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Minimax equivalence method:
initial ideas, first applications and new concepts

Vitaliy M. Bondarenko

Communicated by A. P. Petravchuk

Abstract. In 2005, the author introduced for posets the no-
tion of (min, max)-equivalence (later called minimax equivalence).
This equivalence preserves Z-equivalence of the corresponding Tits
quadratic forms which play an important role in modern represen-
tation theory. The minimax equivalence method has been used
to solving many classification problems. This method was first
applied in the same year by the author together with his PhD stu-
dent M. V. Styopochkina for classifying all posets with positive Tits
quadratic form and all minimal posets with nonpositive Tits form.
These results were often cited, but the corresponding publication
is virtually inaccessible. The paper provides them (translated into
English) and also the author’s new ideas about the minimax equi-
valence method.

Introduction

The Tits quadratic forms of various algebraical objects play an important
role in modern representation theory. They were first introduced by
P. Gabriel for quivers [13].

Let Q = (Q0, Q1) be a finite quiver with the set of vertices Q0 and
the set of arrows Q1, and let n denote the order of Q0. By definition,
the Tits quadratic form of Q is an integer quadratic form qQ : Zn → Z,
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given by the equality

qQ(z) =
∑
i∈Q0

z2i −
∑
i→j

zizj ,

where i → j runs through Q1. P. Gabriel proved that the following
conditions are equivalent:

(1q) Q is of finite representation type over a field k;

(2q) the Tits quadratic form of Q is positive.

He also described all the quivers of finite type in an explicit form. If
one talks on the connected quivers (this is the main case), such quivers are
exhausted by those quivers whose underlying graphs are (simply faced)
Dynkin diagrams.

Now let S be a poset (without an element 0) and let Z0∪S denote
the set of all vectors z = (zi), i ∈ 0 ∪ S. The Tits quadratic form
qS : Z0∪S → Z of S, which is given by the equality

qS(z) = z20 +
∑
i∈S

z2i +
∑

i<j,i,j∈S
zizj − z0

∑
i∈S

zi,

was first studied by Yu. A. Drozd in [12]. He proved that the following
conditions are equivalent:

(1p) S is of finite representation type over a field k;

(2p) the Tits quadratic form of S is weakly positive1.

There is essentially not an explicit description of posets of finite types
since, up to isomorphism, there exists only five minimal posets of infinite
representation type (in more details, see below 3.2.1).

The topic discussed in this paper was inspired by these results of
P. Gabriel and Yu. A. Drozd, and for the first time, were studied by the
author together with his PhD student M. V. Styopochkina.

In contrast to quivers, the posets with weakly positive and positive
Tits forms do not coincide. The above results show that the posets with
positive Tits quadratic form are analogs of the Dynkin diagrams.

In 2005, the author and M. V. Styopochkina classified all posets of
width 2 and then in the general case with positive Tits quadratic form
(resp. [3] and [4]) and all minimal posets with nonpositive Tits form [4].
In solving these problems the minimax equivalence method, introduced
by the author in [1], was first applied. It has been subsequently used to
solve many other classification problems (see, e.g. [5–10]).

1I.e. positive on the set of vectors with nonnegative coordinates.
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Sections 1– 3 of this paper is a translation from Russian of the main
part of the paper [4] which was often cited but is virtually inaccessible.
Sections 4 and 5 present some new the author’s ideas about the minimax
equivalence method.

1. Minimax equivalence method

Throughout the paper, all posets are finite of order n > 0 (without an
element 0), but for formal convenience empty subposets are admitted. In-
stead S = (P,≤) we write simply S, and write x ∈ S, etc. All subposets
are complete (i.e. with partial orders induced by those on the posets),
and instead of subposets we often say simply subsets. One-element sub-
sets are identified with the elements themselves. In the case, when the
elements of a poset are numbered by integers, the partial order relation
is denoted by ⪯ (and always is assumed that i ≺ j implies i < j).

The notation T ∼= S for posets means that T is isomorphic to S.
When S is specific, we also say that T is of the form S. The dual poset
for S is denoted by Sop; in other words, Sop and S are equal as usual
sets, and x < y in Sop if and only if x > y in S. Posets T and S are
called antiisomorphic if T and Sop are isomorphic.

We call a subposet X of a poset S lower (resp. upper) if x ∈ X
whenever x < y (resp. x > y) and y ∈ X. For subposets X and Y of S,
we write X < Y if x < y for each x ∈ X, y ∈ Y (this is obviously true,
when X or Y is empty). The notation x >< y means that the elements x
and y are incomparable.

1.1. (Min, max)-equivalence

The concept of (min, max)-equivalence of posets, which later was also
called “minimax equivalence”, has been introduced by the author in [1].

Let us define for a minimal (resp. maximal) element a of a poset S

the poset T = S↑
a (resp. T = S↓

a) in the following way: T = S as usual
sets, T \ a = S \ a as posets, the element a is already maximal (resp.
minimal) in T , and a is comparable with x ̸= a in T if and only if they are

incomparable in S. Below we write S↑↑
xy instead of (S↑

x)
↑
y, S

↑↓
xy instead of

(S↑
x)

↓
y, etc. Let S and T be posets that are equal as usual sets. We write

T ≃(min,max) S and call T (min, max)-equivalent to S if there are posets
S1, . . . , Sp (p ≥ 0) such that, if one puts S = S0 and T = Sp, for each

i = 0, 1, . . . , p either Si+1 = (Si)
↑
yi or Si+1 = (Si)

↓
zi . More compactly,
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T ≃(min,max) S if T is equal to some poset of the form S = S
ε1ε2...εp
x1x2...xp

(p ≥ 0), where ε1, . . . , εp ∈ {↑, ↓} and x1, . . . , xp as elements of S are not
necessarily different.

Since U↑↓
aa = U and U↓↑

bb = U for a poset U , in this case one has

S = S
ε−1
p ε−1

p−1...ε
−1
2 ε−1

1
xpxp−1...x2x1

, where ε−1
i denotes the arrow with the opposite

direction compared to εi. Therefore, S is (min, max)-equivalent to T , and
hence the relation ≃(min,max) is an equivalence (transitivity is obvious).

