© Algebra and Discrete Mathematics Volume **39** (2025). Number 1, pp. 89–96 DOI:10.12958/adm2313

Multiplicative Jordan triple (θ, ϕ) -derivations of rings and standard operator algebras

João Carlos da Motta Ferreira and Maria das Graças Bruno Marietto

Communicated by V. Futorny

ABSTRACT. In this paper we study the additivity and the characterization of multiplicative Jordan triple (θ, ϕ) -derivations of rings. As a consequence, we show that multiplicative Jordan triple (θ, ϕ) -derivations of standard operator algebras are (θ, ϕ) -derivations.

Introduction

The study of the additivity of multiplicative derivation type maps on rings have attracted the attention of many algebraists. The first result about the additivity of multiplicative derivation of a ring (a concept based on the notion of a derivation) was given by Daif [3]. Lu [9] studied the additivity of multiplicative Jordan triple derivations of rings (also called of Jordan semitriple derivable maps), a concept based on the notion of a Jordan triple derivable maps), a concept based on the notion of a Jordan triple derivation, and Jing and Lu [5] generalized the results of [9] to a larger class of rings. Motivated by these facts, in this paper we present the notion of a multiplicative Jordan triple (θ, φ) -derivation, a concept based on the notion of a Jordan triple (θ, φ) derivation, presented by Liu and Shiue [8], and we present a study on its additivity. As an application we prove that multiplicative Jordan triple (θ, φ) -derivations of standard operator algebras are (θ, φ) -derivations.

²⁰²⁰ Mathematics Subject Classification: 16W99, 47B99, 47L99.

Key words and phrases: additivity, prime rings, standard operator algebras, multiplicative Jordan triple (θ, ϕ) -derivations.

1. Multiplicative Jordan triple (θ, ϕ) -derivations of rings

Let \mathscr{R} be a ring and $\theta, \phi : \mathscr{R} \to \mathscr{R}$ endomorphisms of \mathscr{R} . A map $\delta : \mathscr{R} \to \mathscr{R}$ is called a *multiplicative* (θ, ϕ) -derivation of \mathscr{R} if the following condition is satisfied:

$$\delta(ab) = \delta(a)\theta(b) + \phi(a)\delta(b),$$

for all elements $a, b \in \mathscr{R}$. An additive multiplicative (θ, ϕ) -derivation of \mathscr{R} is called a (θ, ϕ) -derivation of \mathscr{R} .

A map $\delta : \mathscr{R} \to \mathscr{R}$ is called a *multiplicative Jordan triple* (θ, ϕ) -*derivation of* \mathscr{R} if the following condition is satisfied:

$$\delta(aba) = \delta(a)\theta(b)\theta(a) + \phi(a)\delta(b)\theta(a) + \phi(a)\phi(b)\delta(a),$$

for all elements $a, b \in \mathscr{R}$. An additive multiplicative Jordan triple (θ, ϕ) -derivation of \mathscr{R} is called a *Jordan triple* (θ, ϕ) -derivation of \mathscr{R} .

Our main result in this section reads as follows.

Theorem 1. Let \mathscr{R} be a ring containing a non-trivial idempotent e_1 , $\mathscr{R} = \bigoplus_{\substack{i,j=1,2\\ i,j=1,2}} \mathscr{R}_{ij}$ the Peirce decomposition of \mathscr{R} , relative to e_1 , and $\theta, \phi : \mathscr{R} \to \mathscr{R}$ endomorphisms of \mathscr{R} . Suppose further that for $t \in \mathscr{R}$ the following properties hold:

(
$$\clubsuit$$
) $\phi(x_{ij})t\theta(x_{ij}) = 0$, for all $x_{ij} \in \mathscr{R}_{ij}$ $(i, j = 1, 2)$, implies $t = 0$,

(\blacklozenge) $\phi(x_{ij})t\theta(x_{ij}) = 0$, for all $x_{ij} \in \mathscr{R}_{ij}$ $(i \neq j; i, j = 1, 2)$, implies t = 0, provided that the conditions are satisfied:

$$\phi(x_{ji})t\theta(x_{ii}) = 0 \text{ and } \phi(x_{ii})t\theta(x_{ij}) = 0,$$

for all elements $x_{ii} \in \mathscr{R}_{ii}$, $x_{ij} \in \mathscr{R}_{ij}$ and $x_{ji} \in \mathscr{R}_{ji}$ $(i \neq j; i, j = 1, 2)$.

