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On left-gyrotranslation groups of gyrogroups
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Abstract. A gyrogroup is an algebraic structure whose
operation is, in general, non-associative that shares some common
properties with groups. In this paper, we prove that every gyro-
group induces a permutation group, called the left-gyrotranslation
group, that can be used to understand the algebraic structure of
the gyrogroup itself. We also show several connections between
gyrogroups and their left-gyrotranslation groups and give a few
related examples, especially the left-gyrotranslation group of the
famous Möbius gyrogroup in the complex plane.

Introduction

A gyrogroup consists of one non-empty set G and one binary operation
⊕ on G satisfying the following properties: (i) there is an element e in
G such that e ⊕ a = a for all a ∈ G; (ii) for each element a in G, there
is an element b in G such that b ⊕ a = e; (iii) for all elements a, b in G,
there is an automorphism gyr[a, b] of (G,⊕) such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b](c) (1)

for all c ∈ G; and (iv) gyr[a, b] = gyr[a⊕ b, b] for all a, b in G. It turns
out that the element e in (i) acts as a unique two-sided identity of (G,⊕)
and that the element b in (ii) acts as a unique two-sided inverse of a,
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denoted by ⊖a. Furthermore, the automorphism gyr[a, b] in (iii) is com-
pletely determined by elements a and b, called the gyroautomorphism
generated by a and b, and identity (1) is called the left gyroassociative
law, which may be regarded as a weaker form of associativity. Property
(iv) is a crucial property of a gyrogroup, called the left loop property. It
is known that a gyrogroup forms a left Bol loop with the Aℓ-property
and vice versa (see, for instance, the remark on page 71 of [3]). In fact, a
gyroautomorphism corresponds to a left inner mapping, and the left loop
property is equivalent to the left Bol identity in loop theory. Therefore,
the family of gyrogroups coincides with the family of left Bol loops with
the Aℓ-property. By definition, the operation of a gyrogroup is not neces-
sarily associative. However, if the operation of a gyrogroup is associative,
then that gyrogroup forms a group. A gyrogroup whose operation is not
associative is called a non-degenerate gyrogroup.

As noted above, the family of gyrogroups properly includes the family
of groups. Actually, groups and gyrogroups have strong connections in
various ways, and in particular one may obtain structural information
about gyrogroups by looking at their associated groups. See, for in-
stance, [8], in which the author indicates that every gyrogroup induces
a permutation group, and this associated group can be used to under-
stand the structure of the gyrogroup itself. Moreover, in [10], the author
provides one method to construct a group, called the associativization,
from an arbitrary gyrogroup, and this group in some sense measures the
deviation from associativity of the corresponding gyrogroup operation.
For additional examples, we refer the reader to [4, 5], to name a few.
This fact inspires us to studying gyrogroup structures by using tools in
group theory. In this paper, we are interested in finding out relationships
between gyrogroups and their corresponding left-gyrotranslation groups.
We also determine the left-gyrotranslation groups of some known con-
crete gyrogroups (such as the Möbius gyrogroup in the complex plane).

1. Preliminaries

For basic knowledge of gyrogroup theory, we refer the reader to [7, 14].
Let G be a gyrogroup whose operation is written ⊕. For each element a
in G, the left gyrotranslation by a, denoted by La, is the bijective self-
map of G defined by the formula La(x) = a⊕ x for all x ∈ G. The set of
left gyrotranslations of G is denoted by Ĝ, that is,

Ĝ = {La : a ∈ G}. (2)
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It should be pointed out that the operation on G is associative (that is,
G is a group) if and only if Ĝ is closed under the function composition.
Let LTrs (G) be the subgroup of the symmetric group Sym (G) generated
by Ĝ, called the left-gyrotranslation group of G. Since L−1

a = L⊖a for all
a ∈ G (see, for instance, page 73 of [12]), it follows that LTrs (G) consists
precisely of compositions of finitely many left gyrotranslations of G, that
is,

LTrs (G) = {La1 ◦ La2 ◦ · · · ◦ Lan : a1, a2, . . . , an ∈ G}. (3)

