j+k+1al+1, if j < k;
bi+1al+1, if j = k;
bi+1aj−k+l+1, if j > k

and

(biaj)ς · (bkal)ς = bi+1aj+1 · bk+1al+1 =
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=


bi+1−(j+1)+k+1al+1, if j + 1 < k + 1;
bi+1al+1, if j + 1 = k + 1;

bi+1aj+1−(k+1)+l+1, if j + 1 > k + 1

=

=


bi−j+k+1al+1, if j < k;
bi+1al+1, if j = k;
bi+1aj−k+l+1, if j > k,

and hence ς is an injective monoid endomorphism of C+(a, b).

By End⟨ς⟩(C+(a, b)) we denote the subsemigroup of End(C+(a, b)),
which is generated by endomorphism ς of the monoid C+(a, b). Also
by End1⟨ς⟩(C+(a, b)) we denote the semigroup End⟨ς⟩(C+(a, b)) with the
adjoined unit. Without loss of generality we may assume that

End1⟨ς⟩(C+(a, b)) = End⟨ς⟩(C+(a, b)) ∪ {λ1}.

Proposition 5. The semigroup End⟨ς⟩(C+(a, b)) is isomorphic to the

additive semigroup of positive integers (N,+), and hence End1⟨ς⟩(C+(a, b))
is isomorphic to the additive monoid of non-negative integers (ω,+).

Proof. For any biaj ∈ C+(a, b) and any positive integer n by the definition
of ς we have that

(biaj)ςn = ((biaj)ς)ςn−1 =

=

{
(1)ςn−1, if i = j = 0;
(bi+1aj+1)ςn−1, otherwise

=

= . . . =

=

{
(1)ς, if i = j = 0;
(bi+n−1aj+n−1)ς, otherwise

=

=

{
1, if i = j = 0;
bi+naj+n, otherwise.

The definition of the bicyclic monoid C (a, b) implies that bk1al1 = bk2al2

in C+(a, b) if an only if k1 = k2 and l1 = l2. This and above equalities
imply that the endomorphism ς generates the infinite cyclic subsemi-
group in End(C+(a, b)), and hence End⟨ς⟩(C+(a, b)) is isomorphic to the
additive semigroup of positive integers (N,+). The last statement of the
proposition is obvious.

Lemma 4. Let ε : C+(a, b) → C+(a, b) be an injective monoid endomor-
phism such that (a)ε = an for some positive integer n. Then there exists
s ∈ {0, . . . , n− 1} such that ε = λn,s.
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Proof. We observe that if ε is an injective endomorphism of C+(a, b)
then for any idempotents biai, bjaj ∈ C+(a, b) the inequality biai ≼ bjaj

implies that (biai)ε ≼ (bjaj)ε, because the equality biai · bjaj = biai

implies that

(biai)ε · (bjaj)ε = (biai · bjaj)ε = (biai)ε.

Since ε is an injective monoid endomorphism of C+(a, b), we conclude
that (biai)ε ̸= (bjaj)ε and (b0a0)ε = (1)ε = 1 = b0a0. Hence there exists
a strictly increasing sequence {si}i∈ω in ω such that (biai)ε = bsiasi for
any i ∈ ω and s0 = 0. Then for any positive integer i we have that

(biai+1)ε = (biai · a)ε =
= (biai)ε · (a)ε =
= bsiasi · an =

= bsiasi+n

and

(biai+1)ε = (a · bi+1ai+1)ε =

= (a)ε · (bi+1ai+1)ε =

= an · bsi+1asi+1 =

=

{
an, if n ⩾ si+1;
bsi+1−nasi+1 , if n < si+1.

The injectivity of ε implies that n < si+1. Since s0 = 0 and si < si+1 for
any i ∈ ω, the above equalities imply that si+1 = si + n for any positive
integer i, and hence si+1 − si = n for i ∈ N. By induction we have that
si+1 = s1 + in for all i ∈ N. This implies that

(biai)ε = b(i−1)n+s1a(i−1)n+s1

for any positive integer i. Then we get that

(biai+l)ε = (biai · al)ε =
= (biai)ε · (al)ε =
= b(i−1)n+s1a(i−1)n+s1 · ((a)ε)l =
= b(i−1)n+s1a(i−1)n+s1 · (an)l =
= b(i−1)n+s1a(i−1)n+s1 · anl =
= b(i−1)n+s1a(i+l−1)n+s1
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for any i, l ∈ ω. Also, since

an = (a)ε =

= (a · ba)ε =
= (a)ε · (ba)ε =
= an · bs1as1 ,

properties of semigroup operation of C+(a, b) and the natural partial
order on the set of idempotents of the monoid C+(a, b) imply that s1 ⩽ n,
and by injectivity of ε we have that s1 > 0. Put s = n − s1. Then we
obtain that s ∈ {0, . . . , n− 1} and

(biai+l)ε = b(i−1)n+s1a(i+l−1)n+s1 =

= bin−n+s1a(i+l)n−n+s1 =

= bin−sa(i+l)n−s.

This and Proposition 4 imply that ε = λn,s.

Proposition 6. Let S, T , and U be semigroups, let h : S → T be a
homomorphism, and let g : U → T be an injective homomorphism. If
(S)h ⊆ (U)g, then the mapping f : S → U which is defined by the formula
(s)f = ((s)h)g−1 is a homomorphism. Moreover, if the homomorphism
h : S → T is injective or a monoid homomorphism, then so is f, too.