Then every multiplicative Jordan triple (θ, ϕ) -derivation of \mathscr{R} is additive.

In addition, if \mathscr{R} is a 2-torsion free semiprime ring and $\theta, \phi : \mathscr{R} \to \mathscr{R}$ are automorphisms of \mathscr{R} , then every multiplicative Jordan triple (θ, ϕ) derivation of \mathscr{R} is a (θ, ϕ) -derivation of \mathscr{R} .

To prove the Theorem 1, let $\delta : \mathscr{R} \to \mathscr{R}$ be a multiplicative Jordan triple (θ, ϕ) -derivation of \mathscr{R} .

Based on the techniques used by Jing and Lu [5], we shall organize the proof of Theorem 1 in a series of lemmas. The following lemma will be used throughout this paper, whose proof is elementary and therefore omitted.

Lemma 1. $\delta(0) = 0$.

The following well known result will be used throughout this paper: Let e_1 be a non-trivial idempotent of \mathscr{R} and formally set $e_2 = 1_{\mathscr{R}} - e_1$ (\mathscr{R} need not have an identity element $1_{\mathscr{R}}$). Then \mathscr{R} has a Peirce decomposition $\mathscr{R} = \mathscr{R}_{11} \oplus \mathscr{R}_{12} \oplus \mathscr{R}_{21} \oplus \mathscr{R}_{22}$, relative to e_1 , where $\mathscr{R}_{ij} = e_i \mathscr{R} e_j$ (i, j = 1, 2), satisfying the following multiplicative relations: $\mathscr{R}_{ij}\mathscr{R}_{kl} \subseteq \delta_{jk}\mathscr{R}_{il}$, where δ_{jk} is the Kronecker delta function. More details about the Peirce decomposition and its properties, can be found in references [4] and [10].

Lemma 2. For every elements $a_{11} \in \mathscr{R}_{11}$, $a_{12} \in \mathscr{R}_{12}$, $a_{21} \in \mathscr{R}_{21}$ and $a_{22} \in \mathscr{R}_{22}$ we have: $\delta(a_{11} + a_{12} + a_{21} + a_{22}) = \delta(a_{11}) + \delta(a_{12}) + \delta(a_{21}) + \delta(a_{22})$.

Proof. By definition of the map δ we get

$$\delta(x_{ij}(a_{11} + a_{12} + a_{21} + a_{22})x_{ij}) - \delta(x_{ij}a_{11}x_{ij}) - \delta(x_{ij}a_{12}x_{ij}) -\delta(x_{ij}a_{21}x_{ij}) - \delta(x_{ij}a_{22}x_{ij}) = \phi(x_{ij})(\delta(a_{11} + a_{12} + a_{21} + a_{22}) - \delta(a_{11}) - \delta(a_{12}) - \delta(a_{21}) - \delta(a_{22}))\theta(x_{ij}),$$

for all $x_{ij} \in \mathscr{R}_{ij}$ (i, j = 1, 2). Thus,

$$\phi(x_{ij})(\delta(a_{11} + a_{12} + a_{21} + a_{22}) - \delta(a_{11}) - \delta(a_{12}) - \delta(a_{21}) - \delta(a_{22}))\theta(x_{ij}) = 0,$$

for all $x_{ij} \in \mathscr{R}_{ij}$ (i, j = 1, 2), which leads to $\delta(a_{11} + a_{12} + a_{21} + a_{22}) - \delta(a_{11}) - \delta(a_{12}) - \delta(a_{21}) - \delta(a_{22}) = 0$, by property (\clubsuit).

Lemma 3. For every elements $a_{12}, b_{12} \in \mathscr{R}_{12}, a_{21}, b_{21} \in \mathscr{R}_{21}$ and $t_{22} \in \mathscr{R}_{22}$ we have: (i) $\delta(a_{12}+b_{12}t_{22}) = \delta(a_{12}) + \delta(b_{12}t_{22})$ and (ii) $\delta(a_{21}+t_{22}b_{21}) = \delta(a_{21}) + \delta(t_{22}b_{21})$.