Furthermore, by the composition law of left gyrotranslations (see, for
instance, part 3 of Theorem 10 of [12]), the gyroautomorphism of G
generated by a and b is given by the formula gyr[a, b] = L⊖(a⊕b) ◦La ◦Lb

for all a, b ∈ G. Hence, the left-gyrotranslation group of G contains all
the gyroautomorphisms of G. Note that Ĝ has the following properties:

1. IG ∈ Ĝ, where IG denotes the identity map on G;

2. L−1
a ∈ Ĝ for all a ∈ G;

3. La ◦ Lb ◦ La ∈ Ĝ for all a, b ∈ G (see the proof of Proposition 18
of [7]).

Therefore, Ĝ is a twisted subgroup of LTrs (G). It is not difficult to prove
that G is a group if and only if LTrs (G) = Ĝ. This fact will be useful
later on.

2. Main results

We begin with some known results on left-gyrotranslation groups of
gyrogroups. Let G be a gyrogroup. Theorem 3.3 of [9] states that
if x and y are elements in G, then there is an element T in LTrs (G)
such that T (x) = y. Therefore, in group-theoretic terminology, the left-
gyrotranslation group ofG acts transitively onG by evaluation. Theorem
3.6 of [9] states that if G is non-degenerate (that is, if G is not a group),
then for each element a ∈ G, there is a non-identity element R in LTrs (G)
such that R(a) = a. This implies that if G is a non-degenerate gyrogroup,
then the action of the left-gyrotranslation group of G on G by evaluation
is not sharply transitive. Next, we mention a connection between sub-
gyrogroups of G and subgroups of LTrs (G). Recall that a subgyrogroup
H of G is a non-empty subset of G that forms a gyrogroup under the
operation inherited from G with gyr[h, k](H) = H for all h, k ∈ H, and
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is strong if it is invariant under the gyroautomorphisms of G, that is, if
gyr[a, b](H) ⊆ H for all a, b ∈ G.

Proposition 1. Let G be a gyrogroup, let λ be the map defined by the
formula λ(a) = La for all a ∈ G, and let H be a subgyrogroup of G.

1. If gyr[a, b] = IG for all a, b ∈ H, then λ(H) is a subgroup of
LTrs (G).

2. If λ(H) is a normal subgroup of LTrs (G), then H is a strong sub-
gyrogroup of G.

Proof. For part 1, by assumption, λ defines a homomorphism from H to
LTrs (G). Hence, if h, k ∈ H, then λ(h)◦λ(k) = λ(h⊕k) belongs to λ(H)
and λ(h)−1 = λ(⊖h) belongs to λ(H). Thus, λ(H) forms a subgroup of
LTrs (G).

To prove part 2, suppose that λ(H) is a normal subgroup of LTrs (G).
Let a, b ∈ G, and let h ∈ H. According to the commutation relation (cf.
Equation (14) of [12]), Lgyr[a,b](h) = gyr[a, b] ◦ Lh ◦ gyr−1[a, b]. Hence,
Lgyr[a,b](h) ∈ λ(H) by normality. This implies that gyr[a, b](h) ∈ H since
λ is injective, and so gyr[a, b](H) ⊆ H. This proves that H is strong
since a and b are arbitrary.

Let G be a gyrogroup. Next, we will give a nice descriptive form of
the left-gyrotranslation group of G. Since gyr[a, b] is an automorphism
of G for all a, b ∈ G, we can let GYR (G) be the subgroup of Sym (G)
generated by all the gyroautomorphisms of G, that is,

GYR (G) = ⟨{gyr[a, b] : a, b ∈ G}⟩. (4)

Clearly, GYR (G) forms a subgroup of the automorphism group of (G,⊕).
Moreover, G forms a group if and only if GYR (G) = {IG}. Note that,
since gyr−1[a, b] = gyr[b, a] for all a, b ∈ G (cf. Theorem 2.34 of [14]), it
follows that GYR (G) consists precisely of compositions of finitely many
gyroautomorphisms of G, that is,

GYR (G) = {gyr[a1, b1] ◦ · · · ◦ gyr[an, bn] : ai, bi ∈ G, i = 1, 2, . . . , n}. (5)

The next lemma gives one important subgroup of the symmetric group
of G, which is useful in describing the left-gyrotranslation group of a
gyrogroup.
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Lemma 1. Let G be a gyrogroup. Then,

Ĝ ◦GYR(G) = {La ◦ τ : a ∈ G and τ ∈ GYR(G)}

forms a subgroup of Sym (G).