The notion of (min, max)-equivalence ≃(min,max) can be naturally
extended to the notion of (min, max)-isomorphism ∼=(min,max). Namely,
a poset T is called (min, max)-isomorphic to a poset S if there exist
posets U , V such that T ∼= U ≃(min,max) V ∼= S. When T is (min,
max)-isomorphic to Sop, it is called (min, max)-antiisomorphic to S.

1.2. Tits quadratic form

Directly from the definition of the Tits quadratic form qS(z) for a poset
S (see Introduction) we have the following general statement.

Proposition 1. Let posets S and T be equal as usual set. When elements
x and y are comparable in S if and only if they are comparable in T , then
qS(z) = qT (z).

The following statement, proved by the author in [1], was the main
motivation for introducing the notion of (min, max)-equivalence.

Proposition 2. Let S and T be (min, max)-isomorphic posets. Then
their Tits quadratic form are Z-equivalent.

The proposition follows from the following easily checfed equality for
the Tits quadratic forms of posets X and Y = X↑

a (resp. Y = X↓
a):

qX(z) = qY (z
′), where z′0 = z0− za, z

′
a = −za and z′x = zx for any x ̸= a.

From Propositions 1 and 2 follows the next corollary.

Corollary 1. The Tits quadratic forms of (min, max)-equivalent or dual
posets simultaneously are or are not positive (nonnegative).

1.3. Min-equivalence

1.3.1. The main definitions. In the case when a poset T is (min,

max)-equivalent to a poset S with S = S↑↑...↑
x1x2...xp (p ≥ 0), we say that T

is min-equivalent to S and write T ≃min S. Recall that the elements xi
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are not necessarily different. This relation is also an equivalence relation
(Proposition 6 below).

We call a sequence α = (x1, x2, . . . , xp) of length 0 ≤ p < ∞ with

elements xi ∈ S min-admissible if the expression S = S↑↑...↑
x1x2...xp makes

sense (see above the definition of (min, max)-equivalence). In this case

we also write T = S↑
α. The length p is denoted by d(α). Note that the

empty sequence α0 is min-admissible (with d(α0) = 0). The set of all
min-admissible sequences with elements in S is denoted by P(S). The
multiplicity of occurrences of x ∈ S in α ∈ P(S) is denoted by mα(x).

For a sequence α = (x1, x2, . . . , xp) ∈ P(S) and 0 ≤ i ≤ p, we
denote α(i) = (x1, x2, . . . , xi) and α(i) = (xi, xi+1, . . . , xp). Obviously,

α(i) ∈ P(S) and α(i) ∈ P(S↑
α(i−1)

). Denote also [α]S := {x ∈ S |x = xi
for some i}.

Lemma 1. If α ∈ P(S), then the subset [α]S ⊆ S is lower.

Indeed, if there were elements a /∈ [α]S and b ∈ [α]S with a < b, and s
denoted the smallest number such that xs = b, then the inequality a < b
would also hold in S↑

α(s−1)
, i.e. xs would not be minimal in S↑

α(s−1)
.

Lemma 2. Let α = (x1, x2, . . . , xp) ∈ P(S) and X be a subposet of S.
Let us denote by αX a subsequence of α consisting of all xi ∈ X. Then
αX ∈ P(X) and X↑

αX is a complete subposet of S↑
α.

Proof. We carry out the proof by induction on m; the case m = 0 is
trivial. Let us consider the sequence α(2) which, obviously, belongs to
P(S↑

x1).

Let first x1 ̸= X. Then α
(2)
X = αX and, therefore, X is a subposet of

S↑
x1 . By the induction hypothesis for S′ = S↑

x1 , α
′ = α(2) and X ′ = X,

we have that α
(2)
X ∈ P(X) and X↑

α
(2)
X

is a complete subposet in (S↑
x1)

↑
α(2) .

Consequently, αX ∈ P(X) and X↑
αX is a complete subposet in S↑

α (since

α
(2)
X = αX and (S↑

x1)
↑
α(2) = S↑

α).

Let now x1 ∈ X. Then X↑
x1 is a subposet of S↑

x1 , and by the induction

hypothesis for S′ = S↑
x1 , α

′ = α(2) and X ′ = X↑
x1 , we have that α

(2)
X ∈

P(X↑
x1). And since αX = (x1, α

(2)
X ) with x1 a minimal element of S,

we conclude αX ∈ P(X). Further, due to the same inductive hypothe-

sis (X↑
x1)

↑
β is a complete subset of (S↑

x1)
↑
α(2) , where β = α

(2)

X↑
x1

. Since X

and X↑
x1 are equal as usual sets, β = α

(2)
X , and we have the equality
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(X↑
x1)

↑
β = X↑

αX . Besides, (S↑
x1)

↑
α(2) = S↑

α. Hence X↑
αX is a complete

subposet of S↑
α.

The set of all sequences α = (x1, x2, . . . , xp) ∈ P(S) such that
mα(x) ≤ k for arbitrary x ∈ S is denoted by Pk(S).

1.3.2. The case of sequences without repetitions. A sequence
from P(S) is called without repetitions if it belongs to P1(S).

Proposition 3. Let X be a subset of S. There exists a sequence α ∈
P1(S) with [α]S = X if and only if the subset X is lower.

Indeed, the necessity of this proposition follows from Lemma 1, and
the sufficiency from the following obvious lemma.

Lemma 3. Let S1 denote the set of all minimal elements in S and,
inductively, let Si with i > 1 denote the set of all minimal elements in

S \ (
i−1
∪
j=1

Sj). Let h(x) = i for an element x ∈ S mean that x ∈ Si.

Then there exists a sequence (x1, x2, . . . , xp) of length p = |S| satisfying
h(x1) ≤ h(x2) ≤ . . . ≤ h(xp), and any such a sequence belongs to P1(S).

Proposition 4. Let α = (x1, x2, . . . , xp) be a sequence from P1(S), and

let a, b ∈ S. Then a < b in S = S↑
α if and only if one of the following

conditions holds:

(a) a < b in S and either a, b ∈ [α]S or a, b /∈ [α]S;

(b) a >< b in S and b ∈ [α]S , a /∈ [α]S.

Indeed, since S↑
x \x = S \x, we take into account only those steps (of

the transition from S to S) which are associated with elements a or b.
Their number is 0, 1 or 2, and the proof is obvious.

