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Abstract. The paper is devoted to the study of local near-
rings (those with identity, for which all non-invertible elements form
subgroups of their additive group). A study of such nearrings was
first initiated by C. J. Maxson in 1968, and the problem on the
determination of the finite p-groups, which are the additive groups
of local nearrings have become one of the most important. Par-
ticular cases of this (still unsolved) problem have been studied in
many works. In previous papers the authors have shown that, up
to isomorphism, there exist at least p local nearrings on elementary
abelian additive groups of order p3, which are not nearfields, and
at least p + 1 on each non-metacyclic non-abelian or metacyclic
abelian groups of order p3. In this paper we study the groups of
nilpotency class 2 of order p4, which are the additive groups of lo-
cal nearrings. It is proved that, for odd p, 4 out of total number 6
of such groups are the additive groups of local nearrings. Explicit
examples of the corresponding local nearrings are provided.

Introduction

The problem of finding the groups that can be additive groups for the
nearrings with identity is studied from the late 1960s. One of the first
results in this direction was obtained in [8], where it was shown that there
exists a unique nearring with identity whose additive group is cyclic and
that, in fact, this nearring is a commutative ring. It was also proved
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that the symmetric group Sn with n ≥ 3 cannot be an additive group
of a nearring with identity. It was shown that the alternating group A4

also cannot be an additive group of a nearring with identity [6]. There
is no nearring with identity whose additive group is isomorphic to the
quaternion group Q8 [7].

A study of local nearrings was first initiated in [11] and it was found
that the additive group of a finite zero-symmetric local nearring is a
p-group. In [12] it is shown that, up to isomorphism, there exist p − 1
local zero-symmetric nearrings with elementary abelian additive groups
of order p2, in which the subgroups of non-invertible elements have or-
der p, that is, those nearrings which are not nearfields. Together with
the fundamental paper [25] and [8], a complete description of all zero-
symmetric local nearrings of order p2 is obtained. The dihedral group
D4 of order 8 cannot be the additive group of local nearrings [13]. The
existence of local nearrings on finite abelian p-groups is proved in [14],
i.e. every non-cyclic abelian p-group of order pn > 4 is the additive group
of a zero-symmetric local nearring which is not a ring. Also, it is estab-
lished in [18] that an arbitrary non-metacyclic Miller–Moreno p-group
of order pn > 8 is the additive group of some local nearring. Nearrings
with identity and local nearrings on Miller–Moreno groups were studied
in [18], [16] and [17].

Boykett and Nöbauer [4] classified all non-abelian groups of order
less than 32 that can be the additive groups of a nearring with iden-
tity and found the number of non-isomorphic nearrings with identity on
such groups. The package SONATA [1] of the computer algebra sys-
tem GAP [10] contains a library of all non-isomorphic nearrings of order
at most 15 and nearrings with identity of order up to 31, among which
698 are local.

The classification of nearrings of higher orders requires much more
complex calculations. For local nearrings they were realized in the form
of a new GAP package called LocalNR [22]. Its current version (not yet
distributed with GAP) contains 37599 non-isomorphic local nearrings of
order at most 361, except orders 128, 256 and some of orders 32, 64 and
243. We have already calculated some classes of local nearrings of orders
32, 64, 128, 243 and 625.

However, it is not true that any finite group is the additive group
of a nearring with identity. Therefore it is important to determine such
groups and to classify some classes of nearrings with identity on these
groups, for example, local nearrings.
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In [19] it was shown that on each group of order p3 with p > 2 there
exists a local nearring. Moreover, lower bounds for the number of local
nearrings on groups of order p3 are obtained. It is established that on
each non-metacyclic non-abelian or metacyclic abelian groups of order
p3 there exist at least p+ 1 non-isomorphic local nearrings. In [21] it is
proved that, up to isomorphism, there exist at least p local nearrings on
elementary abelian additive groups of order p3, which are not nearfields.

The next natural step is to investigate groups of order p4 as the
additive groups of local nearrings. In this paper we consider groups
of nilpotency class 2 of order p4 which are the additive group of local
nearrings. It was shown that, for odd p, out of 6 of such groups 4 of
them are the additive groups of local nearrings.

1. Preliminaries

We will give the basic definitions.

Definition 1. A non-empty set R with two binary operations “ + ” and
“ · ” is a nearring if:

1) (R,+) is a group with neutral element 0;

2) (R, ·) is a semigroup;

3) x · (y + z) = x · y + x · z for all x, y, z ∈ R.

Such a nearring is called a left nearring. If axiom 3) is replaced by an
axiom (x + y) · z = x · z + y · z for all x, y, z ∈ R, then we get a right
nearring.

