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Communicated by R. Wisbauer

Abstract. In this article, we define a module M to be ZPG
if and only if for each zp-submodule X of M there exists a direct
summand D such that X ∩ D is essential in both X and D. We
investigate structural properties of ZPG modules and locate the
implications between the other extending properties. Our focus is
the behavior of the ZPG modules with respect to direct sums and
direct summands. We obtain the property is closed under right
essential overring and rational hull.

Introduction

Throughout this paper, all rings are associative with unity and R stands
for such a ring. All modules are unital right R-modules. For a moduleM ,
consider the following relations on the set of submodules ofM : (i)XαY if
and only if there exists A ≤ M such that X ≤e A and Y ≤e A; (ii) XβY
if and only if X∩Y ≤e X and X∩Y ≤e Y . Note that β is an equivalence
relation and is equivalent to a relation defined in Goldie [5]. Recall that
a module is called CS (or, extending) if every submodule is essential in a
direct summand. Equivalently, every complement submodule is a direct
summand (see [3, 13]). Many authors have studied various generalizati-
ons of CS-modules [1, 2, 7, 10, 11, 12]. In particular, a module M is cal-
led CLS if every z-closed submodule ofM is a direct summand ofM [12].
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Recall that a submodule N of M is called z-closed provided that M/N is
nonsingular. A useful generalization of CS-modules, namely, Goldie ex-
tending modules, was investigated [1]. A module M is Goldie extending
if and only if for every submodule X of M there exists a direct summand
D of M such that X ∩D is essential in both X and D. Following [10, 11]
a module is called a C11-module (or satisfies C11) if every submodule of
the module has a complement which is a direct summand. In addition, a
module is called Cz

11-module (or satisfies Cz
11) if each z-closed submodu-

le has a complement which is a direct summand [7]. Good sources for
literature about CS-modules and a forementioned generalizations of ex-
tending modules are [3, 13]. To this end, a submodule N of M is called
projection invariant, if f(N) ⊆ N for all f2 = f ∈ End(MR). Then a
moduleM is called PI-extending if every projection invariant submodule
is essential in a direct summand of M (see [2]).

This paper studies the behavior of z-closed projection invariant (zp)
submodules of the condition G-extending. We obtain basic results about
zp-submodules. We call MR is a ZPG-module if for every zp-submodule
X ofM there exists a direct summandD ofM such thatX∩D is essential
in both X and D. We show that a direct sum of ZPG-modules is also
ZPG-module. Furthermore, we investigate conditions which provide the
inheritance of ZPG-modules by direct summands. In the last section,
we focus on right essential overring of a right ZPG ring enjoys with the
ZPG property. We show that if M is ZPG, then Ẽ(M) is ZPG where
Ẽ(M) is the rational hull of M .

Let R be a ring and M a right R-module. If X ⊆ M , then X ≤ M ,
X ≤e M , Z(M), E(M), Ẽ(M) and End(MR) denoteX is a submodule of
M , X is an essential submodule of M , the singular submodule of M , the
injective hull ofM , the rational hull ofM , and the ring of endomorphisms
of M , respectively. For R, Tm(R) and Mm(R) symbolize the ring of
m × m upper triangular matrices over R and the ring of m × m full
matrices over R, respectively. Other terminology and notation can be
found in [3, 4, 6, 8, 9, 13].

1. Basic results

This section is devoted to the fundamental properties of the set of
zp-submodules. We call M is ZPG-module if and only if for each zp-sub-
module X of M , there exists a direct summand D of M such that X ∩D
is essential both X and D. It is clear that zp-submodules are building
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bricks to the establishment of ZPG-modules. We begin by mentioning
some basic facts projection invariant submodules of a module.

Lemma 1. Let M be a module.

(i) Any intersection of projection invariant submodules of M is a pro-
jection invariant submodule of M .

(ii) If X ≤ Y ≤ M such that X is projection invariant in Y and Y is
projection invariant in M , then X is projection invariant in M .

