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On a variation of ⊕-supplemented modules
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Abstract. Let R be a ring and M be an R-module. M
is called ⊕ss-supplemented if every submodule of M has a ss-sup-
plement that is a direct summand of M . In this paper, the basic
properties and characterizations of ⊕ss-supplemented modules are
provided. In particular, it is shown that (1) if a module M is
⊕ss-supplemented, then Rad(M) is semisimple and Soc(M)�M ;
(2) every direct sum of ss-lifting modules is ⊕ss-supplemented;
(3) a commutative ring R is an artinian serial ring with semisimple
radical if and only if every left R-module is ⊕ss-supplemented.

Introduction

In homological algebra, semisimple modules and the varieties of supple-
mented modules, which are generalizations of semisimple modules, have
a very important place, and some important characterizations of ring
classes are given in terms of homological algebra via these modules. For
example, a ring R is semisimple if and only if every left (right) R-module
is semisimple if and only if every left (right) R-module is injective, that is,
every module is a direct summand of its extensions. R is left (semi) per-
fect if and only if every (finitely generated) left R-module is supplemented
if and only if every left R-module is srs(strongly radical supplemented).
R

P (R) is left perfect, where P (R) is the sum of all radical left ideals of R
if and only if every left R-module is Rad-supplemented. R is semilocal
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if and only if every left R-module is weakly Rad-supplemented, that is,
semilocal. R is a left and right artinian serial ring with Rad(R)2 = 0 if
and only if every left R-module is lifting if and only if every left R-module
is extending. A commutative ring R is artinian serial if and only if eve-
ry left R-module is ⊕-supplemented if and only if every left R-module is
Rad-⊕-supplemented if and only if every left R-module is srs⊕. The main
purpose of this paper is to develop the concept of ⊕ss-supplemented mo-
dules as a new type of the class of supplemented modules. We introduce
⊕ss-supplemented modules and focus on basic properties of these mo-
dules. We show that if a moduleM is ⊕ss-supplemented, then Rad(M) is
semisimple and Soc(M)�M . We prove that every direct sum of ss-lifting
modules is ⊕ss-supplemented. Over a left WV -ring every ⊕-supplemen-
ted module is ⊕ss-supplemented. We also show that a ring R is semiper-
fect ring with semisimple radical, that is, Socs-semiperfect, if and only
if every left free R-module is ⊕ss-supplemented. In particular, we give a
characterization of artinian serial rings using ⊕ss-supplemented modules.

1. First section

In this section, we briefly recall the main concepts and results related
to types of supplements and variations of supplemented modules. For
a better understanding of the topic, we start with some fundamental
definitions of module and ring theory presented in books [6], [14], [19]
and [28].

Throughout this paper, we consider associative rings with identity,
denoted as R, and modules unital left R-modules. LetM be an R-modu-
le. We use the notation U ≤M to mean U is a submodule ofM . We write
Rad(M) and Soc(M) for the radical and the socle of M , respectively
(see [28]). A submodule E of M is said to be essential in M , denoted as
E �M , if E ∩ N ̸= 0 for every nonzero submodule N of M . Dually, a
submodule U of M is small in M , denoted by the notation U ≪ M , if
M ̸= U +K for every proper submodule K of M . A module M is called
hollow if every proper submodule of M is small in M , and it is called
local if it is a finitely generated nonzero hollow module.

As a generalization of direct summands, one defines supplement sub-
modules as follows. Let U and V be submodules of a module M . V is
called supplement of U inM if it is minimal with respect to the property
U + V = M . In this case, U is said to have a supplement V in M .
Equivalently, V is a supplement of U in M if and only if M = U + V
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and U ∩ V ≪ V . Following [28, 19.3 (4)], a submodule V is called
weak supplement of U in M if M = U + V and U ∩ V ≪ M . A module
M is called (weakly) supplemented if every submodule ofM has a (weak)
supplement in M . It is shown in [28, 42.6 and 43.9] that a ring R is
(semi) perfect if and only if every (finitely generated) left R-module is
supplemented. As a proper generalization of supplemented modules, srs-
modules are introduced in the paper [4]. In the same paper, the charac-
terization of left (semi) perfect rings is given in terms of srs-modules
(see [4, Corollary 2.5 and Corollary 2.6]).