Corollary 2. If α ∈ P1(S) and [α]S = S, then S↑
α = S.

Corollary 3. If α ∈ P1(S), then [α]
S↑
α
is an upper subset in S↑

α, and

[α]
S↑
α
= [α]S.

Proposition 4 shows that S↑
α does not depend on the order in which its

members are arranged. More formally, we have the following statement.

Corollary 4. If α, β ∈ P1(S) and [α]S = [β]S, then S↑
α = S↑

β.

Lemma 3 and Corollary 4 imply the next statement.
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Proposition 5. When considering a poset S, min-equivalent to a fix
poset S and having the form S↑

α with α ∈ P1(S), one can take S in a

more convenient form. Namely, in the form S = S↑
X with the lower subset

X = [α]S of S, the partial order for which is determined by Proposition 4,
i.e. a < b in S = SX if and only if one of the following conditions holds:

(a) a < b in S and either a, b ∈ X or a, b /∈ X;

(b) a >< b in S and b ∈ X, a /∈ X.

The proposition makes the invariants “more large” and clearer.

1.3.3. Three equivalences. At the beginning of this subsection we
called a poset T min-equivalent to a poset S if T is (min, max)-equivalent

to S with S = S↑↑...↑
x1x2...xp . In the dual case, when S = S↓↓...↓

x1x2...xp , we say
that T is max-equivalent to S. Formally, the duality between these two
notions is defined by the following statement.

Lemma 4. Let X be a lower subset of a poset S. Then S↑
X = S↓

S\X .

Proof. From Proposition 5 it follows that (S↑
X)↑S\X = S. Let us denote

by γ a min-admissible sequence γ = (z1, z2, . . . , zq) with [γ]
S↑
X

= S \X

(see Proposition 3). Then (S↑
X)↑γ = (S↑

X)↑S\X = S or, equivalently,

(S↑
X)↑↑↓

γ(q−1)zqzq
= S↓

zq . Since U
↑↓
aa = U for a poset U , it follows from the last

equation that (S↑
X)

↑
γ(q−1) = S↓

zq . Continuing this process, after q steps we

obtain that S↑
X = S↓

γ with γ = (zq, . . . , z2, z1). Since [γ]
S↑
X

= [γ]
S↑
X
, the

required equality is satisfied if one takes into account Corollary 4 for the
dual situation.

Using this lemma, one can easily reformulate the definitions and
statements for min-equivalence to max-equivalence.

Proposition 6. The following conditions are equivalent:

(1) T is (min, max)-equivalent to S;

(2) T is min-equivalent to S;

(3) T is max-equivalent to S.

The implications (2) ⇒ (1) and (3) ⇒ (1) are obvious. The impli-
cations (1) ⇒ (2) and (1) ⇒ (3) follow, respectively, from the equa-

lity Y ↓
x = Y ↑

Y \x for a poset U (see Lemma 4) and dual to him equality

Z↑
x = Z↓

Z\x.
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Corollary 5. Both min-equivalence and max-equivalence are equivalence
relations.

These equivalence relations are denoted as ≃min and ≃max.

1.3.4. The case of sequences from P2(S)P2(S)P2(S). The above statements on
sequences from P1(S) can be generalized to sequences from P2(S).

For α = (x1, x2, . . . , xp) ∈ P2(S), denote by [α]2S the subset of [α]S
consisting of those elements from S which appear twice in α.

Proposition 7. Let α ∈ P2(S) and a, b ∈ S. Then a < b in S = S↑
α if

and only if one of the following conditions holds:

(a) a < b in S and mα(a) = mα(b);

(b) b < a in S and mα(a) = 0,mα(b) = 2;

(c) a >< b in S and mα(b) = mα(a) + 1.

The proof of this proposition, which generalizes Proposition 4, also
follows directly from the definitions.

Corollary 6. If α, β ∈ P2(S) and β is obtained from α by rearranging its

terms (or, in other words, [α]S = [β]S and [α]2S = [β]2S), then S↑
α = S↑

β.

Lemma 5. If α ∈ P2(S), then [α]2S is a lower subset in [α]S (consequent-
ly, in S) and [α]2S < S \ [α]S.

Proof. Let us assume that [α]2S is not lower. Then there are elements
b ∈ [α]2S and a /∈ [α]2S with a < b. Let i and j > i denote such numbers
that xi = xj = b and xq ̸= b for i < q < q. Since the subset [α]S is
lower and [α]2S ⊆ [α]S , we have that a ∈ [α]S . Consequently, a = xs for

some s, and since the element b is minimal in S↑
α(i−1)

, we have s < i,

which means that a >< b in S↑
α(i−1)

. Hence a < b in S↑
α(i)

and, therefore,

in S↑
α(j−1)

(taking into account that by the condition a /∈ [α]2S , among xq
with i < q < j there is no a). But then the element b is not minimal in

S↑
α(j−1)

. Thus, α is not min-admissible and we get a contradiction.

Next, assume that the inequality indicated in the condition of the
lemma is not satisfied. Then there exist a ∈ [α]2S and b ∈ S \ [α]S such
that a >< b (since [α]2S is a lower subset, the case b < a is impossible). Let

a = xi = xj , where i < j. Since b ̸∈ [α]S , we have a >< b in S↑
α(i−1)

and,

therefore, b < a in S↑
α(i)

. Then b < a in S↑
α(j−1)

, and hence in this poset
xj = a cannot be a minimal element. Thus, α is not min-admissible and
we again come to a contradiction.
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We write (by analogy with sequences) S↑↑
Y X instead (S↑

Y )
↑
X .

Lemma 6. Let Y be a lower subset of S, X be a lower subset of Y , and
X < S \ Y . Then the expression S↑↑

Y X is correct.

Indeed, the expression S↑
Y is correct by Proposition 3, and S↑↑

Y X is

correct because due to the X < S \ Y the subset X is lower in S↑
Y too

(see Proposition 5).

Proposition 8. Let X and Y be subsets of S. There exists a sequence
α in P2(S) such that [α]S = Y and [α]2S = X if and only if Y is a lower
subset of S, X is a lower subset of Y and X < S \ Y .