(iii) If M =
⊕
i∈J

Xi and S is a projection invariant submodule of M ,

then S =
⊕
i∈J

πi(S) =
⊕
i∈J

(Xi ∩ S), where πi is the ith projection

homomorphism of M .

Proof. It is straightforward to check.

Lemma 2. Let MR be a module.

(i) Any intersection of zp-submodules of MR is a zp-submodule of MR.

(ii) Let X, Y be submodules of MR such that X ≤ Y . If X is a
zp-submodule of Y and Y is a zp-submodule of MR, then X is a
zp-submodule of MR.

(iii) Let M = M1 ⊕M2, where M1 is a zp-submodule of MR. For any
zp-submodule N of M2, M1 ⊕N is a zp-submodule of MR.

Proof. (i) Assume A,B are zp-submodules of MR. Then A,B are pro-
jection invariant in MR and Z(M/A) = Z(M/B) = 0. By Lemma 1,
A ∩ B is projection invariant in MR. Now, define the homomorphism
α : M → (M/A)⊕ (M/B) by α(m) = (m+A,m+B) where m ∈ MR. It
is clear thatM/(A∩B) ∼= α(M) ≤ (M/A)⊕(M/B). Hence Z(M/(A∩B))
= 0. So A ∩B is a zp-submodule of MR.

(ii) Let X be a zp-submodule of Y and Y be a zp-submodule of
MR. Then X be a projection invariant submodule of Y and Y be a
projection invariant submodule of MR. Also, we have that Z(M/Y ) =
Z(Y/X) = 0. By Lemma 1, X is projection invariant in MR. Since,
M/Y ∼= (M/X)/(Y/X), Y/X is z-closed submodule in M/X. Therefore
Z(M/X) ≤ Y/X. Then Z(Z(M/X)=Z(M/X) = (M/X) ∩ (Y/X)=0.
It follows that X is a zp-submodule of MR.

(iii) By [13, Lemma 4.122], M1 ⊕ N is a projection invariant sub-
module of M . Since M/M1 ⊕N ∼= M2/N and Z(M2/N) = 0, M1 ⊕N is
a z-closed submodule of M . Hence M1⊕N is a zp-submodule of M .
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Now, we locate the ZPG-module with respect to several known gene-
ralizations of the extending property.

Proposition 1. Consider the following conditions of a module MR:

(i) M is G-extending;

(ii) M is C11;

(iii) M is PI-extending;

(iv) M is ZPG.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), but these implications are not reversible,
in general.

Proof. (i) ⇒ (ii) ⇒ (iii) are clear.
(iii) ⇒ (iv). Let X be a zp-submodule of M . There exists c2 = c ∈

End(MR) such that X ≤e cM . Therefore, M is a ZPG-module.
To see that (ii) ⇏ (i), let R = T2(A) where A is a right Ore do-

main that is not a division ring. By [1, Proposition 1.6], R is a right
C11-module, but RR is not a right G-extending module.

We conjecture that (iii) ⇏ (ii) in Proposition 1; but, at this time,
we have no example to support this conjecture.

(iv) ⇏ (iii). Let F be any field and VF be a vector space over F
with dimFV ≥ 2. Let R be the trivial extension of F with VF , i.e.,

R =

[
F V
0 F

]
=

{[
f v
0 f

]
: f ∈ F, v ∈ V

}
. Thus R is an indecomposable

R-module. Note that R is not uniform, hence R is not a PI-extending

module. R has only three nontrivial submodules namely, I1 =

[
0 v1F
0 0

]
,

I2 =

[
0 v2F
0 0

]
and I3 =

[
0 V
0 0

]
where v1, v2 ∈ V . Since Z(RR) ̸= 0,

0 is not z-closed ideal. On the other hand, I3 is essential in RR. Thus
R/I3 is singular which gives that I3 is not a z-closed submodule of R.
Moreover I23 = 0 so I23 ≤ I1. However I3 is not contained in I1. Thus
I1 is not a z-closed submodule of R, similarly I2 is not a z-closed sub-
module of R (see [13, Example 5.59]). It follows that R is the only
z-closed submodule in itself. Since every submodule of an indecompo-
sable module is projection invariant, R is a zp-submodule. Hence RR is
a ZPG-module.