Let M be a module. M is called ⊕-supplemented if every submodu-
le of M has a supplement that is a direct summand of M ([19]). Every
hollow module is ⊕-supplemented and ⊕-supplemented modules are sup-
plemented. It is shown in [17, Corollary 3.13] that a commutative ring
R is artinian serial if and only if every left R-module is ⊕-supplemented.
Over a Dedekind domain, it is proven in [19, Proposition A.7 and Propo-
sition A.8] that every supplemented module is ⊕-supplemented. For the
basic properties, characterizations and some generalizations of ⊕-supple-
mented modules, we recommend the book [19] and the papers [12,13,17,
22,24,31].

Since Rad(M) is the sum of all small submodules of a module M,
Rad-supplement submodules are defined as a generalization of supple-
ment submodules. Let U and V be submodules of a moduleM withM =
U + V . V is called Rad-supplement of U in M in case U ∩ V ⊆ Rad(V )
(see [6, 10.14]). M is called Rad-supplemented if its submodules have a
Rad-supplement in M . It follows from [3, Theorem 6.1] that, for a ring
R, R

P (R) is left perfect, where P (R) is the sum of all left ideals I of R such

that I = Rad(I) if and only if every left R-module is Rad-supplemented.
In [27], a moduleM is called Rad-⊕-supplemented if every submodule of
M has a Rad-supplement that is a direct summand ofM . It is clear that
every ⊕-supplemented module is Rad-⊕-supplemented. For the concept
of Rad-⊕-supplemented, we refer to [10] and [27].

It is well known that a simple submodule of a module M is a direct
summand of M or small in M . Following this fact, Zhou and Zhang
define the submodule Socs(M) as the sum of all simple submodules that
are small in M (see [29]).

The following lemma follows from [15, Lemma 2] and we will use it
throughout the paper.

Lemma 1. Let M be a module. Then Socs(M) = Soc(M) ∩Rad(M).

Let X be a module. Since Socs(X) ⊆ Rad(X), it is of interest
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to investigate the analogue of this notion by replacing “Rad(X)” with
“Socs(X)”. ss-supplement submodules, which are between supplements
and direct summands, are defined as a special type of supplements as
follows.

Lemma 2 (see [15, Lemma 3]). Let M be a module and U , V be sub-
modules of M . Then the following statements are equivalent:

(1) M = U + V and U ∩ V ⊆ Socs(V ).

(2) M = U + V , U ∩ V ⊆ Rad(V ) and U ∩ V is semisimple.

(3) M = U + V , U ∩ V ≪ V and U ∩ V is semisimple.

As in [15], we say that V is an ss-supplement of U in M if the
equal conditions in the above lemma are satisfied. A module M is called
ss-supplemented if every submodule of M has an ss-supplement in M .
Every semisimple module is ss-supplemented. The authors give in the
same paper the various properties and characterizations of these modu-
les. It follows from [15, Theorem 41] that a ring R is semiperfect with
semisimple radical if and only if every left R-module is ss-supplemented.

δ-supplement submodules, δss-supplement submodules, sa-supple-
ment submodules, extended S-supplement submodules and wsa-supple-
ment submodules are extensively studied by many authors as varieties of
supplement submodules. In a series of articles [7–9, 21, 30], the authors
have obtained detailed information about variations of supplement sub-
modules and related rings.

2. ⊕ss-supplemented modules

In this section, we define the concept of ⊕ss-supplemented modules.
Our aim is introduce ⊕ss-supplemented modules as a special case of
ss-supplemented modules. We provide the various properties of such
modules. In particular, we prove that a commutative ring R is an artinian
serial ring with semisimple radical if and only if every left R-module is
⊕ss-supplemented, and a ring R is Socs-semiperfect if and only if every
free R-module is ⊕ss-supplemented.

Definition 1. Let R be a ring and M be an R-module. M is called
⊕ss-supplemented if every submodule of M has an ss-supplement that is
a direct summand of M by [16].
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It is clear that every ⊕ss-supplemented module is ⊕-supplemented.
However, usually a ⊕-supplemented module does not have to be ⊕ss-sup-
plemented. We will now give an example for this below. First we need
the following fact. Recall from [15] that a module M is strongly local if
it is local and its radical is semisimple.

Proposition 1. Let M be a local module. Then the following statements
are equivalent:

(1) M is strongly local.

(2) M is ⊕ss-supplemented.

