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On the algebra of derivations of some Leibniz
algebras

Leonid A. Kurdachenko, Mykola M. Semko,
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Abstract. Let L be an algebra over a field F with the binary
operations + and [−,−]. Then L is called a left Leibniz algebra if it
satisfies the left Leibniz identity [[a, b], c] = [a, [b, c]]−[b, [a, c]] for all
a, b, c ∈ L. We study algebras of derivations of some non–nilpotent
Leibniz algebras of low dimensions.

Let V be a vector space over a field F . Denote by EndF (V ) the set of
all linear transformations of L. Then EndF (V ) is an associative algebra
by the operations + and ◦. As usual, EndF (V ) is a Lie algebra by the
operations + and [−,−] where [f, g] = f ◦g−g◦f for all f, g ∈ EndF (V ).

Now, let L be an algebra over a field F with the operations + and
[−,−].

A linear transformation f of an algebra L is called a derivation if

f([a, b]) = [f(a), b] + [a, f(b)]

for all a, b ∈ L.

Derivations play a very important role in studying the structure of
many types of non-associative algebras. Such is, in particular, especially
true for Lie and Leibniz algebras.
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Let L be an algebra over a field F with the binary operations + and
[−,−]. Then L is called a left Leibniz algebra if it satisfies the left Leibniz
identity,

[[a, b], c] = [a, [b, c]]− [b, [a, c]],

for all a, b, c ∈ L. We will also use another form of this identity:

[a, [b, c]] = [[a, b], c] + [b, [a, c]].

Leibniz algebras first appeared in the paper of A. Blokh [2], but the
term “Leibniz algebra” appears in the book of J.-L. Loday [11] and his
article [12]. In [13], J.-L. Loday and T. Pirashvili conducted an in-depth
study on Leibniz algebras’ properties. The theory of Leibniz algebras
has developed very intensely in many different directions. Some of the
results of this theory were presented in the book [1]. Note that Lie
algebras present a partial case of Leibniz algebras. Conversely, if L is a
Leibniz algebra in which [a, a] = 0 for every element a ∈ L, then it is a
Lie algebra. Thus, Lie algebras can be characterized as anticommutative
Leibniz algebras.

Let Der(L) be the subset of all derivations of a Leibniz algebra L.
It can prove that Der(L) is a subalgebra of the Lie algebra EndF (L).
Der(L) is called the algebra of derivations of the Leibniz algebra L.

The influence on the structure of a Leibniz algebra of its algebra
of derivations can be observed in the following result: If A is an ideal
of a Leibniz algebra, then the factor-algebra of L by the annihilator of
A is isomorphic to some subalgebra of Der(A) [3, Proposition 3.2]. The
structure of the algebra of derivations of finite-dimensional one-generator
Leibniz algebras was described in the papers [7,15], and the one belonging
to infinite-dimensional one-generator Leibniz algebras was delineated in
the paper [10]. The question about the algebras of derivations of Leibniz
algebras of small dimensions naturally arises. In contrast to Lie algebras,
the situation with Leibniz algebras of dimension 3 is very diverse. The
Leibniz algebras of dimension 3 have been described, and their most
detailed description can be found in [4]. The papers [5, 8, 9] described
the algebras of derivations of nilpotent Leibniz algebras of dimension 3.
In the paper [6], the description of the algebras of derivations of some
non-nilpotent Leibniz algebras of dimension 3 has been started. More
concretely, it describes the algebra of derivations of non-nilpotent Leibniz
algebras of dimension 3, which are not one-generator and have a Leibniz
kernel of dimension 2. In this paper, we will continue the study of the
algebras of derivations of non-nilpotent Leibniz algebras of dimension 3.
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As usual, we will suppose that L is not a Lie algebra, so Leib(L) is
non-zero.

First, we will finish with a case where L is a non-nilpotent Leibniz
algebra of dimension 3, having a Leibniz kernel of dimension 2. The last
type of these algebras is the following.

Let L be a non-nilpotent Leibniz algebra, generated by an element a,
and having a Leibniz kernel of dimension 2. Put a1 = a, b = [a1, a1]. If
we suppose that [a1, b] ∈ Fb, then a subalgebra generated by an element
a1 coincides with Fa1⊕Fb. In particular, it has dimension 2, and hence
it is proper. Thus, we obtain that d = [a1, b] ̸∈ Fb. It follows that
Leib(L) = Fb ⊕ Fd. Further we have [a1, d] = κ2b + κ3d. If κ2 = 0, we
obtain the specific case when a subspace Fd is an ideal. Since L is not
nilpotent, κ3 ̸= 0. Put c = κ3b− d. Then

[a1, c] = [a1, κ3b− d] = κ3[a1, b]− [a1, d] = κ3d− κ3d = 0.

Since c ∈ Leib(L), [c, a1] = [c, b] = [c, d] = [b, c] = [d, c] = 0. It
follows that c ∈ ζ(L). Moreover, clearly Fc = ζ(L). The fact that
κ3 ̸= 0 implies that Leib(L) = Fc⊕Fd. Also we have b = κ−1

3 (c+ d), so
that [a1, a1] = κ−1

3 (c+ d). Put a2 = κ−1
3 c, a3 = κ−1

3 d, then

[a1, a1] = a2 + a3, [a1, a2] = [a2, a1] = 0,

[a1, a3] = [a1, κ
−1
3 d] = κ−1

3 [a1, d] = κ−1
3 κ3d = d = κ3a3.

The fact that Fa3 is an ideal and Fa2 = ζ(L) implies that the factor-
algebra L/Fa3 is nilpotent. It follows that Fa3 = γ3(L). Thus, we come
to the following type of Leibniz algebras:

Lei8(3, F ) = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2 + a3,

[a1, a3] = κa3, 0 ̸= κ ∈ F,

[a1, a2] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

In other words, Lei8(3, F ) = L is one-generator, has the Leibniz kernel
Leib(L) = Fa2 ⊕ Fa3 = [L,L] = ζ left(L) such that ζ(L) = Fa2, Fa3 =
γ3(L), ζ

right(L) = ζ(L).
Let again κ2 = 0, y = α2b + α3d and suppose that [a1, y] = βy for

some scalar 0 ̸= β ∈ F . Then we have

βy = β(α2b+ α3d) = βα2b+ βα3d = [a1, y]

= [a1, α2b+ α3d] = α2[a1, b] + α3[a1, d]

= α2d+ α3κ3d = (α2 + α3κ3)d,
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so that βα2 = 0 and βα3 = α2 + α3κ3. Since β ̸= 0, α2 = 0. It follows
that y ∈ Fd and Fy = Fd.