The group (R,+) of a nearring R is denoted by R+ and called the
additive group of R. It is easy to see that for each subgroupM of R+ and
for each element x ∈ R the set xM = {x · y|y ∈M} is a subgroup of R+

and in particular x · 0 = 0. If in addition 0 · x = 0 for all x ∈ R, then the
nearring R is called zero-symmetric. Furthermore, R is a nearring with
an identity i if the semigroup (R, ·) is a monoid with identity element i.
In the latter case the group of all invertible elements of the monoid (R, ·)
is denoted by R∗ and called the multiplicative group of R. A subgroup
M of R+ is called R∗-invariant, if rM ≤M for each r ∈ R∗, and (R,R)-
subgroup, if xMy ⊆M for arbitrary x, y ∈ R.

The following assertion is well-known (see, for instance, [8], Theo-
rem 3).
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Lemma 1. The exponent of the additive group of a finite nearring R
with identity i is equal to the additive order of i which coincides with the
additive order of every invertible element of R.

Definition 2. A nearring R with identity is called local if the set L of
all non-invertible elements of R forms a subgroup of the additive group
R+ and a nearfield, if L = 0.

Throughout this paper L will denote the subgroup of non-invertible
elements of R.

The following lemma characterizes the main properties of finite local
nearrings (see [3], Lemma 3.2).

Lemma 2. Let R be a local nearring with identity i. Then the following
statements hold:

1) L is an (R,R)-subgroup of R+;

2) each proper R∗-invariant subgroup of R+ is contained in L;

3) the set i+ L forms a subgroup of the multiplicative group R∗.

Finite local nearrings with a cyclic subgroup of non-invertible ele-
ments are described in [20, Theorem 1].

Theorem 1. Let R be a local nearring of order pn with n > 1 whose
subgroup L is cyclic and non-trivial. Then the additive group R+ is
either cyclic or is an elementary abelian group of order p2. In the first
case, R is a commutative local ring, which is isomorphic to residual ring
Z/pnZ with n ≥ 2, in the other case there exist p non-isomorphic such
nearrings R with |L| = p, from which p−1 are zero-symmetric nearrings
and their multiplicative groups R∗ are isomorphic to a semidirect product
of two cyclic subgroups of orders p and p− 1.

The following theorem was proved by Maxson in [12, Theorem 2.1].

Theorem 2. If R is a finite local nearring which is not a nearfield, then
|R| < |L|2.

As a consequence of Theorems 1 and 2 we have the following result.

Corollary 1. Let R be a local nearring of order p4 with non-abelian
additive group and is not a nearfield. Then the subgroup of non-invertible
elements L is a non-cyclic group of order p3 or p2.
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Due to Onyshchuck, Sysak [15], let G be a group and EndG be the
set of all its endomorphisms, which can be considered as a semigroup
with respect to the composition operation of endomorphisms. For each
g ∈ G we denote by gEndG the set {gα|α ∈ EndG} of all images of the
element g with respect to endomorphisms of EndG.

Definition 3 ([15]). A group G is called endocyclic if it contains an
element g with G = gEndG.

It is clear that in this case g is an element of maximum order in G.
We recall the following definition.

Definition 4. A finite non-abelian group whose proper subgroups are
abelian is called a Miller–Moreno group.

2. Groups of nilpotency class 2 of order p4

We will consider groups of nilpotency class 2 of order p4.
Let [n, i] be the i-th group of order n in the SmallGroups library in

the computer system algebra GAP. We denote by Cn the cyclic group of
order n.

It is an easy exercise for example in GAP to get the following asser-
tion.

Remark 1. There are 6 groups of nilpotency class 2 of order 24 = 16,
which are:

1. (C4 × C2)⋊ C2 [16, 3];

2. C4 ⋊ C4 [16, 4];

3. C8 ⋊ C2 [16, 6];

4. C2 ×D8 [16, 11];

5. C2 ×Q8 [16, 12];

6. (C4 × C2)⋊ C2 [16, 13].

The following theorem contains the classification of groups of nilpo-
tency class 2 of order p4, where p is an odd prime (see, [5] and, for
example, [2]).

Theorem 3. There are 6 groups of nilpotency class 2 of order p4, where
p is an odd prime, which are:
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� G1 = ⟨a, b : ap2 = bp = [a, [a, b]] = [b, [a, b]] = [a, b]p = e⟩ = (Cp2 ×
Cp)⋊ Cp;

� G2 = ⟨a, b : ap2 = bp
2
= e, [b, a] = bp⟩ = Cp2 ⋊ Cp2 ;

� G3 = ⟨a, b : ap3 = bp = e, [b, a] = ap
2⟩ = Cp3 ⋊ Cp;

� G4 = ⟨a, b, d : ap = bp = cp = dp = [a, c] = [b, c] = [a, d] = [b, d] =
[c, d] = e⟩ = Cp × ((Cp × Cp)⋊ Cp), where c = [a, b];

� G5 = ⟨a, b, c : ap2 = bp = cp = [a, c] = [b, c] = e, [b, a] = ap⟩ =
Cp × (Cp2 ⋊ Cp);

� G6 = ⟨a, b, c : ap2 = bp = cp = [a, b] = [a, c] = e, [c, b] = ap⟩ =
(Cp2 × Cp)⋊ Cp.

