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ABSTRACT.  Let %4 (a,b) be the submonoid of the bicyclic
monoid which is studied in [8]. We describe monoid endomorphisms
of the semigroup %4 (a,b) which are generated by the family of
all congruences of the bicyclic monoid and all injective monoid
endomorphisms of €4 (a,b).

Introduction

We shall follow the terminology of [1,2,7]. By w we denote the set of all
non-negative integers, by N the set of all positive integers.

A semigroup S is called inverse if for any element x € S there exists a
unique 27! € S such that zz~ 'z = 2 and 7 'z2~! = z7!. The element
271 is called the inverse of x € S. If S is an inverse semigroup, then the
function inv: S — S which assigns to every element x of S its inverse
element 27! is called the inversion.

If S is a semigroup, then we shall denote the subset of all idempotents
in S by E(S). If S is an inverse semigroup, then E(S) is closed under
multiplication and we shall refer to E(S) as a band (or the band of 5).
Then the semigroup operation on .S determines the following partial order
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< on E(S): e < f if and only if ef = fe = e. This order is called the
natural partial order on E(S). A semilattice is a commutative semigroup
of idempotents.

If S is an inverse semigroup then the semigroup operation on S de-
termines the following partial order < on S: s < t if and only if there
exists e € E(S) such that s = te. This order is called the natural partial
order on S [9].

The bicyclic monoid %(p,q) is the semigroup with the identity 1
generated by two elements p and ¢ subjected only to the condition pg = 1.
The semigroup operation on %(p, q) is determined as follows:

qkpl LqMp" = qk+m—min{l,m}pl—‘rn—min{l,m}‘

It is well known that the bicyclic monoid % (p, q) is a bisimple (and hence
simple) combinatorial E-unitary inverse semigroup and every non-trivial
congruence on €(p,q) is a group congruence [1].

Let h: S — T be a homomorphism of semigroups. Then for any
s € Sand A C S by (s)h and (A)h we denote the images of s and A,
respectively, under the homomorphism h. Also, for any ¢t € T by (s)h~!
we denote the full preimage of s under the map h. A homomorphism
h: S — T of monoids which preserves the unit elements of S is called a
monoid homomorphism. A homomorphism h: S — S of a semigroup (a
monoid) is called an endomorphism (a monoid endomorphism) of S, and
in the case when b is an isomorphism then b is said to be an automorphism
of S.

It is well-known that every automorphism of the bicyclic monoid
€ (p,q) is the identity self-map of € (p,q) [1], and hence the group
Aut(%(p,q)) of automorphisms of €(p, q) is trivial. In [6] all endomor-
phisms of the bicyclic semigroup are described and it is proved that the
semigroups End(%(p, q)) of all endomorphisms of the bicyclic semigroup
% (p, q) is isomorphic to the semidirect products (w,+) X, (w, *), where
+ and * are the usual addition and the usual multiplication on w.

Subsemigroups of then bicyclic monoid were studied in [3,4,8]. In [8]
the following anti-isomorphic subsemigroups of the bicyclic monoid

Gy (a,b) = {b'a’ € €(a,b): i < j, i,j €Ew}

and o
€ (a,b) = {V'a) € €(a,b):i>j,i,j €w}

are studied. In the paper [5] topologizations of the semigroups % (a,b)
and ¢_(a,b) are studied.



O. GUTIK, SH.-A. PENZA 235

Later in this paper by &nd(%(a,b)) we denote the semigroup of all
monoid endomorphisms of the semigroup % (a,b).

In this paper we describe monoid endomorphisms of the semigroup
%+ (a,b) which are generated by the family of all congruences of the
bicyclic monoid and all injective monoid endomorphisms of € (a, b).

1. On monoid endomorphisms of %, (a,b) which are re-
strictions of homomorphisms of the bicyclic monoid

In [6] was proved that every monoid endomorphism ¢: € (a,b) — € (a,b)
of the bicyclic monoid is one of the following forms:

(i) € = A\ for some positive integer k, where (b'a’)\; = b¥a*J for any
1,] € w;

(ii) € = Ao is the annihilating endomorphism of € (a, b), i.e., (b'a/)\g =
1 for any 4,j € w.