Proof. (1) ⇒ (2) Let U be any proper submodule of M . Since M is a
strongly local module, we can write U ⊆ Rad(M) ⊆ Soc(M). Therefore
U is semisimple and thus M is an ss-supplement of U in M . Hence M
is ⊕ss-supplemented.

(2) ⇒ (1) Since ⊕ss-supplemented modules are ss-supplemented, the
proof follows from [15, Proposition 15].

Example 1. Let M be the local Z-module Zpk , for p is any prime in-
teger and k ≥ 3. Since local modules are ⊕-supplemented, M is ⊕-sup-
plemented. Note that Socs(Zpk) = Soc(Zpk)

∼= Zp and Rad(M) = pZpk .
Hence M is not strongly local and so it is not ⊕ss-supplemented by
Proposition 1.

In [26], a ring R is called a left WV -ring if every simple left R-module
is R

I -injective, where
R
I ≇ R and I is any ideal of R. Clearly left WV -

rings are generalizations of V -rings. It is shown in [26, Lemma 6.12] that
if a ring R is a left WV -ring, then it is a left V -ring or Rad(R) is a
simple left R-module. We will use this fact freely in this article without
reference.

Proposition 2. Let R be a leftWV -ring. Then every Rad-⊕-supplemen-
ted R-module is ⊕ss-supplemented.

Proof. Let M be a Rad-⊕-supplemented R-module and U be any sub-
module of M . By the assumption, there exists a direct summand V of
M such thatM = U+V and U ∩V ⊆ Rad(V ). If R is a left V -ring, then
U ∩ V ⊆ Rad(V ) = 0 and so U is a direct summand of M . Therefore M
is semisimple and then it is trivially ⊕ss-supplemented.

Suppose that R is not a left V -ring. Consider the epimorphism ψ :
F → V for some free R-module F . Since R is a left WV -ring, Rad(R) is
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semisimple and so, by [28, 21.17 (2)], we obtain Rad(F ) = Rad(R)F ⊆
Soc(RR)F = Soc(F ). Thus Rad(F ) is trivially a semisimple module. It
follows from [26, Corollary 6.8] that R

Rad(R) is a V -ring. So, by [28, 23.7],

we can write Rad(V ) = ψ(Rad(F )). It means that Rad(V ) is semisimple
as a homomorphic image of the semisimple module Rad(F ). Hence V is
an ss-supplement of U in M .

Now, we have the following result:

Corollary 1. Let R be a left WV -ring. Then

(1) Every ⊕-supplemented R-module is ⊕ss-supplemented.

(2) Every local R-module is ⊕ss-supplemented.

(3) Every local R-module is strongly local.

Proof. (1) By Proposition 2.
(2) Let M be any local R-module. Since local modules are ⊕-supple-

mented, it follows from (1) that M is ⊕ss-supplemented.
(3) It follows from (2) and Proposition 1.

The following theorem shows the different between the class of
⊕-supplemented modules and the class of ⊕ss-supplemented modules,
and that a nonzero radical module cannot be ⊕ss-supplemented.

Theorem 1. Let M be a ⊕ss-supplemented module. Then Rad(M) is
semisimple. In particular, Socs(M) = Rad(M).

Proof. SinceM is a ⊕ss-supplemented module, there exists a decomposi-
tion M =M1 ⊕M2 such that M = Rad(M) +M1, Rad(M)∩M1 ≪M1

and Rad(M) ∩ M1 is semisimple. According to [28, 41.1 (5)], we can
write Rad(M1) = Rad(M) ∩M1 and so Rad(M1) is semisimple. Note
that, by [28, 21.6 (5)], Rad(M) = Rad(M1)⊕Rad(M2). Therefore

M = Rad(M) +M1

= Rad(M1)⊕Rad(M2) +M1

= M1 ⊕Rad(M2)

and thusM2 =M2∩M =M2∩(M1⊕Rad(M2)) = Rad(M2) by modula-
rity law. It follows from [15, Proposition 26] thatM2 is a ss-supplemented
as a factor module of M . Since M2 = Rad(M2), by [15, Proposition 16],
we obtain that M2 = 0. Hence Rad(M) = Rad(M1) is semisimple.
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A moduleM is called lifting if there is a decompositionM =M1⊕M2

such that M1 ≤ U and U ∩M2 ≪M2 for every submodule U of M . The
equivalence ofM being lifting is given by [28, 41.11 and 41.15] in the form
of M is amply supplemented and every supplement submodule of M is
a direct summand of M . Following [11], a module M is called ss-lifting
if for every submodule U of M , there is a decomposition M =M1 ⊕M2

such that M1 ≤ U and U ∩M2 ⊆ Socs(M). Every ss-lifting module is
⊕ss-supplemented and lifting. It is shown in [11, Theorem 2] that every
π-projective and ss-supplemented module is ss-lifting .