Indeed, the necessity of this proposition follows from Lemmas 1 and 5,
and the sufficiency from the previous lemma and Proposition 5.

2. Min-equivalence algorithm

2.1. Additional statements

By Proposition 6 instead of (min, max)-equivalent posets we can consider
min-equivalent ones.

Let S be an arbitrary poset and n = |S|.

Lemma 7. Let α be a sequence of P(S) such that [α]S = S. Then there

exists a sequence β ∈ P(S) of length d(β) = d(α)−n such that S↑
β = S↑

α.

Proof. We will carry out the proof by induction on d(α). The base of
induction, namely the d(α) = n, holds by Corollary 2 (as β one need to
take the empty sequence).

Let now α = (x1, x2, . . . , xp) with p = d(α) > n and denote by
s = s(α) the smallest number such that mα(xs) > 1.

First consider the case s = 1. Applying the inductive hypothesis to
the poset S′ = S↑

x1 and to the sequence α′ = α(2) of length d(α′) = p− 1,
we obtain that there is a sequence β′ ∈ P(S′) = P(S) of length d(β′) =

p − 1 − n such that (S′)↑α′ = (S′)↑β′ , i.e. (S↑
x1)

↑
α(2) = (S↑

x1)
↑
β′ , from which

S↑
α = (S↑

x1)
↑
β′ . The last equality can be written as follows: S↑

α = S↑
β,

where β = (x1, β
′). Since d(β) = d(β′) + 1 = p− n, the lemma is proven

in this case.

Now consider the case s > 1. Then mα(xi) = 1 for 1 ≤ i < s. Show
that xj for 1 ≤ j < s and xs are not comparable in S. Assume the
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opposite. Since xj ̸> xs in S↑
α(j−1)

according to the definition of min-
admissible sequences, one has (taking into account the assumption) that

xj < xs in S. Therefore, xj < xs in S↑
α(j−1)

and, consequently, in S↑
α(s)

.

But since xj (as an element of S) does not occur in α(s+1) and xs = xt
for some t > s, the element xt cannot be minimal in S↑

α(t−1)
. We come to

a contradiction. So x1, . . . , xs−1 are not comparable to xs, and then by
Corollary 4 S↑

α = S↑
α′ , where α′ = (xs, x1, . . . , xs−1, xs+1, . . . , xp) ∈ P(S).

But since mα′(xs) = mα(xs) > 1 and s(α′) = 1, we come to the case
already considered above.

Proposition 9. Let T ≃min S. Then there exists a sequence β ∈ P2(S)

such that T = S↑
β.

Proof. Fix a sequence α = (x1, x2, . . . , xp) ∈ P(S) such that T = S↑
α,

and let α /∈ P2(S). Show first that [α]S = S.

Assume the opposite and fix an element a ∈ S \ [α]S . Let xs, xt
and xr (s < t < r) be equal members of the sequence α such that
mα(xr)

(xr) = 3. By Lemma 1, a >< xs or a > xs. Then in the first case

a < xs = xt in S↑
α(s)

, and, therefore, in S↑
α(t−1)

, but then it follows that

xt is not minimal in S↑
α(t−1)

, and we get a contradiction. In the second

case, a >< xs in S↑
α(t−1)

, and therefore a < xs = xt in S↑
α(r−1)

, but then xr

is not minimal in S↑
α(r−1)

, and we again get a contradiction.

So, [α]S = S, and then by Lemma 7 there is a sequence β of length

d(β) = d(α) − n such that S↑
β = S↑

α. If β /∈ P2(S), then we again apply
the above reasonings, etc. In a finite number of steps we arrive to the
desired sequence β.

2.2. Description of the algorithm

If we take into account all what is stated above (especially Propositions 5,
8, and 9), then classification of all posets min-equivalent (or, equivalently,
(min, max)-equivalent) to a fixed poset S can be carried out according
to the following scheme:

I. To describe all lower subsets of X ̸= S in S, and for each of them
to construct the poset S↑

X (X = ∅ is not excluded).

II. To describe all pairs (Y,X) consisting of a proper lower subset of
Y in S and a non-empty lower subset X in Y such that X < S \Y ; then

for each such pair to build the poset S↑↑
Y X .
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III. To choose among the obtained in I and II posets one representa-
tive from each class of isomorphic posets.

This algorithm is called the min-equivalence algorithm.

The first two steps of the algorithm can be simplified in the following
way. Let us call the subsets X and X ′ of a poset S strongly isomorphic
if there is an automorphism φ of S such that φ(X) = X ′. Similarly,
two pairs (Y,X) and (Y ′, X ′) of subposets of S is said to be strongly
isomorphic if there is an automorphism φ such that φ(Y ) = Y ′ and
φ(X) = X ′. It is obviously that the subsets X in I and the pairs (Y,X)
of subsets in II suffice to describe up to strong isomorphism.

The third step also can be simplified if the representatives are writ-
ten out up to isomorphism and antiisomorphism or equivalently up to
isomorphism and duality, etc.

Remark 1. If the representatives of the isomorphism-antiisomorphism
classes are chosen, then there are natural representatives of the isomor-
phism classes. Namely, it is necessary to complement them with the
dual posets that are not self-dual (but of course only those that occur
in III). That is why we often say “up to isomorphism and duality” in-
stead of “up to isomorphism and antiisomorphism”. In this connection,
see Theorem 2.

3. First classification results

3.1. Definitions about posets

The width of a poset S is defined as the maximum number of pairwise
incomparable elements of S and is denoted by w(S). A linear ordered
set is also called a chain. A poset with the only pair of incomparable
elements is called an almost chain. We say that a poset S is a sum of
subposets A1, A2, . . . , Am and write S = A1+A2+ · · ·+Am if S = ∪

i∈S
Ai

and Ai ∩ Aj = ∅ for any i and j ̸= i. If any two elements of different
summands are incomparable, the sum is called direct; when we want to
highlight this property, we write

∐
instead of +. A poset S is called

connected if it cannot be decomposed into a direct sum of its proper
subposets. Obviously, a nonconnected poset is decomposed into a direct
sum of connected ones uniquely up to permutation.