Simple verifications show that in the both cases each of these monoid
endomorphisms of the bicyclic semigroup induces the monoid endomor-
phism of €’ (a,b), which we denote by the similar way:

Mot Co(a,b) = Cula,b),bia’ — bab i jew

for some k € w.
For any k1, ke € w we have that

(b'a?) (A, © M) = (Ba?) Ay ) Ak, = (BF1EaR1I) Ny, = BFR2ighiked 5 e )

This implies that Ag, o Ak, = Ag,k, for all k1, ka € w, and hence the set
{A\k: k € w} of endomorphisms of €, (a,b) is closed under the operation
of composition.

By €ndy) (¢ (a,b)) we denote the subsemigroup of €nd(%(a,b)),
which is generated by the family {A;: k € w} of endomorphisms of the
monoid €4 (a,b).

Proposition 1. The semigroup €ndy (¢ (a,b)) is isomorphic to the
multiplicative semigroup (w,*) of non-negative integers.

Proof. We define the map J: €nd (¢ (a,b)) — (w,*) by the formula
(Ae)J = k for any A\ € €nd(yy (€4 (a,b)). The above arguments and
simple verifications show that so defined map J is a semigroup isomor-
phism. O
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It is well known that any inverse semigroup S admits the smallest
(minimal) group congruence Cpnge: aluygb if and only if there exists e €
E(S) such that ea = eb (see [7]). The smallest group congruence €pg
on the bicyclic semigroup %'(a,b) is determined in the following way:
bilajleﬁmgbi2 a’? if and only if iy — j; = i — jo [7]. Since the quotient semi-
group € (a,b) /€ is isomorphic to the additive group of integers Z(+),
the natural homomorphism bg, . : ¢(a,b) — €(a,b)/&ng generates the
homomorphism be,,, : €(a,b) — Z(+) by the formula (b'a’)be,,, = j —1,
i,j € w. By (w, +) we denote the additive group of non-negative integers.
This implies that the restriction be,,, T, (0 €4+ (a,b) — (w,+) of the
homomorphism b¢,,, is a homomorphism, as well.

Lemma 1. For any i,j,k € w with j > i the set
Sijk = {b’ Z}U{ Yl TRy nEN}

with the induced semigroup operation from the bicyclic monoid € (a,b) is
isomorphic to the semigroup (w,+).

Proof. We define the mapping J; j1: (w,+) — S; jr by the formula
(R)3s 54 = blat, if n=20;
Jijk = (Bad Tk, if n > 0.
Simple verifications show that such defined map J; ; is a bijective ho-
momorphism. ]

Definition 1. For arbitrary [ € w and m € N we define the map
oLm: Cy(a,b) — Soum by the formula (b'a’)oym = ((b'a’)be,,)Jo0m;
i < j,14,j €w. Since be,, and Jom: (w,+) — So1m are homomor-
phisms, o7, is a homomorphism, too. Simple verifications show that
o 1 if i = j;
i _ ) ’
(ba”)orm = { blattmU=1if i < j

for all 4,5 € w.

We observe that every elements of the semigroup %4 (a,b) can be
represented in the form b'a'™ for some 4,7 € w. Then for any positive

integer n we have that
(biai+j)n _ biaiJrj . biaiJrj . (biai+j)nf2 —

— biai+2j X (biaj)n—Q —

= bl
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Lemma 2. 0y, 1, 901, my = Oly,mims JOT arbitrary li,la € w and my, me € N.

Proof. Fix an arbitrary b'a’ € €, (a,b), i,j € w. Then we have that

i i 1)01y.mas ifi=y5;
((b aj)o-llyml)o-l%mZ = { E(lzll;llﬁml)j_i)alg,mga ifi<j =
1, if i = 7;
= { (bl1al1+(j7i)m1)glz’m27 ifi < j -
1, ifie=yg;
- { (blzalz+m2)(j—i)m17 ifi<j -
_ { 1, if 1 = j;
T blabktUmmme e < T

O]

By €nd(, (%, (a,b)) we denote the subsemigroup of €nd(%y(a,b)),
which is generated by the family {o;,,: {,m € w, m > 0} of endomor-
phisms of the monoid % (a,b).

By R3(w) we denote the set w with the right-zero multiplication,
ie, zy =y for all z,y € w, and by (N, %) the multiplicative semigroup
of positive integers. We define the map J: €nd (¢} (a,b)) — R3(w) x
(N, %) by the formula (0y,,)J = (I,m), | € w, m € N. Lemma 2 implies
that such defined map J is a semigroup homomorphism, and moreover J
is bijective. Hence we get the following proposition.

Proposition 2. The semigroup €nd (¢} (a,b)) is isomorphic to the
direct product R3(w) x (N, x*).