As a result of Theorem 1 we obtain the following result.

Corollary 2. If a module M is ss-lifting, then Rad(M) is semisimple.

Proof. Since ss-lifting modules are ⊕ss-supplemented, the proof follows
from Theorem 1.

We remove the small radical condition in [11, Theorem 4] by using
Corollary 2 in the following theorem.

Theorem 2. Let M be a module. Then M is ss-lifting if and only if it
is a lifting module with semisimple radical.

Proof. (⇒) By Corollary 2, Rad(M) is semisimple. This completes the
proof.

(⇐) Let U be any submodule of M . Since M is lifting, there is a
decomposition M = U

′ ⊕ V such that U
′ ≤ U and U ∩ V is a small

submodule of V . It follows that U ∩V ⊆ Rad(V ) ⊆ Rad(M) ⊆ Soc(M).
This implies U ∩ V ⊆ Socs(M). It means that M is ss-lifting.

It is well known that Soc(M) is the intersection of all essential sub-
modules of a module M .

Theorem 3. Let M be a ⊕ss-supplemented module. Then Soc(M)�M .

Proof. SinceM is a ⊕ss-supplemented module, by [6, 17.2], there is a de-
compositionM =M1⊕M2 such thatM1 is semisimple andM2 is ss-sup-
plemented with Rad(M2) �M2. It follows that Soc(M) = Soc(M1) ⊕
Soc(M2) =M1 ⊕ Soc(M2)�M1 ⊕M2 =M .

In general, the socle of a ⊕-supplemented module need not be essen-
tial. We can see this reality in the example below.
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Example 2. Given the ring Z(2) containing all rational numbers of the
form a

b with 2 ∤ b. Therefore R = Z(2) is a local Dedekind domain and
its fractions field K is hollow as a left R-module. It follows that RK is
⊕-supplemented. On the other hand, the socle Soc(RK) is zero since R
is a commutative domain. Hence Soc(RK) is not essential in RK.

Now we will give that the class of projective ⊕ss-supplemented modu-
les are the same as ss-lifting modules.

Theorem 4. Let M be a projective module. The following statement are
equivalent.

(1) M is ss-supplemented.

(2) M is ⊕ss-supplemented.

(3) M is ss-lifting.

Proof. It follows from [23, Theorem 2.18].

We will give an analogue of the finite direct sum of the types of
supplemented modules in the following theorem for ⊕ss-supplemented
modules.

Theorem 5. Let R be an arbitrary ring. Then every finite direct sum
of ⊕ss-supplemented R-modules is ⊕ss-supplemented.

Proof. The proof is straightforward.

The following result is crucial.

Theorem 6. For any ring R, every direct sum of strongly local R-modu-
les is ⊕ss-supplemented.

Proof. Let {Mi}i∈I be a collection of strongly local R-modules and M =⊕
i∈I

Mi. Put M = M
Rad(M) . Note that by [28, 41.1 (5)], Rad(Mi) =

Mi ∩ Rad(M) for each i ∈ I. Defining Mi =
Mi+Rad(M)

Rad(M) , we obtain for
each i ∈ I

Mi
∼= Mi

Mi∩Rad(M) =
Mi

Rad(Mi)
.

SinceMi is strongly local for every i ∈ I, it follows that Mi
Rad(Mi)

is simple.
This implies that

M = M
Rad(M) =

⊕
i∈I

Mi
Rad(Mi)

∼=
⊕
i∈I

Mi
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and thus M is semisimple since the class of semisimple modules is closed
under direct sums. Let U be any submodule of M . There exists a subset
J ⊆ I such that M = U ⊕ (

⊕
i∈J

Mi
Rad(Mi)

). Let V =
⊕
i∈J

Mi. Clearly, V is

a direct summand of M . Then M = U + V and U ∩ V ⊆ Rad(M).
By [28, 21.6 (5)], Rad(M) =

⊕
i∈I

Rad(Mi) and so Rad(M) is semisimple.