Proof. Set Γ = Ĝ◦GYR(G). Clearly, IG = Le ◦gyr[e, e] ∈ Γ. Let X,Y ∈
Γ. Then, X = La ◦ τ1 and Y = Lb ◦ τ2, where a, b ∈ G, τ1, τ2 ∈ GYR(G).
Using the composition law of left gyrotranslations and the commutation
relation, we obtain that

X ◦ Y −1 = La⊕τ1◦τ−1
2 (⊖b) ◦ gyr[a, τ1 ◦ τ

−1
2 (⊖b)] ◦ τ1 ◦ τ−1

2 ,

and so X ◦ Y −1 ∈ Γ. From the subgroup test, it follows that Γ is a
subgroup of Sym (G).

It turns out that Ĝ◦GYR(G) is indeed the left-gyrotranslation group
of G, as shown in the following theorem.

Theorem 1. Let G be a gyrogroup. Then, LTrs (G) = Ĝ ◦GYR(G).

Proof. Since Ĝ ⊆ Ĝ◦GYR(G) and Ĝ◦GYR(G) is a subgroup of Sym (G),
it follows that LTrs (G) ⊆ Ĝ ◦ GYR(G) by minimality of LTrs (G). By
the composition law, gyr[a, b] = L−1

a⊕b ◦ La ◦ Lb for all a, b ∈ G. Hence,

GYR (G) ⊆ LTrs (G), which implies that Ĝ◦GYR(G) ⊆ LTrs (G) by the
closure property of LTrs (G), and so equality holds.

Corollary 1. Let G be a gyrogroup. Then, there exists a bijection from
LTrs (G) to G×GYR(G). In particular, if G is finite, then |LTrs (G)| =
|G||GYR(G)|.

Proof. Define a map σ by σ(a, τ) = La ◦ τ for all a ∈ G, τ ∈ GYR(G).
Using the Unique Factorization Theorem (cf. Theorem 11 of [12]), one
can check that σ is a bijection from G×GYR(G) to Ĝ ◦GYR(G), and
so the corollary follows.

Theorem 1 and Corollary 1 together illuminate the structure of the
left-gyrotranslation group of a gyrogroup. In particular, they indicate
that one can understand the left-gyrotranslation group of a gyrogroup
G by investigating Ĝ and GYR(G). However, the task of determining
the group GYR (G) in an explicit form for a given gyrogroup G is quite
complicated. A few concrete examples will be exhibited in the sequel.
Now, we establish a connection between strong subgyrogroups of G and
subgroups of LTrs (G) containing all the gyroautomorphisms of G.
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Proposition 2. Let G be a gyrogroup, and suppose that H is a sub-
gyrogroup of G. If H is strong, then

Ĥ ◦GYR(G) = {La ◦ τ : a ∈ H and τ ∈ GYR(G)}

is a subgroup of LTrs (G) containing all the gyroautomorphisms of G.

Proof. Since {gyr[a, b] : a, b ∈ G} ⊆ Ĥ ◦ GYR(G) ⊆ LTrs (G), the
proposition follows as in Lemma 1.

The converse of Proposition 2 also holds in the sense of the following
proposition.

Proposition 3. Let G be a gyrogroup. If Σ is a subgroup of LTrs (G)
containing all the gyroautomorphisms of G, then there is a unique strong
subgyrogroup H of G such that Σ = Ĥ ◦GYR(G).

Proof. It can be proved that the required subgyrogroup H is

H = {a ∈ G : La ◦ ρ ∈ Σ for some ρ ∈ GYR(G)},

where the uniqueness part follows directly from the Unique Factorization
Theorem.

Next, we characterize commutativity of the left-gyrotranslation group
of an arbitrary gyrogroup. This enables us to gain insight into the left-
gyrotranslation group of a certain gyrogroup, as we will see shortly. We
first prove the following lemma for convenience.

Lemma 2. Let G be a gyrogroup, and let a, b ∈ G. Then, La◦Lb = Lb◦La

if and only if a⊕ b = b⊕ a and gyr 2[a, b] = IG.