Proof. First, note that the following identity holds:

 $e_1 + a_{12} + b_{12}t_{22} = (e_1 + a_{12} + t_{22})(e_1 + b_{12})(e_1 + a_{12} + t_{22}),$

for all elements $a_{12}, b_{12} \in \mathscr{R}_{12}$ and $t_{22} \in \mathscr{R}_{22}$. Hence, by Lemma 2 we have

$$\begin{split} \delta(e_1) &+ \delta(a_{12} + a_{12}t_{22}) \\ &= \delta(e_1 + a_{12} + a_{12}t_{22}) \\ &= \delta((e_1 + a_{12} + t_{22})(e_1 + b_{12})(e_1 + a_{12} + t_{22})) \\ &= \delta(e_1 + a_{12} + t_{22})\theta(e_1 + b_{12})\theta(e_1 + a_{12} + t_{22}) \end{split}$$

$$\begin{split} &+\phi(e_1+a_{12}+t_{22})\delta(e_1+b_{12})\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\phi(e_1+b_{12})\delta(e_1+a_{12}+t_{22})\\ &=\delta(e_1+a_{12}+t_{22})(\theta(e_1)+\theta(b_{12}))\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})(\delta(e_1)+\delta(b_{12}))\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\theta(e_1)\theta(e_1+a_{12}+t_{22})\\ &=\delta(e_1+a_{12}+t_{22})\theta(e_1)\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\delta(e_1)\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\theta(b_{12})\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\theta(b_{12})\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\phi(b_{12})\theta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\phi(b_{12})\delta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\phi(b_{12})\delta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\phi(b_{12})\delta(e_1+a_{12}+t_{22})\\ &+\phi(e_1+a_{12}+t_{22})\phi(b_{12})\delta(e_1+a_{12}+t_{22})\\ &=\delta((e_1+a_{12}+t_{22})b_{12}(e_1+a_{12}+t_{22}))\\ &=\delta(e_1+a_{12})+\delta(b_{12}t_{22})\\ &=\delta(e_1)+\delta(a_{12})+\delta(b_{12}t_{22}). \end{split}$$

This immediately leads to $\delta(a_{12} + a_{12}t_{22}) = \delta(a_{12}) + \delta(a_{12}t_{22})$. Similarly, we prove that $\delta(a_{21} + t_{22}a_{21}) = \delta(a_{21}) + \delta(t_{22}a_{21})$ from the identity:

$$e_1 + a_{21} + t_{22}b_{21} = (e_1 + a_{21} + t_{22})(e_1 + b_{21})(e_1 + a_{21} + t_{22}),$$

for all elements $a_{21}, b_{21} \in \mathscr{R}_{21}$ and $t_{22} \in \mathscr{R}_{22}$.

Lemma 4. For every elements $a_{12}, b_{12} \in \mathscr{R}_{12}$ and $a_{21}, b_{21} \in \mathscr{R}_{21}$ we have: (i) $\delta(a_{12} + b_{12}) = \delta(a_{12}) + \delta(b_{12})$ and (ii) $\delta(a_{21} + b_{21}) = \delta(a_{21}) + \delta(b_{21})$.

Proof. On account of the definition of the map δ we have

$$\delta(x_{ij}(a_{12}+b_{12})x_{ij}) - \delta(x_{ij}a_{12}x_{ij}) - \delta(x_{ij}b_{12}x_{ij}) = \phi(x_{ij})(\delta(a_{12}+b_{12}) - \delta(a_{12}) - \delta(b_{12}))\theta(x_{ij}),$$

for all $x_{ij} \in \mathscr{R}_{ij}$ (i, j = 1, 2). Then by Lemma 3(ii) we see that

$$\phi(x_{ij})(\delta(a_{12}+b_{12})-\delta(a_{12})-\delta(b_{12}))\theta(x_{ij})=0,$$

for all $x_{ij} \in \mathscr{R}_{ij}$ (i, j = 1, 2), which leads to $\delta(a_{12}+b_{12})-\delta(a_{12})-\delta(b_{12})=0$. Similarly, we prove the case (ii).

Lemma 5. For every elements $a_{11}, b_{11} \in \mathscr{R}_{11}$ and $a_{22}, b_{22} \in \mathscr{R}_{22}$ we have: (i) $\delta(a_{11} + b_{11}) = \delta(a_{11}) + \delta(b_{11})$ and (ii) $\delta(a_{22} + b_{22}) = \delta(a_{22}) + \delta(b_{22})$.