Therefore V is an ss-supplement of U in M . Hence M is ⊕ss-supplemen-
ted.

Example 3. Given the left Z-moduleM = Z9. Then the only submodu-
les of M are {0}, {0, 3, 6} and M = Z9, and so Rad(M) = Soc(M) =
{0, 3, 6} is semisimple. Since M is local, it is a strongly local module.
Now we consider the left Z-module N =

⊕
i∈I

Z9 for any index set I. By

Theorem 6, N is ⊕ss-supplemented.

The following theorem shows that the direct sum of the lifting modu-
les under one condition is ⊕-supplemented.

Theorem 7 (see [17, Theorem 2.12]). Let R be any ring and let M be an
R-module such that M =

⊕
i∈I

Mi, where Mi is a lifting module for each

i ∈ I. Suppose further that Rad(M) ≪M . Then M is ⊕-supplemented.

Now we give an analogous characterization of this fact for ⊕ss-supple-
mented modules without condition.

Theorem 8. Let R be a ring. Then every direct sum of ss-lifting R-mo-
dules is ⊕ss-supplemented.

Proof. Let {Mi}i∈I be a family of ss-lifting R-modules and M =
⊕
i∈I

Mi.

Since each Mi (i ∈ I) is ss-lifting, it follows from Corollary 2 that
Rad(Mi) is semisimple and so

Socs(Mi) = Rad(Mi) ∩ Soc(Mi) = Rad(Mi).

According to [28, 21.6 (5)], we have Rad(M) is semisimple. By [23, Theo-
rem 3.1], we obtain that

Mi
Rad(Mi)

= Mi+Rad(M)
Rad(M)

is semisimple for all i ∈ I. Therefore M
Rad(M) =

∑
i∈I

Mi+Rad(M)
Rad(M) is semisim-

ple as a sum of these semisimple modules Mi+Rad(M)
Rad(M) .
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Let U be any submodule of M . Then there is an index set λ ⊆ I and a
submodule (i ∈ λ) Ni ⊆Mi such that

M
Rad(M) = (U+Rad(M)

Rad(M) )
⊕

(⊕
i∈I

Ni+Rad(M)
Rad(M) ).

By the hypothesis, there is a decomposition (i ∈ λ) Mi = Li ⊕ Vi such
that Li ⊆ Ni ⊆ Li +Rad(Mi) and Ni ∩ Vi ⊆ Socs(Mi) = Rad(Mi). Put
V =

⊕
i∈λ

Vi and therefore V is a direct summand of M . Since Rad(M) is

semisimple, it is a small submodule ofM and soM = U+V +Rad(M) =
U+V . On the other hand, U∩V ⊆ (U+Rad(M))∩(

∑
i∈λ

Ni+Rad(M)) ⊆

Rad(M) and that U ∩ V is semisimple and a small submodule of M .
Following [28, 19.3 (5)], we obtain that U ∩ V ⊆ Socs(V ). Hence M is
⊕ss-supplemented.

Theorem 9. Let M be a module. Then the following statements are
equivalent:

(1) M is ⊕ss-supplemented.

(2) M is a Rad-⊕-supplemented module with semisimple radical.

Proof. (1) ⇒ (2) It is clear that M is Rad-⊕-supplemented. Then there
exists a decomposition M1 ⊕M2 = M such that M = Rad(M) +M1,
Rad(M) ∩M1 ≪ M1 and Rad(M) ∩M1 is semisimple. By the proof of
Theorem 1, M2 = 0 and then Rad(M1) = Rad(M) is semisimple.

(2) ⇒ (1) Since the class of semisimple modules is closed under sub-
modules, it is clear.

Corollary 3. For a module M , the following are equivalent:

(1) M is ⊕ss-supplemented.

(2) M is a Rad-⊕-supplemented module with semisimple radical.

(3) M is a ⊕-supplemented module with semisimple radical.

Proof. (1) ⇒ (3) and (3) ⇒ (2) are clear.

(2) ⇒ (1) By Theorem 9.

Let R be an arbitrary ring. A functor τ from the category of left
R-modules to itself is called a preradical if it satisfies the following pro-
perties.
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(1) τ(M) is a submodule of any R-module M .

