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Abstract. In this paper we study the additivity and the
characterization of multiplicative Jordan triple (θ, ϕ)-derivations of
rings. As a consequence, we show that multiplicative Jordan triple
(θ, ϕ)-derivations of standard operator algebras are (θ, ϕ)-derivations.

Introduction

The study of the additivity of multiplicative derivation type maps on
rings have attracted the attention of many algebraists. The first result
about the additivity of multiplicative derivation of a ring (a concept
based on the notion of a derivation) was given by Daif [3]. Lu [9] studied
the additivity of multiplicative Jordan triple derivations of rings (also
called of Jordan semitriple derivable maps), a concept based on the
notion of a Jordan triple derivation, and Jing and Lu [5] generalized
the results of [9] to a larger class of rings. Motivated by these facts,
in this paper we present the notion of a multiplicative Jordan triple
(θ, φ)-derivation, a concept based on the notion of a Jordan triple (θ, φ)-
derivation, presented by Liu and Shiue [8], and we present a study on its
additivity. As an application we prove that multiplicative Jordan triple
(θ, φ)-derivations of standard operator algebras are (θ, φ)-derivations.
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1. Multiplicative Jordan triple (θ, ϕ)-derivations of rings

Let R be a ring and θ, ϕ : R → R endomorphisms of R. A map
δ : R → R is called a multiplicative (θ, ϕ)-derivation of R if the fol-
lowing condition is satisfied:

δ(ab) = δ(a)θ(b) + ϕ(a)δ(b),

for all elements a, b ∈ R. An additive multiplicative (θ, ϕ)-derivation of
R is called a (θ, ϕ)-derivation of R.

A map δ : R → R is called a multiplicative Jordan triple (θ, ϕ)-
derivation of R if the following condition is satisfied:

δ(aba) = δ(a)θ(b)θ(a) + ϕ(a)δ(b)θ(a) + ϕ(a)ϕ(b)δ(a),

for all elements a, b ∈ R. An additive multiplicative Jordan triple (θ, ϕ)-
derivation of R is called a Jordan triple (θ, ϕ)-derivation of R.

Our main result in this section reads as follows.

Theorem 1. Let R be a ring containing a non-trivial idempotent e1,
R = ⊕

i,j=1,2
Rij the Peirce decomposition of R, relative to e1, and

θ, ϕ : R → R endomorphisms of R. Suppose further that for t ∈ R
the following properties hold:

(♣) ϕ(xij)tθ(xij) = 0, for all xij ∈ Rij (i, j = 1, 2), implies t = 0,

(♠) ϕ(xij)tθ(xij) = 0, for all xij ∈ Rij (i ̸= j; i, j = 1, 2), implies t = 0,
provided that the conditions are satisfied:

ϕ(xji)tθ(xii) = 0 and ϕ(xii)tθ(xij) = 0,

for all elements xii ∈ Rii, xij ∈ Rij and xji ∈ Rji (i ̸= j; i, j = 1, 2).

Then every multiplicative Jordan triple (θ, ϕ)-derivation of R is additive.
In addition, if R is a 2-torsion free semiprime ring and θ, ϕ : R → R

are automorphisms of R, then every multiplicative Jordan triple (θ, ϕ)-
derivation of R is a (θ, ϕ)-derivation of R.

To prove the Theorem 1, let δ : R → R be a multiplicative Jordan
triple (θ, ϕ)-derivation of R.

Based on the techniques used by Jing and Lu [5], we shall organize
the proof of Theorem 1 in a series of lemmas. The following lemma will
be used throughout this paper, whose proof is elementary and therefore
omitted.
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Lemma 1. δ(0) = 0.

The following well known result will be used throughout this paper:
Let e1 be a non-trivial idempotent of R and formally set e2 = 1R − e1
(R need not have an identity element 1R). Then R has a Peirce decom-
position R = R11 ⊕R12 ⊕R21 ⊕R22, relative to e1, where Rij = eiRej
(i, j = 1, 2), satisfying the following multiplicative relations: RijRkl ⊆
δjkRil, where δjk is the Kronecker delta function. More details about the
Peirce decomposition and its properties, can be found in references [4]
and [10].

Lemma 2. For every elements a11 ∈ R11, a12 ∈ R12, a21 ∈ R21 and
a22 ∈ R22 we have: δ(a11 + a12 + a21 + a22) = δ(a11) + δ(a12) + δ(a21) +
δ(a22).

Proof. By definition of the map δ we get

δ(xij(a11 + a12 + a21 + a22)xij)− δ(xija11xij)− δ(xija12xij)

−δ(xija21xij)− δ(xija22xij)

= ϕ(xij)(δ(a11 + a12 + a21 + a22)− δ(a11)− δ(a12)− δ(a21)− δ(a22))θ(xij),

for all xij ∈ Rij (i, j = 1, 2). Thus,

ϕ(xij)(δ(a11 + a12 + a21 + a22)− δ(a11)− δ(a12)− δ(a21)− δ(a22))θ(xij) = 0,

for all xij ∈ Rij (i, j = 1, 2), which leads to δ(a11 + a12 + a21 + a22)−
δ(a11)− δ(a12)− δ(a21)− δ(a22) = 0, by property (♣).