Fix an arbitrary b'a’ € €, (a,b), 3,7 € w, j > i. Then for any
O1m € End gy (€4 (a,b)) and any \j, € €ndy) (¥4 (a,b)) we have that

((b a )Ulm))\k { ((bl l+m)J Z))\k, ifi <y
1, ifi=j;,
(ll+m31 /\k, ifi<j B
1, if 1 = j;
pRlhiHkmG=0) if <

= (b'a?) o m
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and

(V') \p)orm = (a0, =
bkiaki)al,m, if ki = ky;
blaltmyki=ki - if ki < kj

_ O"a")oy m, ifi=j;
!
b

blaler)kjfki’ ifi < j -
ifv=7;

9 J—
l H—km(g—z)7 if <j

This implies the following

Proposition 3. 0,,,A\i = Ok km and A\O1m = OLgm for any op, €
End ;) (¢4 (a, b)) and any A\, € Endy) (¢4 (a,b)) \ {Xo}-

By €ndy ) (¢ (a,b)) we denote the subsemigroup of €nd(%’s(a,b)),
which is generated by the families {\: k€w} and {0y, : I, m € w,m > 0}
of endomorphisms of the monoid ¢’ (a,b). We summarise the results of
this section in the following theorem.

Theorem 1. (1) Ay is the identity element of the semigroup
End (%4 (a,b)), and hence it is the identity element of the semi-
groups €nd 5y (¢4 (a,b)) and €ndy (€4 (a,b));

(2) Ao is the zero of the semigroup End(€y(a,b)), and hence it is the
zero of €ndyy (€4 (a,b)) and Endy 5y (€4 (a,b));

(3) the set I = End i,y (64 (a,b)) U{ Ao} is an ideal of the semigroup
End () oy (¢4 (a,b)).
Proof. Statements (1) and (2) are trivial.

(3) By Proposition 3 we have that oy, Ak, Aeoim € €,y (€1 (a,b))
for any 0y, € €nd ) (€4 (a,b)) and Ay € End () (€1 (a,b)) \ {Ao}. Since
Ao is the zero of the semigroup €nd (% (a,b)), the above arguments imply
that I is an ideal of the semigroup €nd, (¢ (a,b)). O

2. On monoid injective endomorphisms of ¢, (a,b)
Example 1. For arbitrary positive integer n and arbitrary s=0,...,n—1
we define the mapping A, s: €4 (a,b) = €4 (a,b) by the formula

o nj ifi=0:
i ] _ a o ) e 3
(b a ))\ms - { bnz—sanj—s’ if 4 ?é 0
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for all 7, j € w.

Proposition 4. For any positive integer n and any s =0,...,n — 1 the
map Ans is an injective monoid endomorphism of the monoid € (a,b).

Proof. Fix any positive integers 1, j, k,[ such that ¢ < j and k < [, and
non-negative integers m and ¢q. Then we have that

(biItRa )\, 6, if 5 < k;
(b'a? - b*a YA = (Ba) s, ifj =k =
Vel Ny, i § >k
bn(ifjJrk)fsanlfs7 if j < k;
— bni—sanl—s7 ifj =k;

bm'fsan(jflwkl)fs, if j >k,

R P o P Y

p(ni—s)=(nj—s)+(nk=s)gnl=s  if nj _ s < nk —s;
= bm_sanl_s, ifnj—s=nk—s;, =
pri—sgra—s—(nk=s)+(nl=s) = if nj s> nk—s

prli—itk)=sgnl=s if j < k;
= prsgnios, if j =k;

bnifsan(jkarl)fs, lfj > k,

(b'al - a™Aps = (D'a?T™) N\, 5 =
_ bm’—san(j—l—m)—s _
— bni—s

nj—s a™ —

= (b'a’)Ans - (A™) Ans,

a

m i j . (bi_mlaj’))\nvs, lf m < Z,
(a b'a ))\n,s - { (am—z—i-j))\n’S’ ifm>i
[ plemmsgniss i < g
qm—ity) if m >,

(am))\n,s . (biaj))\n,s — a™. bm'fsanjfs _

pr—sTnmgni=s - if mn < ni —s;
- amn—(ni—s)—i—nj—s
Y

ifmn>ni—s
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_ prli—ml=sgni=s if m < i —s/n; _
| anlmitd), ifm>i—s/n
_ b"(l_ml)_‘sam_s, if m < i
an(m=i+j), if m >,
because s =0,...,n — 1, and

(@™ aD)Aps = (@™T)N, 5 = almtaom — gmn . gan — (@™)Ans - (aT) A s.