Proof. Suppose that La ◦ Lb = Lb ◦ La. By the composition law of
left gyrotranslations, La⊕b ◦ gyr[a, b] = Lb⊕a ◦ gyr[b, a]. By the Unique
Factorization Theorem, La⊕b = Lb⊕a and gyr[a, b] = gyr[b, a]. This
implies that a ⊕ b = b ⊕ a. Since gyr−1[a, b] = gyr[b, a], it follows that
gyr 2[a, b] = IG. Conversely, suppose that a⊕b = b⊕a and gyr 2[a, b] = IG.
Then, gyr[a, b] = gyr−1[a, b] = gyr[b, a]. Hence,

La ◦ Lb = La⊕b ◦ gyr[a, b] = Lb⊕a ◦ gyr[b, a] = Lb ◦ La,

which completes the proof.
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In fact, Lemma 2 can be extended to a stronger result: if a, b ∈ G and
β ∈ Aut (G), then La and Lb ◦ β commute if and only if a⊕ b = b⊕ β(a)
and gyr[a, b] = gyr[b, β(a)]. In light of Lemma 2, we directly obtain a
sufficient and necessary condition for the left-gyrotranslation group of a
gyrogroup to be abelian, as shown in the following theorem.

Theorem 2. Let G be a gyrogroup. Then, the left-gyrotranslation group
LTrs (G) is abelian if and only if a⊕ b = b⊕ a and gyr 2[a, b] = IG for all
a, b ∈ G.

Proof. Suppose that LTrs (G) is abelian. Let a, b ∈ G. By assumption,
La ◦ Lb = Lb ◦ La. By Lemma 2, a ⊕ b = b ⊕ a and gyr 2[a, b] = IG.
Conversely, the assumption implies that La◦Lb = Lb◦La for all a, b ∈ G.
Hence, LTrs (G) is abelian for its generators commute.

A few examples of the left-gyrotranslation groups of known concrete
gyrogroups are provided below.

Example 1. One of the most prominent examples of gyrogroups is the
(complex) Möbius gyrogroup [15], which consists of the open unit disk
D = {z ∈ C : |z| < 1} endowed with Möbius addition ⊕M defined by the
formula

a⊕M b =
a+ b

1 + ab
(6)

for all a, b ∈ D. This gyrogroup is called “Möbius” because its left
gyrotranslations are indeed Möbius transformations of the form

τa(z) =
a+ z

1 + az
(7)

for all a, z ∈ D (cf. Lemma 6.2.2 of [1]). Moreover, the gyroautomor-
phisms of the Möbius gyrogroup are given by the formula

gyr[a, b](z) =
1 + ab

1 + ab
z (8)

for all a, b, z ∈ D, which are indeed rotations of the unit disk because
1 + ab

1 + ab
is a unimodular complex number for all a, b ∈ D.

In this example, we determine the left-gyrotranslation group of the
Möbius gyrogroup. It turns out that the left-gyrotranslation group of the
Möbius gyrogroup is in fact the group of Möbius transformations leaving
the disk fixed. As proved in [1], any Möbius transformation on D can
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be factored as τa ◦ ρω, where a ∈ D, ω is a unimodular complex number,
and ρω is the rotation of the disk given by ρω(z) = ωz for all z ∈ D.
Therefore, in order to complete the example, we need only show that
GYR (D) equals the group of rotations of the disk. To do so, it suffices
to prove that if ω ∈ S1 = {z ∈ C : |z| = 1}, then

ω =

(
1 + a1b1
1 + a1b1

)(
1 + a2b2
1 + a2b2

)
· · ·

(
1 + akbk
1 + akbk

)
for some a1, b1, a2, b2, . . . , ak, bk ∈ D. Now, choose a non-real complex

number a in D such that
1 + ā

1 + a
lies in the upper half of the complex

plane (for example, choose a = −0.5− 0.5i). Define a function f on the
close interval [0, 1] by the formula

f(c) =
1 + ca

1 + ca
. (9)

Since a is not real, f is well defined, and furthermore f(c) ̸= 1 for all
0 < c ≤ 1. It follows that f is continuous and sends [0, 1] to the unit

circle S1, that is, f is a path from f(0) = 1 to f(1) =
1 + a

1 + a
. In fact,

f((0, 1]) is a subset of the upper half of the complex plane. Suppose that
the positive angle between f(1) and the real-axis is θ. Hence, for each
r ∈ (0, θ), there exists a number c ∈ (0, 1) such that the positive angle
between f(c) and the real-axis is r by the well-known Intermediate Value
Theorem. This implies that f(s) = cos

(
θ
2

)
+ i sin

(
θ
2

)
for some s ∈ (0, 1).