Suppose now that κ2 ̸= 0, let y = α2b+α3d and suppose that [a1, y] =
βy for some scalar β ∈ F . Then we have

βy = β(α2b+ α3d) = βα2b+ βα3d = [a1, y]

= [a1, α2b+ α3d] = α2[a1, b] + α3[a1, d]

= α2d+ α3(κ2b+ κ3d) = α3κ2b+ (α2 + α3κ3)d,

so that βα2 = α3κ2 and βα3 = α2 + α3κ3. If we suppose that β = 0,
then taking into account the fact κ2 ̸= 0, we obtain that α3 = 0, and it
implies that α2 = 0. Hence, if κ2 ̸= 0, then ζ(L) = ⟨0⟩.

Suppose that β ̸= 0. Then the assumption α2 = 0 implies that
α3 = 0, and conversely, the assumption α3 = 0 implies that α2 = 0.
Hence, we can suppose that α2 ̸= 0 and α3 ̸= 0. Put σ = α2α

−1
3 , then

we obtain βσ = κ2 and β = σ + κ3. It follows that σ2 + κ3σ − κ2 = 0.
Hence, if the polynomial X2 +κ3X −κ2 has no roots in field F , Leib(L)
does not include the ideals of dimension 1. In other words, Leib(L) is a
minimal ideal of L. Put a2 = b, a3 = d. Thus, we come to the following
type of Leibniz algebras:

Lei9(3, F ) = Fa1 ⊕ Fa2 ⊕ Fa3 where [a1, a1] = a2, [a1, a2] = a3,

[a1, a3] = κ2a2 + κ3a3, 0 ̸= κ2, κ3 ∈ F,

[a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0

and a polynomial X2 + κ3X − κ2 has no roots in a field F .

Note that if the polynomial X2 + κ3X − κ2 has roots in field F ,
Leib(L) includes the ideals of dimension 1, and we come to the previous
type of Leibniz algebras.

Check that in this way, we obtain a Leibniz algebra.

Let L = Lei9(3, F ) and x, y, z be the arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3,

z = τ1a1 + τ2a2 + τ3a3
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where ξ1, ξ2, ξ3, η1, η2, η3, τ1, τ2, τ3 are arbitrary scalars. We have

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]

= ξ1η1[a1, a1] + ξ1η2[a1, a2] + ξ1η3[a1, a3]

= ξ1η1a2 + ξ1η2a3 + ξ1η3(κ2a2 + κ3a3)

= (ξ1η1 + ξ1η3κ2)a2 + (ξ1η2 + ξ1η3κ3)a3,

[x, z] = (ξ1τ1 + ξ1τ3κ2)a2 + (ξ1τ2 + ξ1τ3κ3)a3,

[y, z] = (η1τ1 + η1τ3κ2)a2 + (η1τ2 + η1τ3κ3)a3.

Therefore,

[[x, y], z] = 0,

[x, [y, z]] = [ξ1a1 + ξ2a2 + ξ3a3, (η1τ1 + η1τ3κ2)a2 + (η1τ2 + η1τ3κ3)a3]

= [ξ1a1, (η1τ1 + η1τ3κ2)a2] + [ξ1a1, (η1τ2 + η1τ3κ3)a3]

= ξ1(η1τ1 + η1τ3κ2)[a1, a2] + ξ1(η1τ2 + η1τ3κ3)[a1, a3]

= ξ1(η1τ1 + η1τ3κ2)a3 + ξ1(η1τ2 + η1τ3κ3)(κ2a2 + κ3a3)

= (ξ1η1τ2κ2 + ξ1η1τ3κ3κ2)a2

+ (ξ1η1τ1 + ξ1η1τ3κ2 + ξ1η1τ2κ3 + ξ1η1τ3κ
2
3)a3,

[y, [x, z]] = [η1a1 + η2a2 + η3a3, (ξ1τ1 + ξ1τ3κ2)a2 + (ξ1τ2 + ξ1τ3κ3)a3]

= [η1a1, (ξ1τ1 + ξ1τ3κ2)a2] + [η1a1, (ξ1τ2 + ξ1τ3κ3)a3]

= η1(ξ1τ1 + ξ1τ3κ2)[a1, a2] + η1(ξ1τ2 + ξ1τ3κ3)[a1, a3]

= η1(ξ1τ1 + ξ1τ3κ2)a3 + η1(ξ1τ2 + ξ1τ3κ3)(κ2a2 + κ3a3)

= (η1ξ1τ2κ2 + η1ξ1τ3κ3κ2)a2

+ (η1ξ1τ1 + η1ξ1τ3κ2 + η1ξ1τ2κ3 + η1ξ1τ3κ
2
3)a3.

Thus, we obtain [[x, y], z] = [x, [y, z]] − [y, [x, z]]. Hence, Lei9(3, F ) is a
Leibniz algebra.

We begin with some general properties of an algebra of derivations
of a Leibniz algebra. Here, we show some basic elementary properties of
derivations that have been proven in the paper [10]. First, let us recall
some definitions.

Every Leibniz algebra L has a specific ideal. Denote by Leib(L) the
subspace generated by the elements [a, a], a ∈ L. It is possible to prove
that Leib(L) is an ideal of L. The ideal Leib(L) is called the Leibniz
kernel of algebra L. By the definition, factor-algebra L/Leib(L) is a Lie
algebra. Conversely, if K is an ideal of L, such that L/K is a Lie algebra,
then K includes the Leibniz kernel.
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Let L be a Leibniz algebra. Define the lower central series of L,

L = γ1(L) ≥ γ2(L) ≥ . . . γα(L) ≥ γα+1(L) ≥ . . . γδ(L),

by the following rule: γ1(L) = L, γ2(L) = [L,L], recursively, γα+1(L) =
[L, γα(L)] for every ordinal α, and γλ(L) =

⋂
µ<λ

γµ(L) for every limit

ordinal λ. The last term γδ(L) = γ∞(L) is called the lower hypocenter
of L. We have: γδ(L) = [L, γδ(L)].

As usual, we say that a Leibniz algebra L is called nilpotent if a
positive integer k exists, such that γk(L) = ⟨0⟩. More precisely, L is said
to be nilpotent of nilpotency class c if γc+1(L) = ⟨0⟩ but γc(L) ̸= ⟨0⟩.

The left (respectively right) center ζ left(L) (respectively ζright(L)) of
a Leibniz algebra L is defined by the rule below:

ζ left(L) = {x ∈ L| [x, y] = 0 for each element y ∈ L}

(respectively

ζright(L) = {x ∈ L| [y, x] = 0 for each element y ∈ L}).