3. Groups of nilpotency class 2 of order 16 and local near-
rings

As was mentioned above a library of all non-isomorphic nearrings
with identity of order up to 31 are contained in the package SONATA,
and so all non-isomorphic local nearrings of order 16 (see [4]).

Lemma 3. The following groups of nilpotency class 2 and only they are
the additive groups of local nearrings of order 16:

1. (C4 × C2)⋊ C2 [16, 3];

2. C4 ⋊ C4 [16, 4];

3. C8 ⋊ C2 [16, 6];

4. C2 ×Q8 [16, 12].

Let n(G) be the number of all non-isomorphic local nearrings R whose
additive group R+ is isomorphic to the group G.

StructureDescription(R+) n(R+)

(C4 × C2)⋊ C2 37

C4 ⋊ C4 24

C8 ⋊ C2 33

C2 ×Q8 2
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3.1. The groups G1, G2 and G3 and local nearrings

The groupsG1, G2 andG3 from Theorem 3 are Miller–Moreno groups.

Due to [23] G2 and G3 are the groups G(p2, p2) and G(p3, p), respec-
tively (see, for example, Lemma 2 [23]). Therefore, by Theorem 2 [23]
there exists a local nearring R whose additive group R+ is isomorphic
to G3. As a consequence, there does not exist a local nearring on the
additive group G2.

Let R be a local nearring whose additive group of R+ is isomorphic
to G3. Then R+ = ⟨a⟩ + ⟨b⟩ for some elements a and b of R satisfying
the relations ap3 = 0, bp = 0 and −b+ a+ b = a(1− p2). In particular,
each element x ∈ R is uniquely written in the form x = ax1 + bx2 with
coefficients 0 ≤ x1 < p3 and 0 ≤ x2 < p.

The formula for multiplying elements of local nearrings on Miller–
Moreno metacyclic groups is defined in [23]. The multiplication formula
for arbitrary elements of a zero-symmetric local nearring on G3 is given
in the proving of [23, Theorem 2], namely:

x · y = a(x1y1 + p2x1x2

(
y1
2

)
) + b(x2y1 + β(x)y2),

where β(x) =

{
1, if x1 ̸≡ 0 (mod p);
0, if x1 ≡ 0 (mod p).

Example 1. Let G ∼= C27 ⋊C3. If x = ax1 + bx2 and y = ay1 + by2 ∈ G
and (G,+, ·) is a local nearring, then as above “ · ” can be the following
multiplication:

x · y = a(x1y1 + 9x1x2

(
y1
2

)
) + b(x2y1 + β(x)y2),

where β(x) =

{
1, if x1 ̸≡ 0 (mod 3);
0, if x1 ≡ 0 (mod 3).

A computer program verified that the nearring obtained in Example 1
is indeed a local nearring, is deposited on GitHub:

https://github.com/raemarina/Examples/blob/main/LNR_81-6.txt.

From the package LocalNR and [24] we have the following number
of all non-isomorphic zero-symmetric local nearrings on G3 of orders 81
and 625.
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StructureDescription(R+) n(R+)

C27 ⋊ C3 10

C125 ⋊ C5 5

Analogously, G1 is the group G(p2, p, p) according to [18]. Hence,
by Theorem 3 [18] there exist a local nearring whose additive group is
isomorphic to G1. Since G1 is a Miller–Moreno non-metacyclic group,
using [18, Theorem 3], for arbitrary elements x = ax1 + bx2 + cx3 and
y = ay1+ by2+ cy3 of G1 we obtain the following multiplication formula:

x · y = a(x1y1+ pkx2y2)+ b(x2y1+x1y2)+ c(−x1x2
(
y1
2

)
+x3y1+x21y3),

where k = 1, 2.
It is easy to see that R = (G1,+, ·) is a non-zero-symmetric local

nearring.

Example 2. Let G ∼= (C9 × C3) ⋊ C3. If x = ax1 + bx2 + cx3 and
y = ay1 + by2 + cy3 ∈ G and (G,+, ·) is a local nearring, then as above
“ · ” can be one of the following multiplications:

(1) x·y = a(x1y1+3x2y2)+b(x2y1+x1y2)+c(−x1x2
(
y1
2

)
+x3y1+x

2
1y3);

(2) x · y = a(x1y1) + b(x2y1 + x1y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x21y3).

A computer program verified that the nearring obtained in Example 2
is indeed a local nearring, is deposited on GitHub:

https://github.com/raemarina/Examples/blob/main/LNR_81-3.txt.
From the package LocalNR and [24] we have the following number

of all non-isomorphic zero-symmetric local nearrings on G1 of orders 81
and 625.

StructureDescription(R+) n(R+)

(C9 × C3)⋊ C3 46

(C25 × C5)⋊ C5 154

3.2. The group G4

Let G4 be additively written group from Theorem 3. Then G4 =
⟨a⟩ + ⟨b⟩ + ⟨c⟩ + ⟨d⟩ for some elements a, b, c and d of R satisfying the
relations ap = 0, bp = 0, cp = 0, dp = 0, a+ b = b+ a+ c, a+ c = c+ a,
b+ c = c+ b, a+ d = d+ a, b+ d = d+ b and c+ d = d+ c.
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Lemma 4. For arbitrary integers k and l in the group G4 the equalities
−ak − bl + ak + bl = c(kl) and bl + ak = −c(kl) + ak + bl hold.