Let ω ∈ S1. Then, ω = cos (α) + i sin (α) for some α > 0. One can write
α = n

(
θ
2

)
+ β for some n ∈ Z and 0 ≤ β < θ

2 , and so ω = f(s)nf(t),
where f(t) = cos (β) + i sin (β), as claimed. This also shows that the
group of Möbius transformations preserving D is generated by all the
Möbius translations τa, a ∈ D.

Example 2. Here, we determine the left-gyrotranslation group of the
gyrogroup G8 = {0, 1, 2, 3, 4, 5, 6, 7} (cf. Example 1 of [7]). Recall that
the automorphism A of G8 is decomposed as A = (4 6)(5 7). Hence,
A2 = IG8 . This implies that {IG8 , A} forms a subgroup of Sym (G8),
and so GYR (G8) = {IG8 , A} by minimality of GYR (G8). It follows by
Corollary 1 that LTrs (G8) has order 16. By Theorem 2, LTrs (G8) is
not abelian since 1 ⊕ 4 ̸= 4 ⊕ 1, for example. Hence, LTrs (G8) forms a
non-abelian group of order 16. We have by inspection that the center of
LTrs (G8) is

Z(LTrs (G8)) = {L0, L3, L1 ◦A,L2 ◦A}.
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Recall that there exists a non-abelian group of order 16 with presentation

⟨x, y, z : x4 = y2 = z2 = 1, xy = yx, xz = zx, yzy−1 = zx2⟩; (10)

see, for instance, Table B.2 of [2]. Set x = L1 ◦ A, y = A, and z = L5.
Then, x, y, and z are generators of LTrs (G8). Furthermore, x4 = IG8 ,
y2 = IG8 , z

2 = IG8 , and y ◦ z ◦ y−1 = z ◦ x2. Since x ∈ Z(LTrs (G8)), we
obtain that x ◦ y = y ◦ x and x ◦ z = z ◦ x. Therefore, by von Dyck’s
Theorem, LTrs (G8) has presentation (10).

Example 3. Here, we determine the left-gyrotranslation group of the
gyrogroup G15 (cf. Example 8 of [7]). As in [7], the non-trivial gyro-
automorphisms of G15 are A,B,C, and D, given by formula (72) of [7].
A direct computation shows that {IG15 , A,B,C,D} is a subgroup of
Sym (G15) so that GYR (G15) = {IG15 , A,B,C,D} by minimality of
GYR (G15). This implies by Corollary 1 that LTrs (G15) has order 75.
Since A2 ̸= IG15 , it follows from Theorem 2 that LTrs (G15) is not abelian.
It is worth noting that there is a unique non-abelian group of order 75.
Usually, the proof of this fact makes use of the Sylow Theorems by sho-
wing that any group of order 75 is necessarily a semidirect product of
its 5-Sylow subgroup and its 3-Sylow subgroup and then finding a non-
trivial homomorphism from Z3 to the automorphism group of Z5 × Z5.
Here, we directly give a concrete example of a non-abelian group of order
75, which is LTrs (G15). In fact, LTrs (G15) can be realized as a subgroup
of the symmetric group S15 under the identification 0 ↔ 1 and i ↔ i+1
for i = 1, 2, . . . , 14. Furthermore, if x, y, and z are assigned as

x = (1 5 14 13 10)(2 8 6 11 7)

y = (2 8 6 11 7)(3 4 9 12 15)

z = (1 3 2)(4 7 5)(6 13 12)(8 10 15)(9 11 14),

(11)

then it can be verified that LTrs (G15) has a presentation

⟨x, y, z : x5 = y5 = z3 = 1, xy = yx, zxz−1 = x−1y, zyz−1 = x−1⟩ (12)

by invoking von Dyck’s Theorem.