Hence the map A, s is a monoid endomorphism. The condition that
s =0,...,n — 1 implies that A, s is an injective map. O

By €nd(ye) (€ (a,b)) we denote the subset of €nd(%’(a,b)), which
consists of the elements of the family {\,s: n €w, s =0,...,n—1} of
endomorphisms of the monoid € (a,b).

Let S and T be arbitrary semigroups. Let ¢: T'— €nd(S5), t — ¢; be
a homomorphism from 7" into the semigroup €nd(S) of endomorphisms
of S. The semidirect product of S and T defined on the product S x T’
with the semigroup operation

(s1,81) - (s2,t2) = (51 (82)¢p11, 11 - 12),
and it is denoted by S x, T'.

Theorem 2. The set €nd ) (€4 (a,b)) is a submonoid of End(€(a,b))
and End yey (€4 (a,b)) is isomorphic to a submonoid of the semidirect
product (N, *) X, (w,+), where (p)yp, = np.

Proof. Fix arbitrary positive integers nq, no, s1 = 0,...,n7 — 1 and
s9=0,...,n2 — 1. Then for any b'a’ € €, (a,b) we have that

;o a™ NN\, 5o ifi =0;
((bla]))‘m,ﬂ))‘nmsz = { Ebnli)s:z;ﬁ?jﬂ))\m s, ifi#0 -
a™mn2d, if i = 0;
={ gm(mi—s1) ifi#0and nii—s1 =0; =
pr2(nii=si)=sagna(mi—s1)=s2  if j £ 0 and nyi — sy # 0
a™mn2d, if i = 0;
= { bngmi—(slnz—i-sz)anzn1j—(51”2-"82)7 if i #£0 -

= (bZaJ)Amnz,SanJrSQ'
Since s1 < n1 and sy < ng, we have that

s1n2 + 52 < (n1 — 1)ng + s2 < (n1 — 1)ng +ng = ning — na + ng = ning,
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and hence sing + s9 < ning. This implies that (‘c‘n0<,\oo>(<5+(a, b)) is a
subsemigroup of End(% (a,b)). Since A, g = A, for any positive integer
n, €nd (¢ (a,b)) is a submonoid of End ) (¢’y(a,b)).

We define the map ®: €nd ) (€ (a,b)) — (N,*) ¥, (w,+) by the
formula (A, s)® = (n,s). The above arguments imply that

(An1,s1An2,60) @ = (Anina,sinatss)® =
= (ning, s1n2 + 52) =

= (n1n2, (51)¢n, + 52) =
= (n1,s1)(n2, 52) =

= (

)\’nl 51) ( TLQ,SQ)@’

and hence ® is a homomorphism. O

Example 2. We define the map ¢: €4 (a,b) — €4 (a,b) by the formula

. 1 ifi=j=0;
L0d e — ? . ’
(b'a’)s { bz+1aﬂ+17 otherwise

for any 7,7 € w.

Lemma 3. The map s: €4 (a,b) — €1(a,b) is an injective monoid en-
domorphism.

Proof. A simple verification shows that ¢ is an injective map. Obviously
that it is sufficient to show that for any b'a’ # 1 and b¥a' # 1 the
following equality (b'a’ - b*al)s = (b'a’)s - (b*al)s holds. Indeed,

(—itkalye, if j < k;
(bia? - bFal)s = { (bldb)s, ifj=k =
(blad~Fthye, if j >k
pimathtlgltl i < ke
— biJrlalJrl’ lfj =k;
bitlagi =k df j > k

and

(biaj)g . (bkal)§ _ bi+1aj+1 . bk“a”l _
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pit 1= +HR+L 4T

— bi+1al+1’

i+1 ,j+1—(k+1)+1+1
prtlgit (+)++’

itj+1<k+1;
ifj+1=k+1;, =
itj+1>k+1

b’i*j‘i’k‘i’lal‘i’l’ lfj < k;
= pitlghtt, if j =k;
bz+1a]fk+l+1’ lfj >k,

and hence ¢ is an injective monoid endomorphism of € (a,b). O

By &nd (%4 (a,b)) we denote the subsemigroup of €nd(%(a,b)),
which is generated by endomorphism ¢ of the monoid % (a,b). Also
by QEnO@ (¢+(a,b)) we denote the semigroup €nd (¢ (a,b)) with the
adjoined unit. Without loss of generality we may assume that

End (€4 (a, b)) = End iy (€ (a,b)) U {Ai}.