It is not hard to prove that the left center of L is an ideal, but this is not
true for the right center. Moreover, Leib(L) ≤ ζ left(L), so that L/ζ left(L)
is a Lie algebra. The right center is a subalgebra of L; the left and right
centers are generally different; they may even have different dimensions
(see [3]).

The center of L is defined by the rule below:

ζ(L) = {x ∈ L| [x, y] = 0 = [y, x] for each element y ∈ L}.

The center is an ideal of L. Note that if K is an ideal of L, then the
center of K is an ideal of L [14, Lemma 4].

Lemma 1. Let L be a Leibniz algebra over a field F and f be a derivation
of L. Then f(ζ left(L)) ≤ ζ left(L), f(ζright(L)) ≤ ζright(L) and f(ζ(L)) ≤
ζ(L).

Corollary 1. Let L be a Leibniz algebra over a field F and f be a
derivation of L. Then f(ζα(L)) ≤ ζα(L) for every ordinal α.

Lemma 2. Let L be a Leibniz algebra over a field F and f be a derivation
of L. Then f([L,L]) ≤ [L,L].
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Corollary 2. Let L be a Leibniz algebra over a field F and f be a
derivation of L. Then f(γα(L)) ≤ γα(L) for every ordinal α.

Proof. Lemma 2 shows that f(γ2(L)) ≤ γ2(L). Let α > 2 and suppose
that we have already proved that f(γβ(L)) ≤ γβ(L) for all ordinals β ≤ α.
Suppose first that α is a not limit ordinal, α = µ+1 for some ordinal µ.
Let x be an arbitrary element of γα(L), then

x = σ1[a1, b1] + . . .+ σn[an, bn]

where a1, . . . , an ∈ L, b1, . . . , bn ∈ γµ(L), σ1, . . . , σn ∈ F .
Now we obtain

f(x) = f(σ1[a1, b1] + . . .+ σn[an, bn])

= σ1f([a1, b1]) + . . .+ σnf([an, bn])

= σ1[f(a1), b1] + . . .+ σn[f(an), bn]

+ σ1[a1, f(b1)] + . . .+ σn[an, f(bn)].

By bj ∈ γµ(L), we have [f(aj), bj ] ∈ [L, γµ(L)] = γµ+1(L) = γα(L),
1 ≤ j ≤ n. Since µ < α, f(bj) ∈ γµ(L) by the induction hypothesis,
so that [aj , f(bj)] ∈ [L, γµ(L)] = γµ+1(L) = γα(L), 1 ≤ j ≤ n. Hence
f(x) ∈ γα(L).

Suppose now that α is a limit ordinal. Then γα(L) =
⋂
τ<α

γτ (L).

It follows that x ∈ γτ (L) for all ordinal τ < α. Then, by induction
hypothesis, f(x) ∈ γτ (L) for all ordinal τ < α and therefore f(x) ∈⋂
τ<α

γτ (L) = γα(L).

Denote by Ξ the classic monomorphism of End(L) in M3(F ) (i.e.,
the mapping, assigning to each endomorphism its matrix concerning the
basis {a1, a2, a3}).

Theorem 1. Let D be an algebra of derivations of the Leibniz algebra
Lei8(3, F ). Then D is isomorphic to a Lie subalgebra of M3(F ) consis-
ting of the matrices of the following form: 0 0 0

α 0 0
β 0 κβ

 ,

α, β ∈ F . Furthermore, D is abelian and isomorphic to the direct sum
of two copies of the additive group of field F .
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Proof. Let L = Lei8(3, F ) and f ∈ Der(L). By Lemma 1, f(ζ(L)) ≤
ζ(L) = Fa2, and by Corollary 2, f(Fa3) = f(γ3(L)) ≤ γ3(L). So that

f(a1) = α1a1 + α2a2 + α3a3,

f(a2) = βa2,

f(a3) = γa3,

α1, α2, α3, β, γ ∈ F . Then

f(a3) = f(κ−1[a1, a3]) = κ−1f([a1, a3])

= κ−1([f(a1), a3] + [a1, f(a3)])

= κ−1([α1a1 + α2a2 + α3a3, a3] + [a1, γa3])

= κ−1(α1[a1, a3] + α2[a2, a3] + α3[a3, a3] + γκa3)

= κ−1(α1κa3 + γκa3) = (α1 + γ)a3;

f([a1, a1]) = [f(a1), a1] + [a1, f(a1)]

= [α1a1 + α2a2 + α3a3, a1] + [a1, α1a1 + α2a2 + α3a3]

= α1[a1, a1] + α1[a1, a1] + α2[a1, a2] + α3[a1, a3]

= 2α1(a2 + a3) + κα3a3 = 2α1a2 + (2α1 + κα3)a3,

f([a1, a1]) = f(a2 + a3) = f(a2) + f(a3) = βa2 + γa3.

Then we obtain

(α1 + γ)a3 = γa3, 2α1a2 + (2α1 + κα3)a3 = βa2 + γa3,

so that

α1 + γ = γ, 2α1 = β, 2α1 + κα3 = γ.

It follows that α1 = 0, β = 0, κα3 = γ. Hence, Ξ(f) is the following
matrix:  0 0 0

α2 0 0
α3 0 κα3

 ,

α2, α3, κ ∈ F .

Conversely, let x, y be arbitrary elements of L,

x = ξ1a1 + ξ2a2 + ξ3a3,

y = η1a1 + η2a2 + η3a3
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where ξ1, ξ2, ξ3, η1, η2, η3 are arbitrary scalars. Then

[x, y] = [ξ1a1 + ξ2a2 + ξ3a3, η1a1 + η2a2 + η3a3]

= ξ1η1[a1, a1] + ξ1η2[a1, a2] + ξ1η3[a1, a3]

= ξ1η1(a2 + a3) + ξ1η3κa3

= ξ1η1a2 + (ξ1η1 + κξ1η3)a3,

f(x) = f(ξ1a1 + ξ2a2 + ξ3a3) = ξ1f(a1) + ξ2f(a2) + ξ3f(a3)

= ξ1α2a2 + ξ1α3a3 + ξ3κα3a3

= ξ1α2a2 + (ξ1α3 + ξ3κα3)a3,

f(y) = η1α2a2 + (η1α3 + η3κα3)a3,

f([x, y]) = f(ξ1η1a2 + (ξ1η1 + κξ1η3)a3)

= ξ1η1f(a2) + (ξ1η1 + κξ1η3)f(a3)

= κα3(ξ1η1 + κξ1η3)a3 = κα3ξ1(η1 + κη3)a3.