Proof. Since −a− b+ a+ b = c, we get −b+ a+ b = a+ c. Then

−bl + ak + bl = (a+ cl)k = ak + c(kl).

Therefore, −ak−bl+ak+bl = c(kl) and, so bl+ak = −c(kl)+ak+bl.

Lemma 5. For any natural numbers k, l, n, m and r in the group G4

the equality (ak+ bl+ cm+ dn)r = a(kr)+ b(lr)+ c(mr− kl
(
r
2

)
)+ d(nr)

holds.

Proof. The proof will be carried out by induction on r. For r = 1 the
equality is valid. Let for r the equality hold, i.e.

(ak + bl + cm+ dn)r = a(kr) + b(lr) + c(mr − kl

(
r

2

)
) + d(nr).

Let us prove the equality for r + 1:

(ak + bl + cm+ dn)(r + 1) =
= a(kr) + b(lr) + ak + bl + c(kl

(
r
2

)
) + c(m(r + 1))+

+ d(n(r + 1)) = a(k(r + 1)) + b(l(r + 1)) + c(−klr)+
+ c(−kl

(
r
2

)
) + c(m(r + 1)) + d(n(r + 1)) = a(k(r + 1))+

+ b(l(r + 1)) + c(m(r + 1)− kl(r +
(
r
2

)
) + d(n(r + 1)) =

= a(k(r + 1)) + b(l(r + 1)) + c(m(r + 1)− kl
(
r+1
2

)
) + dn(r + 1).

Therefore, the equality is valid for any r.

3.3. Nearrings with identity whose additive groups are
isomorphic to G4

Let R be a nearring with identity whose additive group R+ is iso-
morphic to G4. Then R+ = ⟨a⟩ + ⟨b⟩ + ⟨c⟩ + ⟨d⟩ for some elements a,
b, c and d of R satisfying the relations ap = 0, bp = 0, cp = 0, dp = 0,
a+ b = b+ a+ c, a+ c = c+ a, b+ c = c+ b, a+ d = d+ a, b+ d = d+ b
and c+ d = d+ c. In particular, each element x ∈ R is uniquely written
in the form x = ax1 + bx2 + cx3 + dx4 with coefficients 0 ≤ x1 < p,
0 ≤ x2 < p, 0 ≤ x3 < p and 0 ≤ x4 < p.

Since the order of the element a is equal to the exponent of group
G, then by Lemma 1 we can assume that a is an identity of R, i.e.
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ax = xa = x for each x ∈ R. Furthermore, for each x ∈ R there exist
coefficients α(x), β(x), γ(x), φ(x), λ(x), µ(x), ν(x) and ψ(x) such that
xb = aα(x) + bβ(x) + cγ(x) + dφ(x) and xd = aλ(x) + bµ(x) + cν(x) +
dψ(x). It is clear that they are uniquely defined modulo p, so that some
mappings α : R → Zp, β : R→ Zp, γ : R→ Zp, φ : R→ Zp, λ : R→ Zp,
µ : R→ Zp, ν : R→ Zp and ψ : R→ Zp are determined.

Lemma 6. Let R be a nearring with identity whose additive group R+

is isomorphic to G4. If a coincides with identity element of R, x =
ax1 + bx2 + cx3 + dx4, y = ay1 + by2 + cy3 + dy4 ∈ R, xb = aα(x) +
bβ(x) + cγ(x) + dφ(x) and xd = aλ(x) + bµ(x) + cν(x) + dψ(x), then

xy = a(x1y1 + α(x)y2 + λ(x)y4) + b(x2y1 + β(x)y2 + µ(x)y4)+
+c(−x1x2

(
y1
2

)
− α(x)β(x)

(
y2
2

)
− x2α(x)y1y2 − λ(x)µ(x)

(
y4
2

)
−

−x2α(x)y3 + x3y1 + γ(x)y2 + x1β(x)y3 + ν(x)y4) + d(x4y1+
+φ(x)y2 + ψ(x)y4).

Moreover, for the mappings
α : R→ Zp, β : R→ Zp, γ : R→ Zp, φ : R→ Zp, λ : R→ Zp,

µ : R→ Zp, ν : R→ Zp and ψ : R→ Zp the following statements hold:

(0) α(0) ≡ 0 (mod p), β(0) ≡ 0 (mod p), γ(0) ≡ 0 (mod p);
φ(0) ≡ 0 (mod p), λ(0) ≡ 0 (mod p), µ(0) ≡ 0 (mod p),
ν(0) ≡ 0 (mod p) and ψ(0) ≡ 0 (mod p) if and only if the nearring
R is zero-symmetric;

(1) α(xy) ≡ x1α(y) + α(x)β(y) + λ(x)φ(y) (mod p);