Lemma 3.For every elements a12, b12∈R12, a21, b21∈R21 and t22∈R22

we have: (i) δ(a12+ b12t22) = δ(a12)+δ(b12t22) and (ii) δ(a21+ t22b21) =
δ(a21) + δ(t22b21).

Proof. First, note that the following identity holds:

e1 + a12 + b12t22 = (e1 + a12 + t22)(e1 + b12)(e1 + a12 + t22),

for all elements a12, b12 ∈ R12 and t22 ∈ R22. Hence, by Lemma 2 we
have

δ(e1) + δ(a12 + a12t22)

= δ(e1 + a12 + a12t22)

= δ((e1 + a12 + t22)(e1 + b12)(e1 + a12 + t22))

= δ(e1 + a12 + t22)θ(e1 + b12)θ(e1 + a12 + t22)
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+ ϕ(e1 + a12 + t22)δ(e1 + b12)θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)ϕ(e1 + b12)δ(e1 + a12 + t22)

= δ(e1 + a12 + t22)(θ(e1) + θ(b12))θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)(δ(e1) + δ(b12))θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)(ϕ(e1) + ϕ(b12))δ(e1 + a12 + t22)

= δ(e1 + a12 + t22)θ(e1)θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)δ(e1)θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)ϕ(e1)δ(e1 + a12 + t22)

+ δ(e1 + a12 + t22)θ(b12)θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)δ(b12)θ(e1 + a12 + t22)

+ ϕ(e1 + a12 + t22)ϕ(b12)δ(e1 + a12 + t22)

= δ((e1 + a12 + t22)e1(e1 + a12 + t22))

+ δ((e1 + a12 + t22)b12(e1 + a12 + t22))

= δ(e1 + a12) + δ(b12t22)

= δ(e1) + δ(a12) + δ(b12t22).

This immediately leads to δ(a12 + a12t22) = δ(a12) + δ(a12t22). Similarly,
we prove that δ(a21 + t22a21) = δ(a21) + δ(t22a21) from the identity:

e1 + a21 + t22b21 = (e1 + a21 + t22)(e1 + b21)(e1 + a21 + t22),

for all elements a21, b21 ∈ R21 and t22 ∈ R22.

Lemma 4. For every elements a12, b12 ∈ R12 and a21, b21 ∈ R21 we have:
(i) δ(a12 + b12) = δ(a12) + δ(b12) and (ii) δ(a21 + b21) = δ(a21) + δ(b21).

Proof. On account of the definition of the map δ we have

δ(xij(a12 + b12)xij)− δ(xija12xij)− δ(xijb12xij)

= ϕ(xij)(δ(a12 + b12)− δ(a12)− δ(b12))θ(xij),

for all xij ∈ Rij (i, j = 1, 2). Then by Lemma 3(ii) we see that

ϕ(xij)(δ(a12 + b12)− δ(a12)− δ(b12))θ(xij) = 0,

for all xij∈ Rij (i, j =1, 2), which leads to δ(a12+b12)−δ(a12)−δ(b12)=0.
Similarly, we prove the case (ii).

Lemma 5. For every elements a11, b11 ∈ R11 and a22, b22 ∈ R22 we have:
(i) δ(a11 + b11) = δ(a11) + δ(b11) and (ii) δ(a22 + b22) = δ(a22) + δ(b22).
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Proof. By definition of the map δ we get

δ(xij(a11 + b11)xij)− δ(xija11xij)− δ(xijb11xij)

= ϕ(xij)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xij),

for all xij ∈ Rij (i ̸= j; i, j = 1, 2). Thus

ϕ(xij)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xij) = 0, (1)

for all xij ∈ Rij (i ̸= j; i, j = 1, 2). Next, we compute

δ(xii(a11 + b11)xii) + δ(xji(a11 + b11)xii)

= δ((xii + xji)(a11 + b11)(xii + xji))

= δ(xii + xji)θ(a11 + b11)θ(xii + xji)

+ ϕ(xii + xji)δ(a11 + b11)θ(xii + xji)

+ ϕ(xii + xji)ϕ(a11 + b11)δ(xii + xji), (2)

δ(xiia11xii) + δ(xjia11xii) = δ((xii + xji)a11(xii + xji))

= δ(xii + xji)θ(a11)θ(xii + xji) + ϕ(xii + xji)δ(a11)θ(xii + xji)

+ ϕ(xii + xji)ϕ(a11)δ(xii + xji) (3)

and

δ(xiib11xii) + δ(xjib11xii) = δ((xii + xji)b11(xii + xji))

= δ(xii + xji)θ(b11)θ(xii + xji) + ϕ(xii + xji)δ(b11)θ(xii + xji)

+ ϕ(xii + xji)ϕ(b11)δ(xii + xji), (4)

for all elements xii ∈ Rii and xji ∈ Rji (i ̸= j; i, j = 1, 2). Adding (3)
and (4) and subtracting this sum from (2), we see that

δ(xii(a11 + b11)xii)− δ(xiia11xii)− δ(xiib11xii)