A sum S = A1 +A2 + · · ·+Am with Ai ̸= ∅ is said to be left (resp.
right) if x < y for some x ∈ Ai, y ∈ Aj with i ̸= j implies that i < j
(resp. i > j). Both left and right sums are called one-sided. Finally, a
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one-sided sum S is called minimax if x < y with x and y belonging to
different summands implies that x is minimal and y maximal in S.

An element of a poset S is called nodal if it is comparable to any other
element. The set of all nodal elements of S (which is a chain) is denoted
by S0. For connected posets S and T , we say that T is 0-isomorphic
S and write T ∼=0 S if T \ T0 is isomorphic to S \ S0 and |T0| = |S0|.
When T is 0-isomorphic to Sop, we say that T is 0-antiisomorphic to S.
By Proposition 1 the Tits quadratic forms of 0-isomorphic or 0-anti-
isomorphic posets are Z-equivalent.

3.2. Classification of positive posets

The Tits quadratic form is called positive if it takes a positive value on
each nonzero vector z ∈ Z0∪S , and nonpositive otherwise. A poset is
called positive (resp. nonpositive) if so is its Tits form.

3.2.1. The case of posets of width 2. All positive posets of width 2
were classified in the paper [3]. Note that the posets of width 1, which
are positive (see [3, Section 3]), were excluded from consideration.

The positive posets of width 2 and order n ≥ 8 are classified by
Theorem 1 [3].

Theorem 1. Let S be a poset of width 2 and order at least 8. Then the
Tits quadratic form of S is positive if and only if one of the following
condition holds:

(1) S is a direct sum of two chains;
(2) S is an almost chain;
(3) S is a one-sided minimax sum of two chains.

Obviously, the sufficiency of the theorem is also true for orders smaller
than 8.

The positive posets of width 2 and order smaller than 8 are classified
modulo Theorem 1 (considered for all orders) by Theorem 3 [3]. They
can only be of the order 5, 6 or 7.

Theorem 2. Let S be a poset of width 2 and order n < 8 that are not of
the forms (1)– (3). Then the Tits quadratic form of S is positive if and
only if S0 is the union of lower and upper subsets, and S is 0-isomorphic
or 0-antiisomorphic to one and only one of the following posets (which
consist of the elements 1, . . . , n and is a right sum of chains {1 ≺ . . . ≺ i}
and {i+ 1 ≺ . . . ≺ n}, where i ≤ n/2 )2:

2For formal reasons, R13 in this list is dual to R13 from Theorem 3 [3].
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(A) of order 5

R1(P1) = {2 ≺ 3 ≺ 4 ≺ 5, 1 ≺ 4},
R2(P4) = {1 ≺ 2 ≺ 5, 3 ≺ 4 ≺ 5},
R3(P3) = {1 ≺ 2, 3 ≺ 4 ≺ 5, 1 ≺ 4},
R4(P5) = {1 ≺ 2 ≺ 5, 3 ≺ 4 ≺ 5, 1 ≺ 4};

(B) of order 6

R5(P8) = {2 ≺ 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 5},
R6(P6) = {2 ≺ 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 4},
R7(P13) = {1 ≺ 2 ≺ 6, 3 ≺ 4 ≺ 5 ≺ 6},
R8(P11) = {1 ≺ 2, 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 5},
R9(P10) = {1 ≺ 2, 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 4},
R10(P18) = {1 ≺ 2 ≺ 6, 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 5},
R11(P16) = {1 ≺ 2 ≺ 6, 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 4},
R12(P14) = {1 ≺ 2 ≺ 5, 3 ≺ 4 ≺ 5 ≺ 6, 1 ≺ 4},
R13(P12) = {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6, 1 ≺ 5},
R14(P20) = {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6, 1 ≺ 5, 2 ≺ 6};

(C) of order 7

R15(P24) = {2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 6},
R16(P21) = {2 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 4},
R17(P28) = {1 ≺ 2 ≺ 7, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7},
R18(P27) = {1 ≺ 2, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 6},
R19(P26) = {1 ≺ 2, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 4},
R20(P40) = {1 ≺ 2 ≺ 7, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 6},
R21(P38) = {1 ≺ 2 ≺ 7, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 5},
R22(P36) = {1 ≺ 2 ≺ 7, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 4},
R23(P33) = {1 ≺ 2 ≺ 6, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 4},
R24(P31) = {1 ≺ 2 ≺ 5, 3 ≺ 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 4},
R25(P30) = {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6 ≺ 7, 2 ≺ 7},
R26(P29) = {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 6},
R27(P43) = {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 6, 2 ≺ 7},
R28(P42) = {1 ≺ 2 ≺ 3, 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 5, 2 ≺ 7},
R29(P44) = {1 ≺ 2 ≺ 3 ≺ 7, 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 6},
R30(P45) = {1 ≺ 2 ≺ 3 ≺ 7, 4 ≺ 5 ≺ 6 ≺ 7, 1 ≺ 5, 2 ≺ 6}.

The posets of Theorem 2 are included in a general criteria of [4] under
other numbers; they are indicated in the formulation of the theorem in
brackets.

Note that these results were obtained in [3] with using (min, max)-
equivalence but without the min-equivalence algorithm. The algorithm
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was obtained in the same year but later – namely in [4].
In view of the following statement the case of positive posets of width

2 plays an impotent role in the consideration of the general case.

Proposition 10. Any positive poset is min-equivalent to one of width 2.

Proof. It is obvious that a poset S of width w ≥ 4 is not positive3. Let
w(S) = 3, a ∈ S be a maximal element and a< := {x ∈ S |x < a}. Then
the poset S↑

a< is equal to {a}
∐

U with U = S \a< of width 2. Therefore,

(S↑
a<)

↑
a also has the width 2.

3.2.2. The general case. Positive posets in the general case were first
classified in [4].

Theorem 3. The Tits quadratic form of a poset S is positive if and only
if one of the following condition holds:

(I) S is a direct sum of two chains;
(II) S is a direct sum of a chain and almost chain;
(III) S is a one-sided minimax sum of two chains;
(IV) S is (min, max)-isomorphic or (min, max)-antiisomorphic to

one of the poset P1, P5, P6, P14, P21, P31, P33, P45 of Theorem 2.

Note that a chain in (I) or (II) can be empty.
We first prove two lemmas.