Therefore

[f(x), y] + [x, f(y)] = [ξ1α2a2 + (ξ1α3 + ξ3κα3)a3, η1a1 + η2a2 + η3a3]

+ [ξ1a1 + ξ2a2 + ξ3a3, η1α2a2 + (η1α3 + η3κα3)a3]

= ξ1(η1α3 + η3κα3)[a1, a3] = κξ1(η1α3 + η3κα3)a3

= κξ1α3(η1 + η3κ)a3,

so that f([x, y]) = [f(x), y] + [x, f(y)].
Denote by Φ the mapping of a vector space F ⊕ F in Ξ(L) defined

by the rule:

(α, β) →

 0 0 0
α 0 0
β 0 κβ

 ,

α, β, κ ∈ F . Clearly

Φ((α, β) + (λ, µ)) = Φ((α+ λ, β + µ)) = Φ(α, β) + Φ(λ, µ)

and
Φ(σ(α, β)) = Φ(σα, σβ) = σΦ(α, β).

Furthermore, the equality 0 0 0
α 0 0
β 0 κβ

 0 0 0
λ 0 0
µ 0 κµ

 =

 0 0 0
0 0 0

κβµ 0 κ2βµ


shows that a Lie algebra Ξ(L) is abelian. Thus D is isomorphic to an
abelian Lie algebra F ⊕ F .
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Lemma 3. Let L be a finite-dimensional Leibniz algebra over a field F ,
{a1, . . . , an} be the basis of L. If f is a linear transformation of L such
that f([aj , at]) = [f(aj), at] + [aj , f(at)] for all j, t, 1 ≤ j, t ≤ n, then f
is a derivation of L.

Proof. Let x, y be the arbitrary elements of L, then x =
∑

1≤j≤n
λjaj ,

y =
∑

1≤t≤n
µtat. We have

[x, y] =

 ∑
1≤j≤n

λjaj ,
∑

1≤t≤n

µtat

 =
∑

1≤j≤n,
1≤t≤n

λjµt[aj , at].

Then

f([x, y]) = f

 ∑
1≤j≤n,
1≤t≤n

λjµt[aj , at]

 =
∑

1≤j≤n,
1≤t≤n

λjµtf([aj , at])

=
∑

1≤j≤n,
1≤t≤n

λjµt([f(aj), at] + [aj , f(at)])

and

[f(x), y] + [x, f(y)]

=

f
 ∑

1≤j≤n

λjaj

 ,
∑

1≤t≤n

µtat

+

 ∑
1≤j≤n

λjaj , f

 ∑
1≤t≤n

µtat


=

 ∑
1≤j≤n

λjf(aj),
∑

1≤t≤n

µtat

+

 ∑
1≤j≤n

λjaj ,
∑

1≤t≤n

µtf(at)


=

∑
1≤j≤n,
1≤t≤n

λjµt[f(aj), at] +
∑

1≤j≤n,
1≤t≤n

λjµt[aj , f(at)],

so that f([x, y]) = [f(x), y] + [x, f(y)]. Hence f is a derivation of L.

Lemma 4. Let S be a subset of a Lie algebra M3(F ) of matrices con-
sisting of matrices having a form α1 0 0

α2 β2 γ2
α3 β3 γ3

 ,
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α1, α2, α3, β2, β3, γ2, γ3 ∈ F . Then S is a Lie subalgebra of M3(F ), and
the mapping

θ :

 α1 0 0
α2 β2 γ2
α3 β3 γ3

→
(

β2 γ2
β3 γ3

)
is an epimorphism of S on M2(F ).

Proof. Indeed, an equality α1 0 0
α2 β2 γ2
α3 β3 γ3

 λ1 0 0
λ2 µ2 σ2
λ3 µ3 σ3


=

 α1λ1 0 0
α2λ1 + β2λ2 + γ2λ3 β2µ2 + γ2µ3 β2σ2 + γ2σ3
α3λ1 + β3λ2 + γ3λ3 β3µ2 + γ3µ3 β3σ2 + γ3σ3


shows that a subset S is closed by multiplication. It follows that [x, y] ∈ S
for every matrices x, y ∈ S. Hence S is a Lie subalgebra of M3(F ).
Finally, the equality(

β2 γ2
β3 γ3

)(
µ2 σ2
µ3 σ3

)
=

(
β2µ2 + γ2µ3 β2σ2 + γ2σ3
β3µ2 + γ3µ3 β3σ2 + γ3σ3

)
shows that a mapping θ is an epimorphism.

Lemma 5. Let F be a field of characteristic 2, κ be a fixed non-zero
element of F , and let S be a subset of a Lie algebra M2(F ) of matrices
consisting of matrices having a form(

β1 κβ2
β2 β3

)
,

β1, β2, β3 ∈ F . Then S is a Lie subalgebra of M2(F ), moreover, S =
Z ⊕L where Z is the center of M2(F ) (the subset of all scalar matrices)
and L is a non-abelian Lie subalgebra of dimension 2.

Proof. Indeed, let

X =

(
β1 κβ2
β2 β3

)
, Y =

(
λ1 κλ2

λ2 λ3

)
.

We have
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XY =

(
β1 κβ2
β2 β3

)(
λ1 κλ2

λ2 λ3

)
=

(
β1λ1 + κβ2λ2 κβ1λ2 + κβ2λ3

β2λ1 + β3λ2 κβ2λ2 + β3λ3

)
,

Y X =

(
λ1 κλ2

λ2 λ3

)(
β1 κβ2
β2 β3

)
=

(
λ1β1 + κλ2β2 κλ1β2 + κλ2β3
λ2β1 + λ3β2 κλ2β2 + λ3β3

)
,

[X,Y ] =

(
β1λ1 + κβ2λ2 κβ1λ2 + κβ2λ3

β2λ1 + β3λ2 κβ2λ2 + β3λ3

)
+

(
λ1β1 + κλ2β2 κλ1β2 + κλ2β3
λ2β1 + λ3β2 κλ2β2 + λ3β3

)
=

(
β1λ1 + κβ2λ2 + λ1β1 + κλ2β2 κβ1λ2 + κβ2λ3 + κλ1β2 + κλ2β3

β2λ1 + β3λ2 + λ2β1 + λ3β2 κβ2λ2 + β3λ3 + κλ2β2 + λ3β3

)
=

(
0 κ(β1λ2 + β2λ3 + λ1β2 + λ2β3)

β2λ1 + β3λ2 + λ2β1 + λ3β2 0

)
∈ S.

It follows that S is a subalgebra of a Lie algebra M2(F ).

For every matrix X ∈ S, we have decomposition

X =

(
β1 0
0 0

)
+

(
0 0
0 β3

)
+

(
0 κβ2
β2 0

)
= β1

(
1 0
0 0

)
+ β3

(
0 0
0 1

)
+ β2

(
0 κ
1 0

)
.