= ϕ(xii + xji)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xii + xji), (5)

by Lemma 4. Since

δ(xii(a11 + b11)xii)− δ(xiia11xii)− δ(xiib11xii)

= ϕ(xii)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xii), (6)

then by (5) and (6) we get

ϕ(xii + xji)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xii + xji)
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= ϕ(xii)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xii)

and by (1) we obtain

ϕ(xii)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xji)

+ϕ(xji)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xii) = 0. (7)

Taking into account that ϕ is an endomorphism of R, then multiplying
(1) on the left by ϕ(e1), we obtain that

ϕ(xji)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xii) = 0, (8)

for all elements xii ∈ Rii and xji ∈ Rji (i ̸= j; i, j = 1, 2). By a similar
argument, we can show that

ϕ(xii)(δ(a11 + b11)− δ(a11)− δ(b11))θ(xij) = 0, (9)

for all elements xii ∈ R11 and xij ∈ Rij (i ̸= j; i, j = 1, 2). It follows from
the identities (1), (8), (9) and property (♠) that δ(a11 + b11)− δ(a11)−
δ(b11) = 0.

Similarly, we prove the case (ii).

Lemma 6. δ is an additive map.

Proof. The result follows directly from the Lemmas 2, 4, and 5.

For concluding the proof of the Theorem 1 we will suppose in addition
that R is a 2-torsion free semiprime ring and that θ, ϕ : R → R are
automorphisms of R.

Lemma 7. δ is a (θ, ϕ)-derivation of R.

Proof. The result follows directly from the [8, Theorem 1].

2. Multiplicative Jordan triple (θ, ϕ)-derivations of
standard operator algebras

Let X be a Banach space. We denote by B(X ) the algebra of all
bounded linear operators on X and F (X ) the ideal of all bounded finite
rank operators in B(X ). A subalgebra A of B(X ) is called prime if
aA b = 0 implies a = 0 or b = 0. A subalgebra A of B(X ) is called a
standard operator algebra if A contain F (X ). It is clear that B(X ) is
a standard operator algebra.

The main result described in the previous section allows to establish
the following theorem.
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Theorem 2. Let X be a Banach space with dimX ≥ 2, A ⊂ B(X )
a standard operator algebra on X and θ, ϕ : A → A automorphisms
of A . Then the following statement holds: every multiplicative Jordan
triple (θ, ϕ)-derivation of A is a (θ, ϕ)-derivation of A .

Proof. First of all, it is well known that B(X ) is a prime ring and A
contains a non-trivial idempotent e1.Write e2 = 1B(X )−e1, where 1B(X )

is a multiplicative identity of B(X ). Also, A is dense in B(X ) under
the strong operator topology and, by [1, Corollary 7.3.], there exist linear
invertible operators of B(X ), x, y : X → X , such that ϕ(a) = xax−1

and θ(a) = yay−1, for any element a ∈ A .
Let B(X ) = ⊕

i,j=1,2
B(X )ij and A = ⊕

i,j=1,2
Aij be the Peirce de-

compositions of B(X ) and A , relative to e1, respectively, and for every
element t ∈ A let x−1ty = (x−1ty)11+(x−1ty)12+(x−1ty)21+(x−1ty)22
be the Peirce decomposition of x−1ty, relative to e1.

If ϕ(rij)tθ(rij) = 0, for all rij ∈ Aij (i, j = 1, 2), then xrijx
−1tyrijy

−1

= 0 which shows that rijx
−1tyrij = 0. As A is dense in B(X ), then

we get that rijx
−1tyrij = 0, for all rij ∈ B(X )ij (i, j = 1, 2). Hence, by

[7, Lemma 2(i)], we obtain (x−1ty)ji = 0 (i, j = 1, 2). It follows that
x−1ty = 0 which leads to t = 0. This shows that the property (♣) is
satisfied. Now, if ϕ(rij)tθ(rij) = 0, for all rij ∈ Aij (i ̸= j; i, j = 1, 2),
then (x−1ty)ji = 0 (i ̸= j; i, j = 1, 2), by a similar reasoning to the
previous case. On the other hand, the hypotheses that ϕ(rji)tθ(rii) = 0
and ϕ(rii)tθ(rij) = 0, for all elements rii ∈ Aii, rij ∈ Aij and rji ∈ Aji

(i ̸= j; i, j = 1, 2), imply that xrjix
−1tyriiy

−1 = 0 and xriix
−1tyrijy

−1

= 0, respectively, which lead to identities rjix
−1tyrii = 0 and riix

−1tyrij
=0. As A is dense in B(X ), then we can deduce that rjix

−1tyrii = 0 and
riix

−1tyrij = 0, for all elements rii ∈ B(X )ii, rij ∈ B(X )ij and rji ∈
B(X )ji (i ̸= j; i, j = 1, 2), respectively. This implies that (x−1ty)ii = 0,
in view of the primeness of B(X ). The last two results combined show
that x−1ty = 0 which results that t = 0. This shows that the property
(♠) is also satisfied. Therefore, by Theorem 1, d is an additive map and
the stated result follows.
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