(2) β(xy) ≡ x2α(y) + β(x)β(y) + µ(x)φ(y) (mod p);

(3) γ(xy) ≡ −x1x2
(
α(y)
2

)
− α(x)β(x)

(
β(y)
2

)
− x2α(x)α(y)β(y)−

−λ(x)µ(x)
(
φ(y)
2

)
− x2α(x)γ(y) + x3α(y) + γ(x)β(y)+

+x1β(x)γ(y) + ν(x)φ(y) (mod p);

(4) φ(xy) ≡ x4α(y) + φ(x)β(y) + ψ(x)φ(y) (mod p);

(5) λ(xy) ≡ x1λ(y) + α(x)µ(y) + λ(x)ψ(y) (mod p);

(6) µ(xy) ≡ x2λ(y) + β(x)µ(y) + µ(x)ψ(y) (mod p);

(7) ν(xy) ≡ −x1x2
(
λ(y)
2

)
− α(x)β(x)

(
µ(y)
2

)
− x2α(x)λ(y)µ(y)−

−λ(x)µ(x)
(
ψ(y)
2

)
− x2α(x)ν(y) + x3λ(y) + γ(x)µ(y)+

+x1β(x)ν(y) + ν(x)ψ(y) (mod p);
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(8) ψ(xy) ≡ x4λ(y) + φ(x)µ(y) + ψ(x)ψ(y) (mod p).

Proof. Since 0 · a = a · 0 = 0, it follows that R is a zero-symmetric
nearring if and only if

0 = 0 · b = aα(0) + bβ(0) + cγ(0) + dφ(0)

and
0 = 0 · d = aλ(0) + bµ(0) + cν(0) + dψ(0).

Equivalently we have
α(0) ≡ 0 (mod p), β(0) ≡ 0 (mod p), γ(0) ≡ 0 (mod p),
φ(0) ≡ 0 (mod p), λ(0) ≡ 0 (mod p), µ(0) ≡ 0 (mod p),
ν(0) ≡ 0 (mod p) and ψ(0) ≡ 0 (mod p).
Moreover, since c = −a − b + a + b and the left distributive law we

have 0 · c = −0 · a− 0 · b+ 0 · a+ 0 · b = 0, whence

0·x = 0·(ax1+bx2+cx3+dx4) = (0·a)x1+(0·b)x2+(0·c)x3+(0·d)x4 = 0.

So that statement (0) holds.
Further, using Lemma 4, we derive

xc = −xa− xb+ xa+ xb = −cx3 − bx2 − ax1 − cγ(x)−
−bβ(x)− aα(x) + ax1 + bx2 + cx3 + aα(x) + bβ(x) + cγ(x) =
= −bx2 − ax1 − bβ(x)− aα(x) + ax1 + bx2 + aα(x) + bβ(x) =
= −bx2 + cx1β(x)− bβ(x)− ax1 − a(α(x)− x1) + bx2 + aα(x)+

+bβ(x) = cx1β(x)− b(x2 + β(x))− aα(x) + bx2 + aα(x) + bβ(x) =
= cx1β(x)− b(x2 + β(x))− aα(x)− cx2α(x) + aα(x) + bx2+
+bβ(x) = c(x1β(x)− x2α(x))− b(x2 + β(x)) + bx2 + bβ(x) =

= c(x1β(x)− x2α(x)).

Further, using the left distributive law, we obtain

xy = (ax1 + bx2 + cx3 + dx4)y1 + (aα(x) + bβ(x) + cγ(x)+
dφ(x))y2 + (c(x1β(x)− x2α(x)))y3+
+(aλ(x) + bµ(x) + cν(x) + dψ(x))y4.

By Lemma 5, we get

(ax1 + bx2 + cx3 + dx4)y1 = ax1y1 + bx2y1+
+c(x3y1 − x1x2

(
y1
2

)
) + dx4y1,

(aα(x) + bβ(x) + cγ(x) + dφ(x))y2 = aα(x)y2 + bβ(x)y2+
+c(γ(x)y2 − α(x)β(x)

(
y2
2

)
) + dφ(x)y2,

(aλ(x) + bµ(x) + cν(x) + dψ(x))y4 = aλ(x)y4 + bµ(x)y4+
+c(ν(x)y4 − λ(x)µ(x)

(
y4
2

)
) + dψ(x)y4.
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By Lemma 5, we have

bx2y1 + aα(x)y2 = aα(x)y2 + bx2y1 − cx2α(x)y1y2,

and

bβ(x)y2 + aλ(x)y4 = aλ(x)y4 + bβ(x)y2 − cλ(x)β(x)y2y4.

Hence and using the left distributive law, we have

xy = a(x1y1 + α(x)y2 + λ(x)y4) + b(x2y1 + β(x)y2 + µ(x)y4)+
+c(−x1x2

(
y1
2

)
− α(x)β(x)

(
y2
2

)
− x2α(x)y1y2 − λ(x)µ(x)

(
y4
2

)
−

−x2α(x)y3 + x3y1 + γ(x)y2 + x1β(x)y3 + ν(x)y4) + d(x4y1+
+φ(x)y2 + ψ(x)y4).