Put

U =

(
1 0
0 0

)
, V =

(
0 0
0 1

)
, W =

(
0 κ
1 0

)
.

We have

UW =

(
1 0
0 0

)(
0 κ
1 0

)
=

(
0 κ
0 0

)
,

WU =

(
0 κ
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
,

[U,W ] =

(
0 κ
1 0

)
= W,
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VW =

(
0 0
0 1

)(
0 κ
1 0

)
=

(
0 0
1 0

)
,

WV =

(
0 κ
1 0

)(
0 0
0 1

)
=

(
0 κ
0 0

)
,

[V,W ] =

(
0 κ
1 0

)
= W.

Furthermore

U + V =

(
1 0
0 0

)
+

(
0 0
0 1

)
=

(
1 0
0 1

)
∈ S.

Then S includes the center Z of a Lie algebra M2(F ). Moreover, S =
Z ⊕ L where L is a Lie subalgebra generated by U,W . In other words,
L is a non-abelian Lie algebra of dimension 2.

Theorem 2. Let D be an algebra of derivations of the Leibniz algebra
Lei9(3, F ). If char(F ) ̸= 2, κ3 = 1, then D is isomorphic to a Lie
subalgebra of M3(F ) consisting of the matrices having the following form: 0 0 0

α2 α3κ2 α2κ2 + α3κ2
α3 α2 + α3 α3κ2 + α2 + α3

 ,

α2, α3 ∈ F .
If char(F ) ̸= 2, κ3 ̸= 1, then D is isomorphic to a one-dimensional

Lie subalgebra of M3(F ), generated by the matrix 0 0 0
1 −κ3 κ2 − κ23

−κ−1
2 κ3 1− κ−1

2 κ23 2κ3 − κ−1
2 κ33

 .

If char(F ) = 2, then D is isomorphic to a Lie subalgebra of M3(F )
consisting of the matrices having the following form: (κ3 − 1)(α3κ2 + α2κ3) 0 0

α2 α2κ3 α2κ2 + α3κ3κ2
α3 α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

2
3

 ,

α2, α3 ∈ F .
If κ2 = κ23, then D is a abelian Lie algebra of dimension 2. In this

case, a polynomial X2 + κ3X + κ23 has no roots in a field F .
If κ2 ̸= κ23, D is a non-abelian Lie algebra of dimension 2.
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Proof. Let L = Lei9(3, F ) and f ∈ Der(L). Let f(a1) = α1a1 + α2a2 +
α3a3. Then

f(a2) = f([a1, a1]) = [f(a1), a1] + [a1, f(a1)]

= [α1a1 + α2a2 + α3a3, a1] + [a1, α1a1 + α2a2 + α3a3]

= α1[a1, a1] + α1[a1, a1] + α2[a1, a2] + α3[a1, a3]

= 2α1a2 + α2a3 + α3(κ2a2 + κ3a3)

= (2α1 + α3κ2)a2 + (α2 + α3κ3)a3,

f(a3) = f([a1, a2]) = [f(a1), a2] + [a1, f(a2)]

= [α1a1 + α2a2 + α3a3, a2] + [a1, (2α1 + α3κ2)a2 + (α2 + α3κ3)a3]

= α1[a1, a2] + (2α1 + α3κ2)[a1, a2] + (α2 + α3κ3)[a1, a3]

= α1a3 + (2α1 + α3κ2)a3 + (α2 + α3κ3)(κ2a2 + κ3a3)

= (α2κ2 + α3κ3κ2)a2 + (α1 + 2α1 + α3κ2 + α2κ3 + α3κ
2
3)a3.

Moreover, by [a1, a3] = κ2a2 + κ3a3 we obtain

f([a1, a3]) = [f(a1), a3] + [a1, f(a3)]

= [α1a1 + α2a2 + α3a3, a3] + [a1, (α2κ2 + α3κ3κ2)a2

+ (α1 + 2α1 + α3κ2 + α2κ3 + α3κ
2
3)a3]

= α1[a1, a3] + (α2κ2 + α3κ3κ2)[a1, a2]

+ (α1 + 2α1 + α3κ2 + α2κ3 + α3κ
2
3)[a1, a3]

= α1(κ2a2 + κ3a3) + (α2κ2 + α3κ3κ2)a3

+ (α1 + 2α1 + α3κ2 + α2κ3 + α3κ
2
3)(κ2a2 + κ3a3)

= (α1κ2 + α1κ2 + 2α1κ2 + α3κ
2
2 + α2κ3κ2 + α3κ

2
3κ2)a2

+ (α1κ3 + α2κ2 + α3κ3κ2 + α1κ3 + 2α1κ3 + α3κ2κ3

+ α2κ
2
3 + α3κ

3
3)a3.

On the other hand,

f([a1, a3]) = f(κ2a2 + κ3a3) = κ2f(a2) + κ3f(a3)

= κ2((2α1 + α3κ2)a2 + (α2 + α3κ3)a3)

+ κ3((α2κ2 + α3κ3κ2)a2 + (3α1 + α3κ2 + α2κ3 + α3κ
2
3)a3)

= (κ2(2α1 + α3κ2) + κ3(α2κ2 + α3κ3κ2))a2

+ (κ2(α2 + α3κ3) + (3α1 + α3κ2 + α2κ3 + α3κ
2
3))a3

= (2α1κ2 + α3κ
2
2 + κ3α2κ2 + α3κ

2
3κ2)a2

+ (κ2α2 + κ2α3κ3 + 3α1 + α3κ2 + α2κ3 + α3κ
2
3)a3.
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It follows that

2α1κ2 + α3κ
2
2 + κ3α2κ2 + α3κ

2
3κ2

= α1κ2 + α1κ2 + 2α1κ2 + α3κ
2
2 + α2κ3κ2 + α3κ

2
3κ2

and

κ2α2 + κ2α3κ3 + 3α1 + α3κ2 + α2κ3 + α3κ
2
3

= α1κ3 + α2κ2 + α3κ3κ2 + α1κ3 + 2α1κ3 + α3κ2κ3 + α2κ
2
3 + α3κ

3
3.

Then we obtain 2α1κ2 = 0 and 3α1 + α3κ2 + α2κ3 = 4α1κ3 + α3κ2κ3 +
α2κ

2
3. Since κ2 ̸= 0, 2α1 = 0, and we come to

α1 + α3κ2 + α2κ3 = κ3(α3κ2 + α2κ3) or α1 = (κ3 − 1)(α3κ2 + α2κ3).

As we can see, the following two situations appear: α1 = 0 and α1 ̸= 0,
and then char(F ) = 2.