Proposition 5. The semigroup €nd (€ (a,b)) is isomorphic to the
additive semigroup of positive integers (N, +), and hence @nb@ (¢+(a,b))
is isomorphic to the additive monoid of non-negative integers (w,+).

Proof. For any b'a’ € €, (a,b) and any positive integer n by the definition
of ¢ we have that

(b'al)s" (@ZU)

- ifi=37=0;
- b“rl JH n=l = otherwise
_ ( ifi=j=0 _
1 (b Z+” lg7tn=1)¢, otherwise
|1, ifi=45=0;

bitnadtn otherwise.

The definition of the bicyclic monoid € (a, b) implies that b¥1alt = bF2ql2
in ¢4 (a,b) if an only if k; = ko and I3 = lo. This and above equalities
imply that the endomorphism ¢ generates the infinite cyclic subsemi-
group in €nd(%’y(a,b)), and hence €nd (¢ (a,b)) is isomorphic to the
additive semigroup of positive integers (N, +). The last statement of the
proposition is obvious. O

Lemma 4. Lete: €4 (a,b) — €4 (a,b) be an injective monoid endomor-
phism such that (a)e = a™ for some positive integer n. Then there exists
s €{0,...,n—1} such that e = A\ 5.
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Proof. We observe that if ¢ is an injective endomorphism of % (a,b)
then for any idempotents ba’, b a’ € €, (a,b) the inequality b'a’ < ba’
implies that (b'a’)e < (b a’)e, because the equality b'a’ - ba/ = bla’
implies that

(bia')e - (Pal)e = (b'a' - Val)e = (b'a')e.

Since € is an injective monoid endomorphism of ¢’ (a,b), we conclude
that (b'a’)e # (baf)e and (b%a%)e = (1)e = 1 = b%". Hence there exists
a strictly increasing sequence {$;}ic, in w such that (b'a’)e = b*a® for
any ¢ € w and sg = 0. Then for any positive integer ¢ we have that
(b'a"™ e = (ba' - a)e =
= (b'a')e - (a)e =
— bsi asi . an —

— pSigSi +n

and
(bzaerl)E — (a . bz+laz+1)€ —
= (a)e - (b”rlazﬂ)s =
— g™ PSSt —
_J a", if n > siq1;
b¥it1 gt if < 5i41.

The injectivity of € implies that n < s;4.1. Since s = 0 and s; < s;41 for
any i € w, the above equalities imply that s;41 = s; + n for any positive
integer i, and hence s;11 — s; = n for ¢ € N. By induction we have that
Si+1 = 81 +in for all 4 € N. This implies that

(biai)s _ b(i—l)n+81a(i—1)n+51

for any positive integer ¢. Then we get that

_ b(ifl)n+31a(i71)n+s1 . (an)l _
_ b(i—l)n—i—sla(i—l)n—l—sl . anl _

_ b(i—l)n+51a(i+l—1)n+31
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for any i,l € w. Also, since

= (a)e =
= (a-ba)e =
= (a)e - (ba)e =

—q" . ba 51

properties of semigroup operation of %’ (a,b) and the natural partial
order on the set of idempotents of the monoid %4 (a, b) imply that s; < n,
and by injectivity of € we have that s; > 0. Put s = n — s;. Then we
obtain that s € {0,...,n — 1} and

(biai-i-l)g — b(i—l)n-‘rsla(i-‘rl—l)n—l-sl —
_ bin—n+s1a(i+l)n—n+51 _

— binfsa(l#l)nfs.
This and Proposition 4 imply that e = A, 5. O

Proposition 6. Let S, T, and U be semigroups, let h: S — T be a
homomorphism, and let g: U — T be an injective homomorphism. If
(S)h C (U)g, then the mapping f: S — U which is defined by the formula
(s)f = ((s)h)g~"! is a homomorphism. Moreover, if the homomorphism
h: S — T is injective or a monoid homomorphism, then so is f, too.