(2) If f : M
′ → M is an R-module homomorphism, then f(τ(M

′
)) ⊆

τ(M) and τ(f) is the restriction of f to τ(M
′
).

Proposition 3. Let R be a ring and τ be a preradical of the category of
the left R-modules. If M is a ⊕ss-supplemented R-module, then

(1) M
τ(M) is ⊕ss-supplemented.

(2) If τ(M) is a direct summand of M , then τ(M) is also ⊕ss-supple-
mented.

Proof. (1) Let U
τ(M) be any submodule of M

τ(M) . By the hypothesis, there

is a decomposition M = V ⊕V ′
such that V is an ss-supplement of U in

M . It follows from the proof of [15, Proposition 26] that V+τ(M)
τ(M) is an

ss-supplement of U
τ(M) in M

τ(M) . Since τ is a preradical in the category

of left R-modules, it follows from [13, Lemma 2.4] that we can write
the decomposition τ(M) = V ∩ τ(M) ⊕ V

′ ∩ τ(M). Therefore, by the
modularity law,

V+τ(M)
τ(M) ∩ V

′
+τ(M)
τ(M) = (V+τ(M))∩(V ′

+τ(M))
τ(M)

= (V+(V ∩τ(M)⊕V
′∩τ(M)))∩(V ′

+(V ∩τ(M)⊕V
′∩τ(M)))

τ(M)

= (V+V
′∩τ(M))∩(V ′

+V ∩τ(M))
τ(M)

= 0.

It means that V+τ(M)
τ(M) is a direct summand of M

τ(M) . Hence
M

τ(M) is ⊕ss-
supplemented.

(2) Assume that there is a decomposition M = τ(M) ⊕ L for some
submodule L ofM . Let T be any submodule of τ(M). SinceM is a ⊕ss-
supplemented module, there exist submodules Y, Z ofM such thatM =
Y ⊕Z and Y is an ss-supplement of T inM . Then, by the modularity law,
we get that τ(M) = τ(M)∩M = τ(M)∩(T +Y ) = T +Y ∩τ(M). Again
applying [13, Lemma 2.4], we obtain that τ(M) = Y ∩ τ(M)⊕Z ∩ τ(M).
Let m ∈ T ∩ (Y ∩ τ(M)) = T ∩ Y . Since Y ∩ Z ⊆ Socs(Y ), Rm is
semisimple and a small submodule of Y . So, by [28, 19.3 (5)], m ∈ Rm ⊆
Socs(Y ∩ τ(M)). Therefore T ∩ Y ⊆ Socs(Y ∩ τ(M)). It means that
τ(M) is ⊕ss-supplemented.
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Let R be a ring and τ be a preradical of the category of left R-modu-
les. In [2], M is called τ -lifting if every submodule N of M has a decom-
position N = A ⊕ (B ∩ N) such that M = A ⊕ B and B ∩ N ⊆ τ(B)
and also they called that M is τ -semiperfect if every factor module of
M has a projective τ -cover, that is, for any submodule N of M , there
exist a projective module P and an epimorphism ψ : P −→ M

N such that
ker(ψ) ⊆ τ(P ).

In [23], a module M is called ss-semilocal if M
Socs(M) is semisimple.

The rings with the property that every left module is ss-semilocal are
called ss-perfect. Note that Socs(M) is the largest semisimple and small
submodule of any module M and so Socs is preradical in the category of
R-modules. Using Theorem 4, we get the following theorem.

Theorem 10. Let M be a projective module. The following statements
are equivalent.

(1) M is ss-supplemented.

(2) M is ⊕ss-supplemented.

(3) M is Socs-lifting, that is, ss-lifting.

(4) M is Socs-semiperfect.

Proof. By Theorem 4.

For a ring R, we obtain the next result:

Corollary 4. Let R be a ring. The following statements are equivalent.

(1) R is Socs-semiperfect.

(2) RR is ⊕ss-supplemented.

(3) RR is Socs-lifting, that is, ss-lifting.

(4) R is left ss-perfect ring.