Suppose first that α1 = 0, then 0 = (κ3 − 1)(α3κ2 + α2κ3). We
obtained two subcases: κ3 = 1 or κ3 ̸= 1 and α3κ2 + α2κ3 = 0. In the
first case, Ξ(f) is the following matrix: 0 0 0

α2 α3κ2 α2κ2 + α3κ2
α3 α2 + α3 α3κ2 + α2 + α3

 ,

α2, α3 ∈ F .
In the second case, α3 = −κ−1

2 κ3α2 and Ξ(f) is the following matrix: 0 0 0
α2 −α2κ3 α2κ2 − α2κ

2
3

−κ−1
2 κ3α2 α2 − κ−1

2 κ23α2 2α2κ3 − κ−1
2 α2κ

3
3

 ,

α2, α3 ∈ F .
Suppose now that α1 ̸= 0 and char(F ) = 2. Then we come to the

equalities α1 + α3κ2 + α2κ3 = κ3(α3κ2 + α2κ3) or α1 = (κ3 − 1)(α3κ2 +
α2κ3). Here

α1 + α3κ2 + α2κ3 + α3κ
2
3

= (κ3 − 1)(α3κ2 + α2κ3) + α3κ2 + α2κ3 + α3κ
2
3

= α3κ2κ3 + α2κ
2
3 − α3κ2 − α2κ3 + α3κ2 + α2κ3 + α3κ

2
3

= α3κ2κ3 + α2κ
2
3 + α3κ

2
3,
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so that Ξ(f) is the following matrix: (κ3 − 1)(α3κ2 + α2κ3) 0 0
α2 α2κ3 α2κ2 + α3κ3κ2
α3 α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

3
3

 ,

α2, α3 ∈ F .

Conversely, let f be the linear transformation of L, defined by the
above matrices. We found the elements f([a1, aj ]) from the equations

f([a1, aj ]) = [f(a1), aj ] + [a1, f(aj)], j ∈ {1, 2, 3}.

For commutators [aj , ak], j ∈ {2, 3}, we have [aj , ak] = 0. By Lemma 2
f(aj) ∈ Leib(L), and it follows that [f(aj), x] = 0 for each element x ∈ L.
Then we obtain

f([aj , ak]) = f(0) = 0, [f(aj), ak] + [aj , f(ak)] = 0 + 0 = 0,

so that f([aj , ak]) = [f(aj), ak] + [aj , f(ak)], j, k ∈ {1, 2, 3}. Lemma 3
implies that f is a derivation of L.

Consider now the structure of D in more detail. Assume first that
α1 = 0 and κ3 = 1. As we have seen above, in this case, Ξ(D) consists
of the following matrices: 0 0 0

α2 α3κ2 α2κ2 + α3κ2
α3 α2 + α3 α3κ2 + α2 + α3

 ,

α2, α3 ∈ F .

Using Lemma 4 we obtain that the mapping

ϑ :

(
0 0 0
α2 α3κ2 α2κ2 + α3κ2

α3 α2 + α3 α3κ2 + α2 + α3

)
→
(

α3κ2 α2κ2 + α3κ2
α2 + α3 α3κ2 + α2 + α3

)
.

is a homomorphism.

We can see that Ker(ϑ) is zero, so in this case Ξ(D) is isomorphic
to the Lie subalgebra of M2(F ), consisting of the matrices, having the
following form (

α3κ2 α2κ2 + α3κ2
α2 + α3 α3κ2 + α2 + α3

)
.
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We have

XY =

(
α3κ2 α2κ2 + α3κ2

α2 + α3 α3κ2 + α2 + α3

)(
σ3κ2 σ2κ2 + σ3κ2

σ2 + σ3 σ3κ2 + σ2 + σ3

)
=

(
x11 x12
x21 x22

)
,

where

x11 = α3σ3κ
2
2 + (α2 + α3)(σ2 + σ3)κ2,

x12 = α3(σ2 + σ3)κ
2
2 + (α2κ2 + α3κ2)(σ3κ2 + σ2 + σ3),

x21 = (α2 + α3)σ3κ2 + (α3κ2 + α2 + α3)(σ2 + σ3),

x22 = (α2 + α3)(σ2 + σ3)κ2 + (α3κ2 + α2 + α3)(σ3κ2 + σ2 + σ3),

and

Y X =

(
σ3κ2 σ2κ2 + σ3κ2

σ2 + σ3 σ3κ2 + σ2 + σ3

)(
α3κ2 α2κ2 + α3κ2

α2 + α3 α3κ2 + α2 + α3

)
=

(
y11 y12
y21 y22

)
,

where

y11 = α3σ3κ
2
2 + (α2 + α3)(σ2 + σ3)κ2,

y12 = σ3(α2 + α3)κ
2
2 + (σ2κ2 + σ3κ2)(α3κ2 + α2 + α3),

y21 = (σ2 + σ3)α3κ2 + (σ3κ2 + σ2 + σ3)(α2 + α3),

y22 = (σ2 + σ3)(α2 + α3)κ2 + (σ3κ2 + σ2 + σ3)(α3κ2 + α2 + α3).

We have

α3(σ2 + σ3)κ
2
2 + (α2κ2 + α3κ2)(σ3κ2 + σ2 + σ3)

= α3σ2κ
2
2 + α3σ3κ

2
2 + α2σ3κ

2
2 + α2κ2σ2 + α2κ2σ3 + α3σ3κ

2
2

+α3κ2σ2 + α3κ2σ3;

σ3(α2 + α3)κ
2
2 + (σ2κ2 + σ3κ2)(α3κ2 + α2 + α3)

= σ3α2κ
2
2 + σ3α3κ

2
2 + σ2α3κ

2
2 + σ2κ2α2 + σ2κ2α3 + σ3α3κ

2
2

+σ3κ2α2 + σ3κ2α3,

and

(α2 + α3)σ3κ2 + (α3κ2 + α2 + α3)(σ2 + σ3)

= α2σ3κ2 + α3σ3κ2 + α3κ2σ2 + α2σ2 + α3σ2 + α3κ2σ3 + α2σ3 + α3σ3;

(σ2 + σ3)α3κ2 + (σ3κ2 + σ2 + σ3)(α2 + α3)

= σ2α3κ2 + σ3α3κ2 + σ3κ2α2 + σ2α2 + σ3α2 + σ3κ2α3 + σ2α3 + σ3α3.
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Thus, we can see that XY = Y X, so Ξ(D) is abelian. It is not hard to
see that this algebra has dimension 3.