Corollary 1. Let M be an indecomposable. If M is a ZPG-module
then M is a Cz

11-module.
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Proof. Let 0 ̸= X be a z-closed submodule of M . Since every sub-
module of an indecomposable module is projection invariant, X is a
zp-submodule. There exists a direct summand D submodule of M , such
that XβD. By [13, Lemma 5.58], X is a complement in M . So, X = M ,
Hence, M is a Cz

11-module.

Proposition 2. Let M be a module such that End(MR) is Abelian and X
be a z-closed submodule of M implies X=

∑
i∈I

hi(M), where hi∈End(MR).

Then M is a ZPG-module if and only if M is a CLS-module.

Proof. Assume M is a ZPG-module and X is a z-closed submodule
of M . There exists e = e2 ∈ End(MR) such that eX = e

∑
i∈I

hi(M) =∑
i∈I

hi(eM) ⊆ X. So X is a zp-closed submodule ofM . By the hypothesis,

XβeM . Then X = eX ⊕ (1 − e)X. Since X is a projection invariant
submodule of M , by Lemma 1, X = (X ∩ eM)⊕ (X ∩ (1− e)M). Hence
X ∩ eM = eX is essential both in eM and X. Therefore, X ∩ (1− e)M
= 0. Thus X = eX. Since X is a z-closed submodule of M , eM/X =
Z(eM/X) ⊆ Z(M/X) = 0 implies that X = eM . It follows that M is
a CLS-module. For the converse, let M be a CLS-module and Y be a
zp-submodule of M . Then by [13, Lemma 5.58], Y is a direct summand
of M . Hence M is a ZPG-module.

In next results we obtain characterizations of the ZPG-module for
arbitrary module.

Proposition 3. Let M be a module. The following condition are equiva-
lent.

(i) M is a ZPG-module.

(ii) For each zp-submodule Y of M , there exists X ≤ M and a direct
summand D of M such that X ≤e Y and X ≤e D.

(iii) For each zp-submodule Y of M , there exists a complement L of Y
and a complement K of L such that Y βK and every homomorphism
f : K ⊕ L → M extends to a homomorphism f : M → M .

Proof. (i) ⇒ (ii). Let Y be a zp-submodule of M . Hence there exists a
direct summand D of M such that Y βD. Now take X = Y ∩D.

(ii) ⇒ (iii). From (ii), there exists D, D
′
such that Y ∩ D ≤e Y ,

Y ∩D ≤e D and M = D ⊕D
′
. Take D = K and D

′
= L.
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(iii) ⇒ (i). Let Y be a zp-submodule ofM . Then by [13, Lemma 5.58],
Y is a complement in M . By [13, Lemma 3.97], K is a direct summand
of M . Hence M is a ZPG-module.

Theorem 1. Let M be a module. The following condition are equivalent.

(i) M is ZPG-module.

(ii) For each zp-submodule X of M , there exists e2 = e ∈ End(E(M))
such that Xβe(E(M)) and eM ≤ M .

Proof. (i) ⇒ (ii). Let X be a zp-submodule of M . Since M is a ZPG-
module, there exists a direct summand D of M such that X ∩ D is
essential in X and D. Assume M = B ⊕D for some B is a complement
of D. Then, E(M) = E(B) ⊕ E(D). Let e : E(M) → E(D) be the
canonical projection. For m ∈ M , if m = b + d with b ∈ B and d ∈ D,
then e(m) = e(d) = d. Hence X ∩D ≤ X ∩E(D) ≤ X and X ∩E(D) is
essential in X. Since X ∩D ≤e D ≤e E(D), X ∩D is essential in E(D).
So XβE(D) = Xβe(E(M)). In addition eM ⊂ D ⊆ M .