Proof. By definition of the map δ we get

$$\delta(x_{ij}(a_{11}+b_{11})x_{ij}) - \delta(x_{ij}a_{11}x_{ij}) - \delta(x_{ij}b_{11}x_{ij}) = \phi(x_{ij})(\delta(a_{11}+b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ij}),$$

for all $x_{ij} \in \mathscr{R}_{ij}$ $(i \neq j; i, j = 1, 2)$. Thus

$$\phi(x_{ij})(\delta(a_{11}+b_{11})-\delta(a_{11})-\delta(b_{11}))\theta(x_{ij})=0, \qquad (1)$$

for all $x_{ij} \in \mathscr{R}_{ij}$ $(i \neq j; i, j = 1, 2)$. Next, we compute

$$\delta(x_{ii}(a_{11} + b_{11})x_{ii}) + \delta(x_{ji}(a_{11} + b_{11})x_{ii})$$

$$= \delta((x_{ii} + x_{ji})(a_{11} + b_{11})(x_{ii} + x_{ji}))$$

$$= \delta(x_{ii} + x_{ji})\theta(a_{11} + b_{11})\theta(x_{ii} + x_{ji})$$

$$+ \phi(x_{ii} + x_{ji})\delta(a_{11} + b_{11})\theta(x_{ii} + x_{ji})$$

$$+ \phi(x_{ii} + x_{ji})\phi(a_{11} + b_{11})\delta(x_{ii} + x_{ji}), \qquad (2)$$

$$\delta(x_{ii}a_{11}x_{ii}) + \delta(x_{ji}a_{11}x_{ii}) = \delta((x_{ii} + x_{ji})a_{11}(x_{ii} + x_{ji}))$$

= $\delta(x_{ii} + x_{ji})\theta(a_{11})\theta(x_{ii} + x_{ji}) + \phi(x_{ii} + x_{ji})\delta(a_{11})\theta(x_{ii} + x_{ji})$
+ $\phi(x_{ii} + x_{ji})\phi(a_{11})\delta(x_{ii} + x_{ji})$ (3)

and

$$\delta(x_{ii}b_{11}x_{ii}) + \delta(x_{ji}b_{11}x_{ii}) = \delta((x_{ii} + x_{ji})b_{11}(x_{ii} + x_{ji}))$$

= $\delta(x_{ii} + x_{ji})\theta(b_{11})\theta(x_{ii} + x_{ji}) + \phi(x_{ii} + x_{ji})\delta(b_{11})\theta(x_{ii} + x_{ji})$
+ $\phi(x_{ii} + x_{ji})\phi(b_{11})\delta(x_{ii} + x_{ji}),$ (4)

for all elements $x_{ii} \in \mathscr{R}_{ii}$ and $x_{ji} \in \mathscr{R}_{ji}$ $(i \neq j; i, j = 1, 2)$. Adding (3) and (4) and subtracting this sum from (2), we see that

$$\delta(x_{ii}(a_{11} + b_{11})x_{ii}) - \delta(x_{ii}a_{11}x_{ii}) - \delta(x_{ii}b_{11}x_{ii})$$

= $\phi(x_{ii} + x_{ji})(\delta(a_{11} + b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ii} + x_{ji}),$ (5)

by Lemma 4. Since

$$\delta(x_{ii}(a_{11}+b_{11})x_{ii}) - \delta(x_{ii}a_{11}x_{ii}) - \delta(x_{ii}b_{11}x_{ii}) = \phi(x_{ii})(\delta(a_{11}+b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ii}),$$
(6)

then by (5) and (6) we get

$$\phi(x_{ii} + x_{ji})(\delta(a_{11} + b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ii} + x_{ji})$$

 $= \phi(x_{ii})(\delta(a_{11} + b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ii})$

and by (1) we obtain

$$\phi(x_{ii})(\delta(a_{11} + b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ji}) + \phi(x_{ji})(\delta(a_{11} + b_{11}) - \delta(a_{11}) - \delta(b_{11}))\theta(x_{ii}) = 0.$$
(7)

Taking into account that ϕ is an endomorphism of \mathscr{R} , then multiplying (1) on the left by $\phi(e_1)$, we obtain that

$$\phi(x_{ji})(\delta(a_{11}+b_{11})-\delta(a_{11})-\delta(b_{11}))\theta(x_{ii})=0,$$
(8)

for all elements $x_{ii} \in \mathscr{R}_{ii}$ and $x_{ji} \in \mathscr{R}_{ji}$ $(i \neq j; i, j = 1, 2)$. By a similar argument, we can show that

$$\phi(x_{ii})(\delta(a_{11}+b_{11})-\delta(a_{11})-\delta(b_{11}))\theta(x_{ij})=0,$$
(9)

for all elements $x_{ii} \in \mathscr{R}_{11}$ and $x_{ij} \in \mathscr{R}_{ij}$ $(i \neq j; i, j = 1, 2)$. It follows from the identities (1), (8), (9) and property (\blacklozenge) that $\delta(a_{11} + b_{11}) - \delta(a_{11}) - \delta(b_{11}) = 0$.