Let U be a submodule of an R-module M . Following [25], U is called
strongly lifting in M if whenever M

U = A+U
U ⊕ B+U

U , then M has a de-
composition M . In [1], Alkan M. expanded this definition and presented
a new definition as follows. The submodule U is called quasi strongly
lifting (QSL) in M , if whenever A+U

U is a direct summand of M
U , M has

a direct summand P such that P ⊆ A and P + U = A + U . Using
[1, Proposition 3.6.], we get the following fact.
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Proposition 4. A module M is ss-lifting if and only if it is ⊕ss-supple-
mented and Rad(M) is QSL.

Proof. It is obtained from [1, Proposition 3.6] and Theorem 1.

We now characterize the rings over which all (projective) modules are
⊕ss-supplemented. Let R be a ring and M be an R-module. Following
[19], we consider the following condition:

(D3) For any direct summands M1, M2 of M with M = M1 + M2,
M1 ∩M2 is also a direct summand of M .

Note that every (self) projective module satisfies the condition (D3).

Lemma 3. Let M be a ⊕ss-supplemented module with (D3). Then every
direct summand of M is ⊕ss-supplemented.

Proof. Let N be a direct summand of M and U be a submodule of N .
SinceM is⊕ss-supplemented, there exists a direct summand V ofM such
that M = U + V and U ∩ V ⊆ Socs(V ). It follows from the modularity
law that N = U + (N ∩ V ). Since M = U + V has (D3), N ∩ V is also
a direct summand of M and so we can write M = (N ∩ V )⊕L for some
submodule L of M . Again using the modularity law,

N = N ∩M = N ∩ ((N ∩ V )⊕ L)
= (N ∩ V )⊕ (N ∩ L).

It means that N∩V is also a direct summand of N . Note that U∩(N∩V )
= U ∩V ⊆ Rad(V ). Let m ∈ U ∩V . Therefore the cyclic submodule Rm
is a small submodule of M . By [28, 19.3 (5)], Rm is small in N ∩ V
and so m ∈ Rad(N ∩ V ). Since U ∩ V is semisimple, we obtain that
m ∈ Socs(N ∩V ). Therefore U ∩ (N ∩V ) = U ∩V ⊆ Soc(N ∩V ). Hence
N is ⊕ss-supplemented.

Corollary 5. The following statements are equivalent for a ring R.

(1) R is Socs-semiperfect.

(2) Every free R-module is ⊕ss-supplemented.

(3) Every projective R-module is ⊕ss-supplemented.
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Proof. (1) ⇒ (2) Let F be any free R-module. It follows from Corollary 4
that RR is ss-lifting. Therefore F is ⊕ss-supplemented as a direct sum
of copies of the ss-lifting module RR by Theorem 8.

(2) ⇒ (3) Let M be a projective R-module. Then M is isomorphic
to a direct summand of some free R-module F . Using Lemma 3, M is
⊕ss-supplemented.

(3) ⇒ (1) By Corollary 4.

It is shown in [17, Theorem 1.1] that a commutative ring R is an
artinian serial ring if and only if every left R-module is ⊕-supplemented.
Now we generalize this fact in the next corollary, characterizing the com-
mutative rings in which modules are ⊕ss-supplemented.

Corollary 6. A commutative ring R is an artinian serial ring with
semisimple radical if and only if every left R-module is ⊕ss-supplemented.

Proof. (⇒) Let M be an R-module. It follows from [27, Corollary 2.15]
that M is Rad-⊕-supplemented. Since Rad(R) is semisimple, we can
write Rad(M) is a semisimple R-module with a method similar to the
proof of Proposition 2. Hence, by Theorem 9, M is ⊕ss-supplemented.

(⇐) By [17, Theorem 1.1], we get R is an artinian serial ring. Since

RR is ⊕ss-supplemented, Rad(R) is semisimple according to Theorem 1.

Remark 1. Let R be a Dedekind domain and M be an R-module. M is
reduced if M has no nonzero injective submodules. If M is ⊕ss-supple-
mented, it follows from Theorem 1 that M is reduced.

(1) Let R be a local ring which is not a field. Combining Theorem 9,
[15, Proposition 11] and [27, Corollary 3.3], we have M is ⊕ss-sup-
plemented if and only if M is isomorphic to a bounded R-module
with semisimple radical.

(2) Let R be a non-local ring. By Theorem 9, [27, Theorem 3.2],
[3, Proposition 7.3] and [31, Theorem 3.1], M is ⊕ss-supplemented
if and only if M is a torsion module with semisimple radical and
every p-component of M is supplemented.
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