(ii) ⇒ (i). Let X be a zp-submodule of M and Xβe(E(M)) and
eM ⊂ M for some e2 = e ∈ End(E(M)). Then there exists a direct
summand D of M , X ∩ E(D) is essential in both X and E(D). Since
X ∩D ≤e X ∩E(D), X ∩D is essential in both X and E(D). So X ∩D
is essential in D. Hence XβD and X is a ZPG-module.

Proposition 4. Let M be an indecomposable module. If M is a ZPG-
module and X is a zp-submodule of M then M/X is a ZPG-module.

Proof. Let Y/X be a zp-submodule of M/X. Since M is indecomposable
and M/Y ∼= (M/X)/(Y/X), Y is a zp-submodule of M . By hypothesis,
there exists e2 = e ∈ End(MR) such that Y βeM . Since X is projection
invariant in M , X = (X ∩ eM) ⊕ (X ∩ (1 − e)M). Then X ∩ eM =
X ∩ (Y ∩ eM) ≤e X ∩ Y = X. So X ≤ eM . Hence eM/X is a direct
summand of M/X. Since Y βeM and X is a zp-submodule of M , by
[6, Proposition 1.4], we obtain (Y/X)β(eM/X). Therefore, M/X is a
ZPG-module.

2. Decompositions

In this section, we deal with direct sums and summands of the class
of ZPG-modules. We show that any finite direct sum of modules with
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ZPG is also a ZPG-module. To this end, we obtain several results on
the inheritance of ZPG property on direct summands.

The next result shows that a finite direct sum of ZPG-modules is a
ZPG-module.

Theorem 2. Let M =
n⊕

i=1
Mi for some submodules Mi of M (1 ≤ i ≤ n).

If each Mi is a ZPG-module, then M is a ZPG-module.

Proof. We prove the result for n = 2 and then apply the induction argu-
ment on n. Let M = M1 ⊕M2 and Y be any zp-submodule of M . By
Lemma 2, Y ∩M1 is a zp-submodule of M1 and Y ∩M2 is a zp-submodule
of M2. Then there are direct summands D1 of M1 and D2 of M2 such
that (Y ∩M1) ∩D1 = Y ∩D1 ≤e D1 and Y ∩D1 ≤e Y ∩M1 similarly
Y ∩ D2 ≤e D2 and Y ∩ D2 ≤e Y ∩ M2. So, (Y ∩ D1) ⊕ (Y ∩ D2) ≤
Y ∩ (D1 ⊕D2) ≤ D1 ⊕D2, Y ∩ (D1 ⊕D2) ≤e D1 ⊕D2. It follows that,
(Y ∩D1)⊕ (Y ∩D2) ≤ Y ∩ (D1⊕D2) ≤ (Y ∩M1)⊕ (Y ∩M2) = Y , then
Y ∩ (D1 ⊕D2) ≤e Y . Since D1 ⊕D2 is a direct summand of M , M is a
ZPG-module.

Lemma 3. Let M be a module and X be a zp-submodule of M . If M
is a ZPG-extending then X is a ZPG-module.

Proof. Assume S is a zp-submodule of X. By Lemma 2. S is a zp-sub-
module of M . Then there exists a direct summand D of M such that
SβD. Let π : M → D be the projection endomorphism. Then S ∩D =
π(S∩D) ≤ π(X)∩D = π(X). Hence S∩π(X) is essential in S and π(X).
So Sβπ(X). By Lemma 1, X = (D∩X)⊕ (D

′ ∩X) where M = D⊕D
′
.

Thus π(X) = D∩X. Therefore, π(X) is a direct summand of X. Hence,
X is a ZPG-module.