Lemma 8. Let S be a poset of the form (n) = (1), (2) or (3) of Theorem 1
and T be (min, max)-equivalent to S. Then T is of the form (N) = (I),
(II) or (III) of Theorem 3. Moreover, any poset of the form (II) is (min,
max)-equivalent to a poset of the form (2).

Taking into account that the posets of the form (n) are also of the
form (N), and the forms themselves are self-dual, it is enough for the

proving of the first part to consider only the cases T = S↑
a with a being

minimal. It is easy to see that T is of the form (I) for (n) = (1), and
of the form (II) or (III) for (n) = (2), (3). To prove the second part one

need to take, for a poset T of the form (III), the poset T ↑
A with A being

the chained summand.

Lemma 9. Let a poset T be isomorphic to a poset S from Theorem 2.
Then T is (min, max)-isomorphic or (min, max)-antiisomorphic to one
of the poset P1, P5, P6, P14, P21, P31, P33, P45.

3For the poset U which consists of four incomparable elements 1, 2, 3, and 4,
qU (2, 1, 1, 1, 1) = 0.
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The proof follows from the following isomorphisms:

(P2)
↑↑
11 ≃ P1, (P3)

↓
2 ≃ P1, (P4)

↑
1 ≃ P op

3 ; (P7)
↑↑
11 ≃ P6, (P8)

↑
2 ≃ P op

6 ,

(P9)
↑↑
11 ≃ P8, (P10)

↓
2 ≃ P6, (P11)

↓
2 ≃ P8, (P12)

↓
3 ≃ P11, (P13)

↑
1 ≃ P op

12 ;

(P15)
↑↑
11 ≃ P14, (P16)

↓↓
66 ≃ P17, (P17)

↓
3 ≃ P14, (P18)

↓↓
66 ≃ P19, (P19)

↓
3 ≃ P16,

(P20)
↓
3 ≃ P18; (P22)

↑↑
11 ≃ P21, (P23)

↑↑
11 ≃ P22, (P24)

↑
1 ≃ P op

21 , (P25)
↑↑
11 ≃ P24,

(P26)
↑↓
12 ≃ P op

24 , (P27)
↓
2 ≃ P24, (P28)

↑
1 ≃ P op

26 , (P29)
↓
3 ≃ P27, (P30)

↓
3 ≃ P28;

(P32)
↑↑
11 ≃ P31, (P36)

↓↓
77 ≃ P37, (P37)

↓
3 ≃ P31, (P40)

↑↑
12 ≃ P op

31 ,

(P41)
↑↑
11 ≃ P40, (P43)

↓
3 ≃ P40; (P34)

↑↑
11 ≃ P33, (P35)

↑↑
11 ≃ P34,

(P38)
↓↓
77 ≃ P39, (P39)

↓
3 ≃ P33, (P42)

↓
3 ≃ P38, (P44)

↑
4 ≃ P op

42 .

We will use Corollary 1 by default. Then the sufficiency of Theorem 3
follows: for (I)–(III), from Theorem 1 (sufficiency) and Lemma 8 (the
second part); for (IV), from Theorem 2 (sufficiency). The necessity of
Theorem 3 follows from Proposition 10, Theorems 1 and 2 (necessity),
Lemma 8 (the first part) and Lemma 9.

A positive poset S is called serial if there is an infinite increasing
sequence S ⊂ S(1) ⊂ S(2) ⊂ . . . with positive terms, and nonserial if
otherwise.

The conditions (I)–(III) of Theorem 3 classify all the serial positive
posets. The nonserial posets were classified in [4], using (IV) and the
algorithm of min-equivalence (see Section 2). There are, up to isomor-
phism and antiisomorphism, 108 nonserial positive posets. A list of such
posets is also published in more accessible paper [11].

3.3. Classification of PPP -critical posets

A minimal nonpositive poset is called P -critical. More precisely, a non-
positive poset is called P -critical if any its proper subposet is positive.

3.3.1. Kleiner critical posets. In the paper [14], M. M. Kleiner
proved that a poset is not of finite representation type if and only if it
does not contain, up to isomorphism, the following subposets:

K1 = {1, 2, 3, 4} with pairwise incomparable elements;

K2 = {1 ≺ 2, 3 ≺ 4, 5 ≺ 6};
K3 = {1, 2 ≺ 3 ≺ 4, 5 ≺ 6 ≺ 7};
K4 = {1, 2 ≺ 3, 4 ≺ 5 ≺ 6 ≺ 7 ≺ 8};
K5 = {1 ≺ 2, 3 ≺ 4, 1 ≺ 4, 5 ≺ 6 ≺ 7 ≺ 8}.
Posets of the form Ki are called Kleiner critical (or simply Kleiner)

posets.

Lemma 10. All Kleiner posets are P -critical.
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Proof. The Kleiner posets are not positive by the just mentioned result
from [14] and the conditions (2p) of Introduction.

Further, it is easy to see that each proper subposet of Ki is either a
direct sum of two chains, or a direct sum of a chain and an almost chain,
or isomorphic to a subposet of one of the following posets:

U = {1, 2 ≺ 3, 4 ≺ 5 ≺ 6 ≺ 7}; V = {1 ≺ 2 ≺ 3, 4 ≺ 5, 6 ≺ 7, 4 ≺ 7}.
In the first two case it need to use Theorem 3. The posets U and V

are positive by Theorem 2 (and Corollary 1) since U↑
1 and V ↑

{1,2,3} are,
respectively, of the form R17 and R24.

3.3.2. The main theorem. The main result on P -critical posets is
given by the following theorem from [4].

Theorem 4. A poset S is P -critical if and only if it is (min, max)-
equivalent to a Kleiner critical poset.

This theorem allows to classify all P -critical posets by applying the al-
gorithm of min-equivalence (see section 2) to the posets K1−K5. A comp-
lete table of such posets, up to isomorphism and antiisomorphism, is
writen in [4]; see also more accessible papers [10], [11]. The table con-
sists of 75 P -critical posets.

3.3.3. Proof of Theorem 4. The main statement in the proof of
Theorem 4 is the following.

Proposition 11. If each poset which is (min, max)-equivalent to a fixed
poset S does not contain any Kleiner critical poset, then the Tits quadra-
tic form of S is positive.