Suppose now that α1 = 0 and κ3 ̸= 1. By equality (κ3 − 1)(α3κ2 +
α2κ3) = α1 = 0, we obtain that α3κ2+α2κ3 = 0. As we have seen above,
in this case, Ξ(D) consists of the following matrix: 0 0 0

α2 −α2κ3 α2κ2 − α2κ
2
3

−κ−1
2 κ3α2 α2 − κ−1

2 κ23α2 2α2κ3 − κ−1
2 α2κ

3
3


= α2

 0 0 0
1 −κ3 κ2 − κ23

−κ−1
2 κ3 1− κ−1

2 κ23 2κ3 − κ−1
2 κ33

 ,

α2 ∈ F . Thus, we can see that Ξ(D) is a one-dimensional Lie algebra
generated by the matrix 0 0 0

1 −κ3 κ2 − κ23
−κ−1

2 κ3 1− κ−1
2 κ23 2κ3 − κ−1

2 κ33

 .

Suppose now that α1 ̸= 0 and char(F ) = 2. As we have seen above,
in this case, Ξ(f) consists of the following matrices (κ3 − 1)(α3κ2 + α2κ3) 0 0

α2 α2κ3 α2κ2 + α3κ3κ2
α3 α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

2
3

 ,

α2, α3 ∈ F . Using Lemma 4 again we obtain that the mapping

ϑ :

 (κ3 − 1)(α3κ2 + α2κ3) 0 0
α2 α2κ3 α2κ2 + α3κ3κ2
α3 α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

2
3


→
(

α2κ3 α2κ2 + α3κ3κ2
α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

2
3

)
is a homomorphism. We can see that Ker(ϑ) is zero, so in this case Ξ(D)
is the Lie subalgebra of M2(F ), consisting of the matrices, having the
following form (

α2κ3 α2κ2 + α3κ3κ2
α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

3
3

)
,

α2, α3 ∈ F .
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Put

β11 = α2κ3, β21 = α2 + α3κ3,

β12 = κ2(α2 + α3κ3) = κ2β21,

β22 = α3κ2κ3 + α2κ
2
3 + α3κ

2
3.

Let S be a Lie subset of a Lie algebra M2(F ) of matrices having a form(
µ1 κ2µ2

µ2 µ3

)
,

µ1, µ2, µ3 ∈ F . By Lemma 5 S is a Lie subalgebra of M2(F ), moreover,
S = Z ⊕ L where Z is the center of M2(F ) and L is a non-abelian Lie
subalgebra of dimension 2. We can see that ϑ(Ξ(D)) is a subalgebra of S.
In particular, it follows that

dimF (D) = dimF (Ξ(D)) = dimF (ϑ(Ξ(D))) ≤ 3.

We have(
α2κ3 α2κ2 + α3κ3κ2

α2 + α3κ3 α3κ2κ3 + α2κ
2
3 + α3κ

2
3

)(
µ2κ3 µ2κ2 + µ3κ3κ2

µ2 + µ3κ3 µ3κ2κ3 + µ2κ
2
3 + µ3κ

2
3

)
=

(
ν11 ν12
ν21 ν22

)
,

where

ν11 = α2κ3µ2κ3 + (α2κ2 + α3κ3κ2)(µ2 + µ3κ3)

= α2µ2κ
2
3 + α2µ2κ2 + α3µ2κ2κ3 + α2µ3κ2κ3 + α3µ3κ2κ

2
3,

ν12 = α2κ3(µ2κ2 + µ3κ3κ2)

+ (α2κ2 + α3κ2κ3)(µ3κ2κ3 + µ2κ
2
3 + µ3κ

2
3)

= α2µ2κ2κ3 + α2µ3κ2κ
2
3 + α2µ3κ

2
2κ3 + α2µ2κ2κ

2
3

+ α2µ3κ2κ
2
3 + α3µ3κ

2
2κ

2
3 + α3µ2κ2κ

3
3 + α3µ3κ2κ

3
3

= α2µ2κ2κ3 + α2µ3κ
2
2κ3 + α2µ2κ2κ

2
3

+ α3µ3κ
2
2κ

2
3 + α3µ2κ2κ

3
3 + α3µ3κ2κ

3
3

= κ2(α2µ2κ3 + α2µ3κ2κ3 + α2µ2κ
2
3

+ α3µ3κ2κ
2
3 + α3µ2κ

3
3 + α3µ3κ

3
3),

and
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ν21 = (α2 + α3κ2)µ2κ3 + (α3κ2κ3 + α2κ
2
3 + α3κ

2
3)(µ2 + µ3κ3)

= α2µ2κ3 + α3µ2κ
2
3 + α3µ2κ2κ3 + α2µ2κ

2
3

+ α3µ2κ
2
3 + α3µ3κ2κ

2
3 + α2µ3κ

3
3 + α3µ3κ

3
3

= α2µ2κ3 + α3µ2κ2κ3 + α2µ2κ
2
3

+ α3µ3κ2κ
2
3 + α2µ3κ

3
3 + α3µ3κ

3
3,

ν22 = (α2 + α3κ3)(µ2κ2 + µ3κ3κ2)

+ (α3κ2κ3 + α2κ
2
3 + α3κ

2
3)(µ3κ2κ3 + µ2κ

2
3 + µ3κ

2
3)

= α2µ2κ2 + α2µ3κ2κ3 + α3µ2κ2κ3 + α3µ3κ2κ
2
3

+ α3µ3κ
2
2κ

2
3 + α3µ2κ2κ

3
3 + α3µ3κ2κ

3
3 + α2µ3κ2κ

3
3

+ α2µ2κ
4
3 + α2µ3κ

4
3 + α3µ3κ2κ

3
3 + α3µ2κ

4
3 + α3µ3κ

4
3.

Furthermore(
µ2κ3 µ2κ2 + µ3κ3κ2

µ2 + µ3κ3 µ3κ2κ3 + µ2κ
2
3 + µ3κ

2
3

)(
α2κ3 α2κ2 + α3κ3κ2

α2 + α3κ3 α3κ2κ3 + α2κ
2
3 + α3κ

2
3

)
=

(
τ11 τ12
τ21 τ22

)
,

where

τ11 = µ2α2κ
2
3 + µ2α2κ2 + µ3α2κ2κ3 + µ2α3κ2κ3 + µ3α3κ2κ

2
3,

τ12 = κ2(µ2α2κ3 + µ2α3κ2κ3 + µ2α2κ
2
3 + µ3α3κ2κ

2
3

+ µ3α2κ
3
3 + µ3α3κ

3
3),

τ21 = µ2α2κ3 + µ3α2κ2κ3 + µ2α2κ
2
3 + µ3α3κ2κ

2
3

+ µ2α3κ
3
3 + µ3α3κ

3
3,

τ22 = µ2α2κ2 + µ2α3κ2κ3 + µ3α2κ2κ3 + µ3α3κ2κ
2
3

+ µ3α3κ
2
2κ

2
3 + µ3α2κ2κ

3
3 + µ3α3κ2κ

3
3 + µ2α3κ2κ

3
3

+ µ2α2κ
4
3 + µ2α3κ

4
3 + µ3α3κ2κ

3
3 + µ3α2κ

4
3 + µ3α3κ

4
3.