Corollary 2. Let M = M1 ⊕ M2 be a direct sum of uniform modules
M1 and M2. Then every direct summand of M is a ZPG-module.

Proof. Let 0 ̸= D be a direct summand of M . If D = M , then D is a
ZPG-module by Proposition 1. If D ̸= M , then D is uniform and hence
it is a ZPG-module.

Recall that the decomposition M = X⊕Y is said to be exchangeable
if for any direct summand K, there exist X ′ ≤ X and Y ′ ≤ Y such that
M = K ⊕X ′ ⊕ Y ′ (see [9, Definition 4]).
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Proposition 5. If M is ZPG and the decomposition M = M1 ⊕ M2

is exchangeable and M1 is a zp-submodule of M , then M1 and M2 are
ZPG-modules.

Proof. By Theorem 2, M1 is a ZPG-module. Let X be a zp-submodule
ofM2. By Lemma 2(iii), M1⊕X is zp-submodule ofM . SinceM is ZPG-
module, there exist a D direct summand of M and essential submodule
Y of D such that Y ≤e M1 ⊕ X and M ′

i ≤ Mi (i = 1, 2). Since M is
exchangeable, M = D ⊕M ′

1 ⊕M ′
2. Therefore, Y ∩M ′

1 = 0 and M ′
1 = 0.

So, M2 = M ′
2 ⊕ (D ∩M2). Now Y ≤e D and Y ≤e M1 ⊕ X yield that

Y ∩M2 ≤e D∩M2 and Y ∩M2 ≤e (M1⊕X)∩M2 = X⊕(M1∩M2) = X.
It follows that M2 is ZPG-module.

Before proving our main result on direct summands of a ZPG-module
recall the following conditions (see [13]). A module M is said to have;

(i) the C2 property if X ≤ M is isomorphic to a direct summand of M ,
then X is a direct summand of M ;

(ii) the C3 property if whenever M1 and M2 are direct summands of M
such that M1 ∩M2 = 0, then M1 ⊕M2 is a direct summand of M .

Now we prove our main result on direct summand of a ZPG-module.

Proposition 6. Let M = M1 ⊕M2 be a direct sum of modules M1 and
M2 such that M1 is a zp-submodule of M . If M is a ZPG-module which
satisfies C3 condition, then M1 and M2 are ZPG-modules.

Proof. By Lemma 3, M1 is a ZPG-module. Let X be any zp-submodule
of M2. By Lemma 2(iii), M1⊕X is a zp-submodule of M . By hypothesis,
there exists a direct summand Y of M such that (M1⊕X)∩Y is essential
both M1 ⊕X and Y . Since M satisfies C3 condition, M1 ⊕ Y is a direct
summand of M . Let π : M1 → M2 be the canonical projection. So by
[13, Lemma 2.71], M1⊕Y = M1⊕π(Y ). Then π(Y ) is a direct summand
of M2. For any, 0 ̸= y ∈ π(Y ), y = π(x) for some 0 ̸= x ∈ Y . There
exists a r ∈ R such that 0 ̸= xr ∈ (M1 ⊕X)∩ Y . So xr = m1 + x1 = x2,
where x1 ∈ X, m1 ∈ M1 and x2 ∈ Y . Hence, 0 ̸= xr = π(xr) = x1 =
π(x2) ∈ X ∩ π(Y ). It follows that X ∩ π(Y ) ≤e π(Y ). Then, π(Y ) =
M2∩(M1⊕π(Y )) = M2∩(M1⊕Y ). Also, X∩π(Y ) = X∩(M1⊕Y ) ≤e X.
Thus M2 is a ZPG-module.

Corollary 3. Let M = M1 ⊕ M2 be a direct sum of modules M1 and
M2 such that M1 is a zp-submodule of M . If M is a ZPG-module which
satisfies C2 condition, then M1 and M2 are ZPG-modules.
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Proof. Since C2 condition implies the C3 condition, the proof follows
immediately by Proposition 6.