Proof. Since g : U → T is an injective homomorphism, the map f : S → U
is well defined. Also, for arbitrary s1, s2 ∈ S we have that

(s1 · s2)f = ((s1 · s2)h)g−1 =

= ((s1)h · (s2)h)g−1 =

= ((s1)h)g
−1 · ((s2)h)g−1 =

= (s1)f · (s2)f,

because g : U → T is an injective homomorphism. Hence f : S → U is a
homomorphism. The second statement of the proposition is obvious.

Lemma 5. Let ε : C+(a, b) → C+(a, b) be an injective monoid endomor-
phism such that (a)ε = bnan+p for some positive integers n and p. Then
there exists s ∈ {0, . . . , n− 1} such that ε = λp,sς

n.
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Proof. Since ε is an injective monoid endomorphism of C+(a, b), argu-
ments presented in the proof of Lemma 4 imply that there exists a strictly
increasing sequence {si}i∈ω in ω such that (biai)ε = bsiasi for any i ∈ ω
and s0 = 0. Then for any positive integers i and j we have that

(biai+j)ε = (biai · aj)ε =
= (biai)ε · (aj)ε =
= bsiasi · (bnan+p)j =

= bsiasi · bnan+pj =

=

{
bnan+pj , if n ⩾ si;
bsiasi+pj , if n < si.

This implies that (C+(a, b))ε ⊆ (C+(a, b))ς
n. By Proposition 6 the map-

ping f : C+(a, b) → C+(a, b) which is defined by the formula (biaj)f =
((biaj)ε)(ςn)−1 is an endomorphism of the monoid C+(a, b). Simple veri-
fications show that (a)f = ap. By Lemma 4 we have that f = λp,s for
some s ∈ {0, . . . , n − 1}, i.e., λp,s = ε(ςn)−1. Since ς is an injective
monoid endomorphism of C+(a, b), we conclude that ε = λp,sς

n.

Theorem 3 describes all injective endomorphisms of the semigroup
C+(a, b) and it follows from Lemmas 4 and 5.

Theorem 3. Let ε : C+(a, b) → C+(a, b) be an injective monoid endo-
morphism. Then only one of the following statements holds:

(1) there exist a positive integer p and s ∈ {0, . . . , p − 1} such that
ε = λp,s;

(2) there exist positive integers n, p, and s ∈ {0, . . . , p − 1} such that
ε = λp,sς

n.

It is natural to ask the following: what is a semigroup operation on
the subsemigroup End⟨λς⟩(C+(a, b)) of End(C+(a, b)) of endomorphisms

of C+(a, b) which is generated by endomorphism of the form λp,sς
n, where

p, n ∈ N and s ∈ {0, . . . , n − 1}. Theorem 4 describes the structure of
the semigroup operation on the semigroup End⟨λς⟩(C+(a, b)) of injective

monoid endomorphisms of C+(a, b).

Theorem 4. End⟨λς⟩(C+(a, b)) is a subsemigroup of End(C+(a, b)) and

it is isomorphic to the subsemigroup of the Cartesian power N3 with the
following semigroup operation

(p1, s1, n1) · (p2, s2, n2) = (p2p1, p2s1, p2n1 − s2 + n2).
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Proof. Fix arbitrary p1, n1, p2, n2 ∈ N, s1 ∈ {0, . . . , n1 − 1} and s2 ∈
{0, . . . , n2 − 1}. Then for any biaj ∈ C+(a, b) we have that

((((biaj)λp1,s1)ς
n1)λp2,s2)ς

n2 =

=

{
(((ap1j)ςn1)λp2,s2)ς

n2 , if i = 0;
(((bp1i−s1ap1j−s1)ςn1)λp2,s2)ς

n2 , if i ̸= 0
=

=


((1)λp2,s2)ς

n2 , if i = 0 and j = 0;
((bn1ap1j+n1)λp2,s2)ς

n2 , if i = 0 and j ̸= 0;
((bp1i−s1+n1ap1j−s1+n1)λp2,s2)ς

n2 , if i ̸= 0
=

=


(1)ςn2 , if i = 0 and j = 0;

(bp2n1−s2ap2(p1j+n1)−s2)ςn2 , if i = 0 and j ̸= 0;

(bp2(p1i−s1+n1)−s2ap2(p1j−s1+n1)−s2)ςn2 , if i ̸= 0

=

=


1, if i = 0 and j = 0;

bp2n1−s2+n2ap2(p1j+n1)−s2+n2 , if i = 0 and j ̸= 0;

bp2(p1i−s1+n1)−s2+n2ap2(p1j−s1+n1)−s2+n2 , if i ̸= 0

=

=


1, if i = 0 and j = 0;
bp2n1−s2+n2ap2p1j+p2n1−s2+n2 , if i = 0 and j ̸= 0;
bp2p1i−p2s1+p2n1−s2+n2ap2p1j−p2s1+p2n1−s2+n2 , if i ̸= 0

= (biaj)λp2p1,p2s1ς
p2n1−s2+n2

The above equalities imply the statement of the theorem.

Remark 1. 1. The endomorphisms λk, k ∈ ω, λp,s, p, n ∈ N, s ∈
{0, . . . , n− 1} and ς of the monoid C−(a, b) are introduced by the
same formulae.

2. Repeating the proofs of corresponding statements in Sections 1
and 2 we obtain that the same statements about the corresponding
endomorphisms of the monoid C−(a, b). Moreover, the correspon-
ding semigroups of endomorphisms are pairwise isomorphic.

Acknowledgements

The authors acknowledge Alex Ravsky and the referee for they comments
and suggestions.



O. Gutik, Sh.-A. Penza 247

References

[1] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Vol. I., Amer.
Math. Soc. Surveys 7, Providence, R.I. (1961)

[2] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups. Vol. II.,
Amer. Math. Soc. Surveys 7, Providence, R.I. (1967)
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