Let a be a maximal element of S, and S′ = S↑
a< with a< := {x ∈ S |

x < a}. Then S′ = A
∐

B, where A = a and B = S \ a. Fix a poset
T ≃(min,max) S of the same form with a linear ordered A of the maximal
order and some B. If B = ∅ or w(B) = 1, then T is positive by
Theorem 1 and, therefore, so is S (see Corollary 1). The case w(B) ≥ 3
is impossible since S and, therefore, T contains a poset of the form K1.
Thus, we should consider the case w(B) = 2.

Lemma 11. Let w(B) = 2. Then

(a) B has two minimal elements, for example b and c, and two maxi-
mal elements, for example f and g;

(b) there are incomparable minimal and maximal elements in B;

(c) if b < x < f and c < y < g, then x and y are not comparable.
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Indeed, if B has only one minimal (resp. maximal) element, for

example h, then T ′ = T ↑
h (resp. T ′ = T ↓

h ) is equal to (B \ h)
∐
(A ∪ h),

and since w(A ∪ h) = 1, this contradicts the choice of T . Further, if the
condition (b) is not satisfied, then (taking into account the condition (a))

we have that the subset in S↑↑
bc , consisting of the elements b, c, f, g, is of

the form K1, what contradicts the condition of the proposition. Finally,
if the condition (c) is not satisfied (but the conditions (a) and (b) are

satisfied), then the subset in (S↑
{x}≤)

↑
c , consisting of elements b, x, y, g, f, c,

is of the form K2 and again we come to a contradiction.

We continue the proof of the proposition. If B is a direct sum of two
subsets of width 1, then T is positive by Theorem 3 and Lemma 10. So,
by the last lemma only the following two cases are possible:

(1) T = A
∐

B, where A = {z1 < z2 . . . < zr} and B = {x1 <
x2 . . . < xp, y1 < y2 . . . < yq, xi < yj} with r > 0 and either i = 1, j > 1
or i < p, j = q;

(2) T = A
∐

B, where A = {z1 < z2 . . . < zr} and B = {x1 <
x2 . . . < xp, y1 < y2 < . . . < yq, x1 < yj , xi < yq} with r > 0, 1 < i < p,
1 < j < q.

Note that in case (1) p, q > 1 and in case (2) p, q > 2.

(A) Let us first focus on the case (1) for i = 1, j = q. We assume
that p ≤ q (the case of p ≥ q is considered in the dual way). Then r < 4,
otherwise T contains K ∼= K5.

If r = 2, 3, then p = q = 2, otherwise T contains K ∼= K2; and then,
by Lemma 10, T is positive. If r = 1 and q = 2, 3 or p = 2, q = 4, the
poset T is positive since so is T ↑

z1 by Theorem 2 (see the posets R4, R10,
S20 and R29). The rest cases are impossible: if p > 2, q = 4, then T

contains K ∼= K3, and if q > 4, then T ↑
yq contains K ∼= K5.

(B) Let us now consider the case (1) for (i, j) ̸= (1, q). We assume
that i ̸= 1, j = q (the case i = 1, j ̸= q is viewed in the dual way).

Then q = 2 since otherwise the subset in T ↓
yq , consisting of elements

yq, z1, x1, x2, y1, y2, is of the form K2. And if r = 1, then (T ↑
{xi}≤

)↑y1 is of

the form discussed in (A); if r > 1, then i = p− 1 (otherwise the subset
in T , consisting of elements z1, z2, xp−1, xp, y1, y2, is of the form K2) and,

consequently, T ↓
y2 is also of the form discussed in (A). So, it all comes

down to the already considered case (A).

(C) Let us finally consider case (2). We assume that p ≤ q (the case
p ≥ q is viewed in the dual way). Then r = 1 since otherwise the subset
in T , consisting of elements z1, z2, xi, xp, y1, yj , has the form K2. Next,
p = 3, otherwise T \{x1, yq} contains K ∼= K3. Then q = 3 and the poset
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T is positive since so is T ↑
z1 by Theorem 2 (see the poset R30).

Proposition 11 is proved.

Proof of Theorem 4. Corollary 1 and Proposition 6 (the equiva-
lence of (1) and (2)) are used by default.

Sufficiency. Let S be (min, max)-equivalent to a Kleiner poset K.
Then by Lemma 10 it is not positive. From Lemma 2 it is follows that
any proper subposet T of S is positive. Indeed, otherwise K has a proper
subposet Q (min-equivalent to T ) which is not positive. But this contra-
dicts to the fact that K is P -critical (by Lemma 10). So S is P -critical.

Necessity. Let S be P -critical. Then it is not positive. S′ ≃(min,max)

S that contains a Kleiner poset K ∼= Ki. But then by Lemma 2 S′ = K
(otherwise S has a proper nonpositive subposet), and thus S is (min,
max)-equivalent to the Kleiner critical poset Ki.

4. New minimax algorithms: philosophy and descriptions

Let us denote by Min-ALG the algorithm of classifying all posets min-
equivalent to a fixed poset (introduced in [4] and considered above in
Subsection 2.2). The dual algorithm, i.e. one with respect to max-equi-
valence (see 1.3.3) is denoted by Max-ALG.

In this section we introduce a series of algorithms of such type asMin-
ALG and Max-ALG, but which are (in some sense) more symmetrical.
The basic among them are the two following, which are dual to one
another and which are denoted by M•ALG and M•ALG.

Step I for M•ALG (resp. M•ALG).

To describe, up to strongly isomorphism, all lower (resp. upper) subsets

X ̸= S in S, and for each of them to construct the poset S↑
X (resp. S↓

X);
X = ∅ is not excluded.

Step II for M•ALG and M•ALG.

To describe, up to strongly isomorphism, all pairs (X,Y ) consisting of a
proper lower subset X ⊂ S and a proper upper subset Y ⊂ S such that
X < Y ; then for each such pair to build the poset S↑ ↓

XY (= S↓ ↑
Y X).

Step III for M•ALG and M•ALG.

To choose among the obtained in I and II posets one representative from
each class of isomorphic posets.