Proposition 7. Let M be a module and X is a zp-submodule of M . If
M is ZPG, then there exists e2 = e ∈ End(MR) such that M = M1⊕M2

and X ≤e M2.

Proof. Assume that M is a ZPG-module and X an zp-submodule of
M . Then there exists e2 = e ∈ End(MR) such that XβeM . Now
X = eX ⊕ (1 − e)X, eX = X ∩ eM , and (1 − e)X = X ∩ (1 − e)M
because X is projection invariant in M . Since XβeM , eX ≤e eM and
eX ≤e X. It follows that X ∩ (1 − e)M = 0. Thus X = eX ≤e eM .
Now, let M1 = (1− e)M , and M2 = eM .

3. Extensions

In this section, we investigate essential extensions of modules or rings
under the ZPG condition. We show that if a ring satisfies the right
ZPG condition, then so is its essential overring. To this end, we obtain
that the ZPG property is inherited by its rational hull. Recall that S is
called a right essential overring of a ring R if S is an overring of R such
that RR is essential in SR (see [8, 13]).

Theorem 3. Let S be a right essential overring of R. If RR is a ZPG-
module then SR and SS are ZPG-module.

Proof. Let YR be a zp-submodule of SR andX = Y ∩R. By Proposition 3,
there exists KR ≤ RR and e2 = e ∈ R such that KR is essential in XR

and KR is essential in eRR. Then KR ≤e XR = Y ∩ R ≤e Y ∩ S = YR.
So KR is essential in YR. Let 0 ̸= es ∈ eS. Then there exists r1 ∈ R such
that 0 ̸= esr1 ∈ eR. So there exists r2 ∈ R such that D ̸= esr1r2 ∈ K.
Hence KR is essential in eSR. By Proposition 3, SR is a ZPG-module.
A similar proof to the above shows that KSS is essential both in YS and
eSS . Thus SS is a ZPG-module.

Corollary 4. Let T = Tm(R) and M = Mm(R). If TT is ZPG, then
MT and MM are ZPG.

Proof. This result is a consequence of Theorem 3 and the fact that MT

is a rational extension of TT .
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The next theorem shows that if a module satisfies ZPG property
then so its rational hull. Recall that for a module M , the rational hull
of M is defined as the following submodule of E(M).

Ẽ(M) = {x ∈ E(M) : h(M) = 0 ⇒ h(x) = 0}

for all h ∈ End(M). Note that E(M) ∼= Ẽ(M) whenever M is nonsin-
gular (see [8]).

Theorem 4. If M is a ZPG-module, then Ẽ(M) is a ZPG-module.

Proof. Let K be a zp-submodule of Ẽ(M). Then by Lemma 1(ii), X =
K ∩ M is a zp-submodule of M . By hypothesis, there exists Y ≤ MR

and e2 = e ∈ End(MR) such that Y ≤e X and Y ≤e eM . Notice that
Y ≤e K. By [8], there exists f ∈ End(Ẽ(M)) such that f |M = e. Since
E(M) is injective, there exists e ∈ End(Ẽ(M)) such that e|

Ẽ(M)
= f .

Let m ∈ M . Then [e− e2](m) = (e− e2)(m) = 0. From the definition of
Ẽ(M), [e − e2](y) = 0 for all y ∈ Ẽ(M). Hence f = f2. Assume k ∈ K
such that fk − k ̸= 0. There exists r ∈ R such that 0 ̸= (fk − k)r and
kr ∈ M . Then kr ∈ X. So (fk − k)r = fkr − kr = ekr − kr = 0, a
contradiction. Hence K ≤ fẼ(M). Let 0 ̸= fr ∈ Ẽ(M) There exists
s ∈ R such that 0 ̸= frs and rs ∈ M . Then 0 ̸= frst ∈ X ≤ K.
Therefore, K ≤e fẼ(M), so Ẽ(M) is a ZPG-module.
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