The associativity of multiplication in R implies that for all x, y ∈ R

1) (xy)b = x(yb)

and

2) (xy)d = x(yd).

According to xb = aα(x) + bβ(x) + cγ(x) + dφ(x), we obtain

3) (xy)b = aα(xy) + bβ(xy) + cγ(xy) + dφ(xy)

and yb = aα(y) + bβ(y) + cγ(y) + dφ(y). Substituting the last equation
to the right part of equality 1), we also have

4) x(yb) = a(x1α(y) + α(x)β(y) + λ(x)φ(y)) + b(x2α(y) + β(x)β(y)+

+µ(x)φ(y)) + c(−x1x2
(
α(y)
2

)
− α(x)β(x)

(
β(y)
2

)
− x2α(x)α(y)β(y)−

−λ(x)µ(x)
(
φ(y)
2

)
− x2α(x)γ(y) + x3α(y) + γ(x)β(y) + x1β(x)γ(y)+

+ν(x)φ(y)) + d(x4α(y) + φ(x)β(y) + ψ(x)φ(y)).

Since equality 1) implies the congruence of the corresponding coeffi-
cients in formulas 3) and 4), we obtain statements (1)–(4).

Next, according to xd = aλ(x) + bµ(x) + cν(x) + dψ(x) instead of y
in equality 2), we get

5) (xy)d = aλ(xy) + bµ(xy) + cν(xy) + dψ(xy)

and yd = aλ(y) + bµ(y) + cν(y) + dψ(y). Substituting the last equation
to the right part of equality 2), we also have
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6) x(yd) = a(x1λ(y) + α(x)µ(y) + λ(x)ψ(y)) + b(x2λ(y) + β(x)µ(y)+

+µ(x)ψ(y)) + c(−x1x2
(
λ(y)
2

)
− α(x)β(x)

(
µ(y)
2

)
− x2α(x)λ(y)µ(y)−

−λ(x)µ(x)
(
ψ(y)
2

)
− x2α(x)ν(y) + x3λ(y) + γ(x)µ(y) + x1β(x)ν(y)+

+ν(x)ψ(y)) + d(x4λ(y) + φ(x)µ(y) + ψ(x)ψ(y)).

Finally, comparing the coefficients under a, b, c and d in formulas 5)
and 6), we derive statements (5)–(8) of the lemma.

3.4. Local nearrings whose additive groups are isomorphic
to G4

Let R be a local nearring whose additive group R+ is isomorphic to
G4. Then R

+ = ⟨a⟩+ ⟨b⟩+ ⟨c⟩+ ⟨d⟩ for some elements a, b, c and d of R
satisfying the relations ap = 0, bp = 0, cp = 0, dp = 0, a+ b = b+ a+ c,
a + c = c + a, b + c = c + b, d + c = c + d, a + d = d + a and b + d =
d+ b. In particular, each element x ∈ R is uniquely written in the form
x = ax1 + bx2 + cx3 + dx4 with coefficients 0 ≤ x1 < p, 0 ≤ x2 < p,
0 ≤ x3 < p and 0 ≤ x4 < p.

Since order of the element a is equal to the exponent of group G, i.e.
p, it follows that by Lemma 1 we can assume that a is an identity of R,
i.e. ax = xa = x for each x ∈ R. Furthermore, for each x ∈ R there exist
coefficients α(x), β(x), γ(x), φ(x), λ(x), µ(x), ν(x) and ψ(x) such that
xb = aα(x) + bβ(x) + cγ(x) + dφ(x) and xd = aλ(x) + bµ(x) + cν(x) +
dψ(x). It is clear that they are uniquely defined modulo p, so that some
mappings α : R → Zp, β : R→ Zp, γ : R→ Zp, φ : R→ Zp, λ : R→ Zp,
µ : R→ Zp, ν : R→ Zp and ψ : R→ Zp are determined.

By Corollary 1, L is the normal subgroup of order p3 or p2 in R. Since
L consists the derived subgroup of R+ it follows that the generators b
and c we can choose such that c = −a − b + a + b. If |L| = p3 then
L = ⟨b⟩+ ⟨c⟩+ ⟨d⟩. Since R∗ = R \ L it follows

R∗ = {ax1 + bx2 + cx3 + dx4 | x1 ̸≡ 0 (mod p)}

and x = ax1+ bx2+ cx3+dx4 is invertible if and only if x1 ̸≡ 0 (mod p).
Throughout this section let R be a local nearring with |R : L| = p.