The new algorithms M•ALG and M•ALG are equivalent to the “old”
ones Min-ALG and Max-ALG in the sense that one can choose, up
to isomorphism, the same representatives of the isomorphism classes of
obtained posets. This follows from Lemma 4 (used in Step II).
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Step II in the algorithms M•ALG and M•ALG (unlike Step II in
Min-ALG and Max-ALG) is symmetric with respect to lower and upper
subposets.

Step I also can be modified to symmetric. For instance, one can take
all lower subsets of order 0 ≤ s ≤ [n/2] and all upper subsets of order
1 ≤ s ≤ [n− 1/2]. This follows from Lemma 4.

Consider now two examples which illustrate other possibilities for
modification of Step I–III in M•ALG (resp. M•ALG).

Example 1. Let S be a self-dual poset of order n, and the posets in Step
III are considered up to isomorphism and duality. Then in Step I one can
take not all lower (resp. upper) posets X but only of order 0 ≤ s ≤ [n/2],
and in Step II only with the condition |X| ≤ |Y |. This follows from the

equality S↑
X = (S↑

S\X)op which is true by Proposition 5.

Example 2. The notion of 0-isomorphism of connected posets (see Sub-
section 3.1) was generalized for all posets in [3]. An element of a poset S
is called local nodal, if it is nodal in a direct summand of S. A bijective
map between posets that preserve in both directions the comparability
of elements is called 0-isomorphism if it induces an isomorphism between
their largest subposets without local nodal elements. When a poset S
is primitive (i.e., a direct sum of chains) and in Step III the posets are
considered up to 0-isomorphism, Step II can be ignored since it does not
give new posets. This follows from the main result of [2].

If we talk about the modification of Step III in general, one can write
out the representatives up to not isomorphism but up to more powerful
equivalence relations. Note that the classification of nonserial positive
posets of width 2 [3] was obtained up to 0-isomorphism and 0-antiiso-
morphism, and of width 3 [4] up to isomorphism and antiisomorphism.
It is obvious that in each of such cases one can easily to write out repre-
sentatives of all classes of general isomorphism (see Remark 1 in 2.2).

Remark 2. The use of 0-isomorphism (as the strongest isomorphisms in
our situation) together with 0-antiisomorphisms (or, equivalently, 0-anti-
isomorphisms and the duality – see again Remark 1) is justified by the
smallest number of classes in Step III. For example, the number of non-
serial positive posets (resp. P -critical posets) up to isomorphism and
duality is equal to 108 (resp. 75), while up to 0-isomorphism and duality
is equal to 88 (resp. 59).

By an MM -ALG we meant an algorithm which is a modification of
M•ALG or M•ALG) (including themselves) with respect to the steps
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I–III in the sense which was discussed above.
Note that the orders of classes in Step III are small for each of our

algorithms. The question of when each class consists of only one poset
remains open even in the case when the posets in Step III are considered
only up to usual isomorphism (then the classes consist of the smallest
number of posets).

Despite the fact that all such algorithms are equivalent, the examp-
les show that their diversity can be useful in exploring various specific
problems.

In conclusion of this section we highlight one feature of all new al-
gorithms. If the (min, max)-equivalences that occur in Steps I and II
are in the initial terms (see Subsection 1.1), we obtained only sequences
without repetitions. Recall that for the case of the algorithm Min-ALG
or Max-ALG, all the corresponding min-admissible or max-admissible
sequences in Step II twice contain some elements. This feature can to
create not only technical but also aesthetic advantages.

5. Minimax systems of generators

The classifications of the non-serial positive posets (see 3.2.2), P -critical
posets (see 3.3), NP -critical posets (see [5] and [6]), etc., are carried
out up to isomorphism and antiisomorphism according to the following
scheme:

(1) it is determined some subset of a fixed class of posets (for example,
for the class of all P -critical posets) such that any poset from this class
is (min, max)-isomorphic or (min, max)-antiisomorphic to a poset from
the chosen subset;

(2) to the posets of this set is applied the algorithm described in 3.34.

In this part of the paper the author introduces new notions that not
only formalize this process but also lead to new ideas.

Let K be a class of finite posets closed under isomorphism and duality
(or, equivalently, isomorphism and antiisomorphism), and let U = {Ui}
be a set of posets Ui ∈ K with i running through a (finite or infinite)
set I. We say that U is a minimax system of generators of K if any
X ∈ K is minimax isomorphic to a poset Ui for some i ∈ I. In the case
when any proper subset of U is not a minimax system of generators, the
system of generators U is said to be minimal.

4Other algorithms are discussed in details in the previous section.
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Further, the set U we call minimax d-system of generators if any
X ∈ K is minimax isomorphic to a poset Ui or Uop

i for some i ∈ I.
A special case of such system is a system for which every poset Ui is
self-dual (i.e. isomorphic to its dual). We call it self-dual.

Finally, a minimal minimax system (or d-system) U = {Ui} of genera-
tors of K is called semicanonical if every Ui is the only in its minimax
isomorphism class, which satisfies a fixed property αi of posets. In the
case when all αi are the same, the system U is called canonical.

Let us give three example.

Example 3. The posets P1, P5, P6, P14, P21, P31, P33, P45 from Lemma 9
form a minimal minimax d-system of generators for all non-serial positive
posets.

Example 4. The Kleiner posets Ki, 1 ≤ i ≤ 5 (see 3.2.1) form a cano-
nical self-dual minimax system of generators for all minimal nonpositive
posets.

Example 5. Let ni denote the order of the Kleiner poset Ki (1 ≤ i ≤ 5).
Put N0 = K1

∐
{n1+1} and Ni = Ki∪{ni+1} with ni ≺ ni+1. We call

Nj (0 ≤ j ≤ 5) Nazarova critical posets (they are critical with respect
to tameness of posets [15]). From the main result of the paper [5] it
follows that these posets form a canonical self-dual minimax system of
generators for all minimal nonnegative posets.

Remark 3. It should be emphasized that in mathematics, for a set of
objects S with an equivalence relation R, a canonical form is defined as a
choosing system of representatives of the equivalence classes. In practice,
one tries to choose the canonical objects to be “the most simple”, but
in general case this property is formally indefinable. The definitions of
semi–canonical and canonical systems proposed by the author also are
not entirely correct (since a set of valid properties is not specified), but
even its intuitive perception is useful and leds to new ideas and results.
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