Similarly, we prove the case (ii).

Lemma 6. δ is an additive map.

Proof. The result follows directly from the Lemmas 2, 4, and 5. \Box

For concluding the proof of the Theorem 1 we will suppose in addition that \mathscr{R} is a 2-torsion free semiprime ring and that $\theta, \phi : \mathscr{R} \to \mathscr{R}$ are automorphisms of \mathscr{R} .

Lemma 7. δ is a (θ, ϕ) -derivation of \mathscr{R} .

Proof. The result follows directly from the [8, Theorem 1]. \Box

2. Multiplicative Jordan triple (θ, ϕ) -derivations of standard operator algebras

Let \mathscr{X} be a Banach space. We denote by $\mathscr{B}(\mathscr{X})$ the algebra of all bounded linear operators on \mathscr{X} and $\mathscr{F}(\mathscr{X})$ the ideal of all bounded finite rank operators in $\mathscr{B}(\mathscr{X})$. A subalgebra \mathscr{A} of $\mathscr{B}(\mathscr{X})$ is called *prime* if $a\mathscr{A}b = 0$ implies a = 0 or b = 0. A subalgebra \mathscr{A} of $\mathscr{B}(\mathscr{X})$ is called a *standard operator algebra* if \mathscr{A} contain $\mathscr{F}(\mathscr{X})$. It is clear that $\mathscr{B}(\mathscr{X})$ is a standard operator algebra.

The main result described in the previous section allows to establish the following theorem.

Theorem 2. Let \mathscr{X} be a Banach space with dim $\mathscr{X} \geq 2$, $\mathscr{A} \subset \mathscr{B}(\mathscr{X})$ a standard operator algebra on \mathscr{X} and $\theta, \phi : \mathscr{A} \to \mathscr{A}$ automorphisms of \mathscr{A} . Then the following statement holds: every multiplicative Jordan triple (θ, ϕ) -derivation of \mathscr{A} is a (θ, ϕ) -derivation of \mathscr{A} .

Proof. First of all, it is well known that $\mathscr{B}(\mathscr{X})$ is a prime ring and \mathscr{A} contains a non-trivial idempotent e_1 . Write $e_2 = 1_{\mathscr{B}(\mathscr{X})} - e_1$, where $1_{\mathscr{B}(\mathscr{X})}$ is a multiplicative identity of $\mathscr{B}(\mathscr{X})$. Also, \mathscr{A} is dense in $\mathscr{B}(\mathscr{X})$ under the strong operator topology and, by [1, Corollary 7.3.], there exist linear invertible operators of $\mathscr{B}(\mathscr{X})$, $x, y : \mathscr{X} \to \mathscr{X}$, such that $\phi(a) = xax^{-1}$ and $\theta(a) = yay^{-1}$, for any element $a \in \mathscr{A}$.

Let $\mathscr{B}(\mathscr{X}) = \bigoplus_{i,j=1,2} \mathscr{B}(\mathscr{X})_{ij}$ and $\mathscr{A} = \bigoplus_{i,j=1,2} \mathscr{A}_{ij}$ be the Peirce decompositions of $\mathscr{B}(\mathscr{X})$ and \mathscr{A} , relative to e_1 , respectively, and for every element $t \in \mathscr{A}$ let $x^{-1}ty = (x^{-1}ty)_{11} + (x^{-1}ty)_{12} + (x^{-1}ty)_{21} + (x^{-1}ty)_{22}$ be the Peirce decomposition of $x^{-1}ty$, relative to e_1 .