Lemma 7. If a coincides with identity element of R, x = ax1 + bx2 +
cx3 + dx4, y = ay1 + by2 + cy3 + dy4 ∈ R, |R : L| = p, xb = aα(x) +
bβ(x) + cγ(x) + dφ(x) and xd = aλ(x) + bµ(x) + cν(x) + dψ(x), then

xy = a(x1y1) + b(x2y1 + β(x)y2 + µ(x)y4) + c(−x1x2
(
y1
2

)
+ x3y1+

+γ(x)y2 + x1β(x)y3 + ν(x)y4) + d(x4y1 + φ(x)y2 + ψ(x)y4). (∗)



106 Groups of nilpotency class 2 of order p4

Moreover, for the mappings
α : R→ Zp, β : R→ Zp, γ : R→ Zp, φ : R→ Zp, λ : R→ Zp,

µ : R→ Zp, ν : R→ Zp and ψ : R→ Zp the following statements hold:

(0) β(0) ≡ 0 (mod p), γ(0) ≡ 0 (mod p), φ(0) ≡ 0 (mod p),
λ(0) ≡ 0 (mod p), µ(0) ≡ 0 (mod p), ν(0) ≡ 0 (mod p) and
ψ(0) ≡ 0 (mod p) if and only if the nearring R is zero-symmetric;

(1) α(x) ≡ 0 (mod p) and λ(x) ≡ 0 (mod p);

(2) if β(x) ≡ 0 (mod p), then x1 ≡ 0 (mod p);

(3) β(xy) ≡ β(x)β(y) + µ(x)φ(y) (mod p);

(4) γ(xy) ≡ γ(x)β(y) + x1β(x)γ(y) + ν(x)φ(y) (mod p);

(5) φ(xy) ≡ φ(x)β(y) + ψ(x)φ(y) (mod p);

(6) µ(xy) ≡ β(x)µ(y) + µ(x)ψ(y) (mod p);

(7) ν(xy) ≡ γ(x)µ(y) + x1β(x)γ(y) + ν(x)ψ(y) (mod p);

(8) ψ(xy) ≡ φ(x)µ(y) + ψ(x)ψ(y) (mod p).

Proof. If |L| = p3, then L = ⟨b⟩ + ⟨c⟩ + ⟨d⟩. Since L is the (R,R)-
subgroup in R+ by statement 1) of Lemma 2 it follows that xb ∈ L and
xd ∈ L, hence aα(x) ∈ L and aλ(x) ∈ L for each x ∈ R. Thus α(x) ≡ 0
(mod p) and λ(x) ≡ 0 (mod p), so we get statement (1). Substituting
the obtained value of α(x) ≡ 0 (mod p) and λ(x) ≡ 0 (mod p) in state-
ments (2)–(4) and (6)–(8) from Lemma 6, we obtain statement (3)–(8)
of the lemma and the formula for multiplication (∗). Putting y = c, we
get xc = c(x1β(x)). Hence, if β(x) ≡ 0 (mod p), then xc = 0, and so
x ∈ L. Therefore, x1 ≡ 0 (mod p), as claimed in statement (2). Indeed,
statement (0) repeats the statement (0) of Lemma 6.

Next, we give examples of local nearrings.

Lemma 8. Let R be a local nearring whose additive group of R+ is
isomorphic to G4 and |R : L| = p. If x = ax1 + bx2 + cx3 + dx4,
y = ay1+by2+cy3+dy4 ∈ R, then the mappings β : R→ Zp, γ : R→ Zp,
φ : R→ Zp, µ : R→ Zp, ν : R→ Zp and ψ : R→ Zp from multiplica-
tion (∗) can be one of the following:

1) β(x) = x1
i and ψ(x) = x1

i (0 < i < p), γ(x) = φ(x) = µ(x) =
ν(x) = 0;
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2) β(x) = 1 and ψ(x) = 1, γ(x) = φ(x) = µ(x) = ν(x) = 0.

Proof. It is easy to check that the functions from statements 1) and 2)
satisfy conditions 2)–8) of Theorem 7.

As a consequence of Lemma 8 we have the following result.

Theorem 4. For each odd prime p there exists a local nearring R whose
additive group R+ is isomorphic to G4.

Example 3. Let G ∼= C3×((C3×C3)⋊C3). If x = ax1+bx2+cx3+dx4
and y = ay1 + by2 + cy3 + dy4 ∈ G and (G,+, ·) is a local nearring, then
by Lemma 8 “ · ” can be one of the following multiplications:

(1) x·y = ax1y1+b(x2y1+x1y2)+c(−x1x2
(
y1
2

)
+x3y1+x

2
1y3)+d(x4y1+

x1y4);

(2) x ·y = ax1y1+b(x2y1+x
2
1y2)+c(−x1x2

(
y1
2

)
+x3y1+y3)+d(x4y1+

x21y4);

(3) x·y = ax1y1+b(x2y1+y2)+c(−x1x2
(
y1
2

)
+x3y1+x1y3)+d(x4y1+y4).

A computer program verified that for p = 3 the nearring obtained
in Lemma 8 is indeed a local nearring (see Example 3), is deposited on
GitHub:

https://github.com/raemarina/Examples/blob/main/LNR_81-12.txt.
From the package LocalNR and [24] we have the following number of all

non-isomorphic zero-symmetric local nearrings on G4 of orders 81 and 625.