Examples 1 and 3 are good examples to see how the study of gyro-
groups leads to a better understanding of group structures. In a similar
fashion to Examples 2 and 3, one can verify that the left-gyrotranslation
groups of the following gyrogroups:



124 On left-gyrotranslation groups of gyrogroups

� K16 (cf. Example 2.13 of [13]);

� Dgyr
16 (cf. Example 5.1 of [11]);

� Qgyr
16 (cf. Example 5.2 of [11]);

� SDgyr
16 (cf. Example 5.3 of [11]);

� Dih(G8) (cf. Example 5 of [6])

are non-abelian groups of order 32 since these gyrogroups are of order
16 and each gyrogroup has only one non-trivial gyroautomorphism of
order 2.

Next, we will prove that left-gyrotranslation groups are invariant
objects of gyrogroups: isomorphic gyrogroups possess isomorphic left-
gyrotranslation groups. Therefore, the notion of left-gyrotranslation
groups may be used to distinguish gyrogroups, up to isomorphism, in
certain circumstances.

Theorem 3. Suppose that G and H are gyrogroups. If G ∼= H as gy-
rogroups, then LTrs (G) ∼= LTrs (H) as groups.

Proof. Suppose that ϕ : G → H is a gyrogroup isomorphism. First, let us
show that ϕ◦gyr[a, b]◦ϕ−1 = gyr[ϕ(a), ϕ(b)] for all a, b ∈ G. Let a, b ∈ G,
and let h ∈ H. By the gyrator identity (cf. part 10 of Theorem 2.10
of [14]),

ϕ ◦ gyr[a, b] ◦ ϕ−1(h) = ϕ(gyr[a, b](ϕ−1(h)))

= ϕ(⊖(a⊕ b)⊕ (a⊕ (b⊕ ϕ−1(h))))

= ⊖(ϕ(a)⊕ ϕ(b))⊕ (ϕ(a)⊕ (ϕ(b)⊕ h))

= gyr[ϕ(a), ϕ(b)](h),

as required. In view of Equation (5), this implies that if τ lies in
GYR (G), then ϕ◦τ ◦ϕ−1 lies in GYR (H) and that if η lies in GYR (H),
then ϕ−1 ◦ η ◦ ϕ lies in GYR (G).

Define ϕ̃ as ϕ̃(La ◦ τ) = Lϕ(a) ◦ϕ◦ τ ◦ϕ−1 for all a ∈ G, τ ∈ GYR(G).

By the uniqueness part of the Unique Factorization Theorem, ϕ̃ is well
defined and injective. As proved above, ϕ maps LTrs (G) to LTrs (H).
To see that ϕ̃ is surjective, let b ∈ H, and let η ∈ GYR(H). By the
surjectivity of ϕ, ϕ(a) = b for some a ∈ G. Note that La ◦ ϕ−1 ◦ η ◦ ϕ is
in LTrs (G), and furthermore ϕ̃(La ◦ ϕ−1 ◦ η ◦ ϕ) = Lb ◦ η. This shows
that ϕ̃ acts as a group isomorphism from LTrs (G) to LTrs (H), which
completes the proof.
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We close this section with the remark that the converse of Theorem 3
is not, in general, true. In fact, let G be the gyrogroup G15 in Example 3,
and let H be the group LTrs (G15). As noted earlier, LTrs (H) = Ĥ.
Furthermore, Ĥ is isomorphic to H by Cayley’s Theorem in abstract
algebra. It follows that LTrs (G) and LTrs (H) are isomorphic. However,
G and H are not isomorphic.
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[15] Ungar, A.: From Möbius to gyrogroups. Amer. Math. Monthly. 115(2), 138–144
(2008). https://doi.org/10.1080/00029890.2008.11920506

Contact information

T. Suksumran Department of Mathematics,
Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand
E-Mail: teerapong.suksumran@cmu.ac.th

J. Wattanapan Office of Research Administration,
Chiang Mai University,
Chiang Mai 50200, Thailand;
Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand
E-Mail: jaturon.w@cmu.ac.th

Received by the editors: 15.06.2024
and in final form 09.07.2024.

https://doi.org/10.1007/978-94-010-9122-0
https://doi.org/10.1007/978-94-010-9122-0
https://doi.org/10.1142/6625
https://doi.org/10.1142/6625
https://doi.org/10.1080/00029890.2008.11920506

	Teerapong Suksumran and Jaturon Wattanapan