Now we obtain a commutator of these two matrices:

ν11 + τ11 = α2µ2κ
2
3 + α2µ2κ2 + α3µ2κ2κ3 + α2µ3κ2κ3

+ α3µ3κ2κ
2
3 + µ2α2κ

2
3 + µ2α2κ2 + µ3α2κ2κ3

+ µ2α3κ2κ3 + µ3α3κ2κ
2
3

= 0,
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ν12 + τ12 = κ2(α2µ2κ3 + α2µ3κ2κ3 + α2µ2κ
2
3

+ α3µ3κ2κ
2
3 + α3µ2κ

3
3 + α3µ3κ

3
3)

+ κ2(µ2α2κ3 + µ2α3κ2κ3 + µ2α2κ
2
3

+ µ3α3κ2κ
2
3 + µ3α2κ

3
3 + µ3α3κ

3
3)

= κ2(α2µ3κ2κ3 + α3µ2κ
3
3 + µ2α3κ2κ3 + µ3α2κ

3
3),

ν21 + τ21 = α2µ2κ3 + α3µ2κ2κ3 + α2µ2κ
2
3

+ α3µ3κ2κ
2
3 + α2µ3κ

3
3 + α3µ3κ

3
3

+ µ2α2κ3 + µ3α2κ2κ3 + µ2α2κ
2
3

+ µ3α3κ2κ
2
3 + µ2α3κ

3
3 + µ3α3κ

3
3

= α3µ2κ2κ3 + α2µ3κ
3
3 + µ3α2κ2κ3 + µ2α3κ

3
3,

ν22 + τ22 = α2µ2κ2 + α2µ3κ2κ3 + α3µ2κ2κ3 + α3µ3κ2κ
2
3

+ α3µ3κ
2
2κ

2
3 + α3µ2κ2κ

3
3 + α3µ3κ2κ

3
3 + α2µ3κ2κ

3
3

+ α2µ2κ
4
3 + α2µ3κ

4
3 + α3µ3κ2κ

3
3 + α3µ2κ

4
3 + α3µ3κ

4
3

+ µ2α2κ2 + µ2α3κ2κ3 + µ3α2κ2κ3 + µ3α3κ2κ
2
3

+ µ3α3κ
2
2κ

2
3 + µ3α2κ2κ

3
3 + µ3α3κ2κ

3
3 + µ2α3κ2κ

3
3

+ µ2α2κ
4
3 + µ2α3κ

4
3 + µ3α3κ2κ

3
3 + µ3α2κ

4
3 + µ3α3κ

4
3

= 0.

Thus we can see that if α3µ2κ2κ3 + α2µ3κ
3
3 + µ3α2κ2κ3 + µ2α3κ

3
3 = 0,

then ϑ(Ξ(D)) is abelian. If κ2 = κ23 then

α3µ2κ2κ3 + α2µ3κ
3
3 + µ3α2κ2κ3 + µ2α3κ

3
3

= α3µ2κ
3
3 + α2µ3κ

3
3 + µ3α2κ

3
3 + µ2α3κ

3
3

= 2α3µ2κ
3
3 + 2α2µ3κ

3
3 = 0,

so that in this case ϑ(Ξ(D)) is abelian.

Suppose that ϑ(Ξ(D)) ∩ Z ̸= ⟨0⟩ and let(
σ 0
0 σ

)
∈ ϑ(Ξ(D)) ∩ Z.

Then we obtain α2κ3 = σ, α2 + α3κ3 = 0, α3κ2κ3 + α2κ
2
3 + α3κ

2
3 = σ.(

α2κ3 α2κ2 + α3κ3κ2
α2 + α3κ3 α3κ2κ3 + α2κ

2
3 + α3κ

2
3

)
=

(
σ 0
0 σ

)
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or α2κ3 = σ, α2 + α3κ3 = 0, α3κ2κ3 + α2κ
2
3 + α3κ

2
3 = σ. It follows that

α2 = σκ−1
3 , α3 = σκ−2

3 . But in this case

α3κ2κ3 + α2κ
2
3 + α3κ

2
3 = σκ−2

3 κ2κ3 + σκ−1
3 κ23 + σκ−2

3 κ23

= σκ−1
3 κ2 + σκ3 + σ = σκ−1

3 (κ2 + κ23 + κ3).

It follows that κ−1
3 (κ2 + κ23 + κ3) = 1, and we obtain that in this case

κ2 = κ23. Hence, if κ2 = κ23, then ϑ(Ξ(D)) is abelian. Moreover, it
includes the center of a Lie algebra M2(F ). Since S is not abelian, we
obtain that dimF (ϑ(Ξ(D))) = 2. A polynomial

X2 + κ3X − κ2 = X2 + κ3X + κ23

has no roots in a field F .
Suppose now that κ2 ̸= κ23. As we have seen above, then

ϑ(Ξ(D)) ∩ Z = ⟨0⟩

and we obtain that

ϑ(Ξ(D)) ∼= ϑ(Ξ(D))/(ϑ(Ξ(D)) ∩ Z) ∼= (ϑ(Ξ(D)) + Z)/Z ≤ S/Z ∼= L.

In particular, dimF (ϑ(Ξ(D))) ≤ 2. Let

B =

(
κ3 κ2
1 κ23

)
, C =

(
0 κ3κ2
κ3 κ2κ3 + κ23

)
,

then B,C ∈ ϑ(Ξ(D)).
Suppose that λ, µ be the elements of a field F such that λB+µC = O.

We have

λB + µC = λ

(
κ3 κ2
1 κ23

)
+ µ

(
0 κ3κ2
κ3 κ2κ3 + κ23

)
=

(
λκ3 λκ3 + µκ3κ2

λ+ µκ3 λκ23 + µκ2κ3 + µκ23

)
.

It follows that λκ3 = 0, λ + µκ3 = 0, λκ23 + µκ2κ3 + µκ23 = 0. Since
κ3 ̸= 0, we obtain that λ = 0, µ = 0. Hence, the matrices B and C
are linearly independent. It follows that dimF (ϑ(Ξ(D))) = 2. By above
proved we obtain that ϑ(Ξ(D)) ∼= L, so that

D ∼= Ξ(D) ∼= ϑ(Ξ(D))

is a non-abelian Lie algebra of dimension 2.
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