Proof. Since g: U — T is an injective homomorphism, the map f: S = U
is well defined. Also, for arbitrary si,se € .S we have that

s1-52)h)g "t =

(

(s1)b- (s )b) =
(s~ - ((s2)h)g™! =
s1)f - (s2)f,

(s1-82)f =

(
(
(
= (

because g: U — T is an injective homomorphism. Hence f: S — U is a
homomorphism. The second statement of the proposition is obvious. [

Lemma 5. Let e: €4 (a,b) — €4 (a,b) be an injective monoid endomor-
phism such that (a)e = b"a"™ P for some positive integers n and p. Then
there exists s € {0,...,n — 1} such that e = A\, ¢™.
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Proof. Since ¢ is an injective monoid endomorphism of % (a,b), argu-
ments presented in the proof of Lemma 4 imply that there exists a strictly
increasing sequence {s; };e,, in w such that (b'a’)e = b%a® for any i € w
and sg = 0. Then for any positive integers ¢ and j we have that
(b'a" e = (b'a’ - a )e =

= (bia')e - (af)e =

— pSigSi . (bnanﬂ))j —

= b%ig® - pa" TP =

[ bramtPI i > sy

T bt ifno< ;.
This implies that (¢ (a,b))e C (%4 (a,b))s". By Proposition 6 the map-
ping §: €4 (a,b) — %4(a,b) which is defined by the formula (b'a’)f =
((b'a’?)e)(s™) ! is an endomorphism of the monoid €’y (a,b). Simple veri-
fications show that (a)f = a?. By Lemma 4 we have that f = A, s for
some s € {0,...,n — 1}, i.e., \ps = &(¢")~L. Since ¢ is an injective
monoid endomorphism of €y (a,b), we conclude that e = A, ;™. O

Theorem 3 describes all injective endomorphisms of the semigroup
¢+ (a,b) and it follows from Lemmas 4 and 5.

Theorem 3. Let ¢: €4 (a,b) — €4(a,b) be an injective monoid endo-
morphism. Then only one of the following statements holds:

(1) there exist a positive integer p and s € {0,...,p — 1} such that
€= Ap,s;

(2) there exist positive integers n, p, and s € {0,...,p — 1} such that
€= ApsS".

It is natural to ask the following: what is a semigroup operation on
the subsemigroup €nd (€4 (a,b)) of End(€(a,b)) of endomorphisms
of €4 (a,b) which is generated by endomorphism of the form A, ;¢", where
p,n € Nand s € {0,...,n — 1}. Theorem 4 describes the structure of
the semigroup operation on the semigroup €nd - (¢+(a,b)) of injective
monoid endomorphisms of €, (a,b).

Theorem 4. €nd o (¢+(a,b)) is a subsemigroup of End(€4(a,b)) and

it is isomorphic to the subsemigroup of the Cartesian power N3 with the
following semigroup operation

(p1,51,11) - (P2, 52, n2) = (P2p1,P251, P2n1 — S2 + N2).
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Proof. Fix arbitrary pi,ni,pe,ne € N, s1 € {0,...,n1 — 1} and sy €
{0,...,n2 — 1}. Then for any b'a’ € €, (a,b) we have that

(((( v’ )\PLSI )‘P2,82>§n2 -

pp2(pri—si+n1)—sa+nz  p2(p1i— S1+n1) 52-i-7127 ifi#0

ifi=0and j = 0;
bp2n1 s24n2 o p2p1j+pani— s2tm2 if i=0and j # 0;
pP2p1i—p2s1+pani —sz+n2  p2p1j— P231+P2"1 s24m2 - if § £ ()

n S T
g1?2 1—s2+n2

(((aPri)g™ Aps, )72, iti=0;
(((bPri= 51ap1j SDYGM) N\, 5,)8"2, if 0 #£ 0
((1))\p2,sz)§n27 if i =0and j =0;

= & (a6 i =0and j £0; =
((bplz 81411 P17 — 51+n1)>\p2,32)§n27 ifi#£0
(1)¢n2, if =0 and j = 0;
(bp2ma— s2 gp2(p1j+n1)— s2)¢n2, ifi=0and j#0; =
(bP2 2(pri—si+n1)—s2  p2(P1j— 81+n1)*32)g"2, ifi#£0
1, ifi=0and j = 0;
pp2ni—s2+nz gp2(p1i+ni)— s2tnz ifi=0and j #£0; =

= (V'a

P2P1:p231

The above equalities imply the statement of the theorem. ]

Remark 1. 1. The endomorphisms Ax, k € w, Ay, p,n € N, s €
{0,...,n — 1} and ¢ of the monoid ¢_(a,b) are introduced by the

same formulae.

2. Repeating the proofs of corresponding statements in Sections 1
and 2 we obtain that the same statements about the corresponding
endomorphisms of the monoid ¢ (a,b). Moreover, the correspon-
ding semigroups of endomorphisms are pairwise isomorphic.
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