If $\phi(r_{ij})t\theta(r_{ij}) = 0$, for all $r_{ij} \in \mathscr{A}_{ij}$ (i, j = 1, 2), then $xr_{ij}x^{-1}tyr_{ij}y^{-1}$ = 0 which shows that $r_{ij}x^{-1}tyr_{ij} = 0$. As \mathscr{A} is dense in $\mathscr{B}(\mathscr{X})$, then we get that $r_{ij}x^{-1}tyr_{ij} = 0$, for all $r_{ij} \in \mathscr{B}(\mathscr{X})_{ij}$ (i, j = 1, 2). Hence, by [7, Lemma 2(i)], we obtain $(x^{-1}ty)_{ji} = 0$ (i, j = 1, 2). It follows that $x^{-1}ty = 0$ which leads to t = 0. This shows that the property (\clubsuit) is satisfied. Now, if $\phi(r_{ij})t\theta(r_{ij}) = 0$, for all $r_{ij} \in \mathscr{A}_{ij}$ $(i \neq j; i, j = 1, 2)$, then $(x^{-1}ty)_{ji} = 0$ $(i \neq j; i, j = 1, 2)$, by a similar reasoning to the previous case. On the other hand, the hypotheses that $\phi(r_{ii})t\theta(r_{ii}) = 0$ and $\phi(r_{ii})t\theta(r_{ij}) = 0$, for all elements $r_{ii} \in \mathscr{A}_{ii}$, $r_{ij} \in \mathscr{A}_{ij}$ and $r_{ji} \in \mathscr{A}_{ji}$ $(i \neq j; i, j = 1, 2)$, imply that $xr_{ji}x^{-1}tyr_{ii}y^{-1} = 0$ and $xr_{ii}x^{-1}tyr_{ij}y^{-1}$ = 0, respectively, which lead to identities $r_{ii}x^{-1}tyr_{ii} = 0$ and $r_{ii}x^{-1}tyr_{ij}$ =0. As \mathscr{A} is dense in $\mathscr{B}(\mathscr{X})$, then we can deduce that $r_{ii}x^{-1}tyr_{ii} = 0$ and $r_{ii}x^{-1}tyr_{ij} = 0$, for all elements $r_{ii} \in \mathscr{B}(\mathscr{X})_{ii}, r_{ij} \in \mathscr{B}(\mathscr{X})_{ij}$ and $r_{ji} \in \mathscr{B}(\mathscr{X})_{ij}$ $\mathscr{B}(\mathscr{X})_{ii}$ $(i \neq j; i, j = 1, 2)$, respectively. This implies that $(x^{-1}ty)_{ii} = 0$, in view of the primeness of $\mathscr{B}(\mathscr{X})$. The last two results combined show that $x^{-1}ty = 0$ which results that t = 0. This shows that the property (\spadesuit) is also satisfied. Therefore, by Theorem 1, d is an additive map and the stated result follows. \square

Acknowledgement

The authors would like to thank the anonymous referee for a thorough and detailed report with many helpful comments and suggestions.

References

- Brešar, M., Šemrl, P.: Elementary operators. Proc. Royal. Soc. Edinburgh Sect. A 129(6), 1115–1135 (1999). https://doi.org/10.1017/S0308210500019302
- Brešar, M.: Jordan mappings of semiprime rings. J. Algebra 127(1), 218–228 (1989). https://doi.org/10.1016/0021-8693(89)90285-8
- [3] Daif, M.N.: When is a multiplicative derivation additive? Internat. J. Math. & Math. Sci. 14(3), 615–618 (1991). https://doi.org/10.1155/S0161171291000844
- [4] Jacobson, N.: Structure of rings. Amer. Math. Soc. 37. Colloquium Publications, Providence, RI (1956). https://doi.org/10.1090/coll/037
- [5] Jing, W., Lu, F.: Additivity of Jordan (triple) derivations on rings. Comm. Algebra 40(8), 2700–2719 (2012). https://doi.org/10.1080/00927872.2011.584927
- [6] Martindale, W.S.: When are multiplicative mappings additive? Proc. Amer. Math. Soc. 21(3), 695–698 (1969). https://doi.org/10.2307/2036449
- [7] Li, P., Jing, W.: Jordan elementary maps on rings. Linear Algebra App. 382, 237–245 (2004). https://doi.org/10.1016/j.laa.2003.12.037
- [8] Liu, C.K., Shiue, W.K.: Generalized Jordan triple (θ, ϕ) -derivations on semiprime rings. Taiwanese J. Math. **11**(5), 1397–1406 (2007). https://doi.org/10.11650/xtw jm/1500404872
- [9] Lu, F.: Jordan derivable maps of prime rings. Comm. Algebra 38(12), 4430–4440 (2010). https://doi.org/10.1080/00927870903366884
- [10] Rowen, L.H.: Ring Theory. Academic Press, San Diego, CA (1991)

CONTACT INFORMATION

Center for Mathematics, Computing and
Cognition, Federal University of ABC,
Avenida dos Estados, 5001, 09210-580,
Santo André, Brazil
E-Mail: joao.cmferreira@ufabc.edu.br,
graca.marietto@ufabc.edu.br

Received by the editors: 15.07.2024 and in final form 20.02.2025.