StructureDescription(R+) n(R+)
C3 × ((C3 × C3)⋊ C3) 794

|R : L| = 3 782
|R : L| = 9 12

C5 × ((C5 × C5)⋊ C5) 2090
|R : L| = 5 2078
|R : L| = 25 12

3.5. The group G5

Let G5 be additively written group from Theorem 3. Then G5 = ⟨a⟩+ ⟨b⟩+
⟨c⟩ for some elements a, b and c of R satisfying the relations ap2 = bp = cp = 0,
a+ b = b+ a(1− p), a+ c = c+ a and b+ c = c+ b.

Recall that the exponent of a finite p-group is the maximal order of its
elements. The following assertion is easily verified.
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Lemma 9. If x is an element of maximal order in G5, then there exist genera-
tors a, b and c of this group such that a = x and the relations ap2 = bp = cp = 0,
−b+ a+ b = a(1− p), a+ c = c+ a, b+ c = c+ b hold.

Lemma 10. For any natural numbers k, r, s and t in the group G5 the equalities
ck+bs+ar = ar(1 + sp) + bs+ ck and (ar+bs+ck)t = ar(t+s

(
t
2

)
p)+bst+ckt

hold.

Proof. Let q = 1+p. Since −b+a+ b = a(1−p), a+ c = c+a and b+ c = c+ b
it follows c+ b+ a = aq + b+ c, so ck + bs+ ar = arqs + bs+ ck for arbitrary
integers k ≥ 0, r ≥ 0 and s ≥ 0. Taking into consideration, that

qs = (1 + p)s ≡ 1 + sp (mod p2)

by binomial’s formula, giving ck + bs+ ar = ar(1 + sp) + bs+ ck. Next, (ar +
bs+ ck)t = ar(1 + qs + · · ·+ qs(t−1)) + bst+ ckt by induction on t. Therefore,
1+ qs + · · ·+ qs(t−1) ≡ 1+ (1+ sp)+ · · ·+(1+ s(t− 1)p) = t+ s

(
t
2

)
p (mod p2),

thus (ar + bs+ ckt)t = ar(t+ s
(
t
2

)
p) + bst+ ckt.

3.6. Nearrings with identity whose additive groups are
isomorphic to G5

Let R be a nearring with identity whose additive group R+ is isomorphic to
G5. Then R

+ = ⟨a⟩+ ⟨b⟩+ ⟨c⟩ with elements a, b and c, where a coincides with
identity element of R and the relations ap2 = bp = cp = 0, a+ b = b+ a(1− p),
a+ c = c+ a, b+ c = c+ b are valid. Moreover, each element x ∈ R is uniquely
written in the form x = ax1+bx2+cx3 with coefficients 0 ≤ x1 < p2, 0 ≤ x2 < p
and 0 ≤ x3 < p.

Consider a coincides with identity element of R, so that xa = ax = x for
each x ∈ R. Furthermore, for each x ∈ R there exist integers α(x), β(x),
γ(x), ν(x), µ(x) and ϕ(x) such that xb = aα(x) + bβ(x) + cγ(x) and xc =
aν(x)+ bµ(x)+ cϕ(x). It is clear that modulo p2, p, p and p2, p, p, respectively,
these integers are uniquely determined by x and so some mappings α : R →
Zp2 , β : R → Zp, γ : R → Zp, ν : R → Zp2 , µ : R → Zp and ϕ : R → Zp are
determined.

Lemma 11. Let x = ax1 + bx2 + cx3 and y = ay1 + by2 + cy3 be elements of
R. If a coincides with identity element of R, then

xy = a(x1y1 + α(x)y2 + x1x2
(
y1

2

)
p+ ν(x)y3)+

+ b(x2y1 + β(x)y2 + µ(x)y3) + c(x3y1 + γ(x)y2 + ϕ(x)y3). (∗∗)

Moreover, for the mappings

α : R→ Zp2 , β : R→ Zp, γ : R→ Zp, ν : R→ Zp2 ,
µ : R→ Zp and ϕ : R→ Zp the following statements hold:
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(0) α(0) = β(0) = γ(0) = ν(0) = µ(0) = ϕ(0) = 0 if and only if the nearring
R is zero-symmetric;

(1) α(a) = 0, β(a) = 1, γ(a) = 0, ν(c) = 0, µ(c) = 0 and ϕ(c) = 1;

(2) α(x) ≡ 0 (mod p) and ν(x) ≡ 0 (mod p);

(3) α(xy) = x1α(y) + α(x)β(y) + x1x2
(
α(y)
2

)
p+ ν(x)γ(y) (mod p2);

(4) β(xy) = x2α(y) + β(x)β(y) + µ(x)γ(y) (mod p);

(5) γ(xy) = x3α(y) + γ(x)β(y) + ϕ(x)γ(y) (mod p);

(6) ν(xy) = x1ν(y) + α(x)µ(y) + x1x2
(
µ(y)
2

)
p+ ν(x)ϕ(y) (mod p2);

(7) µ(xy) = x2ν(y) + β(x)µ(y) + µ(x)ϕ(y) (mod p);

(8) ϕ(xy) = x3ν(y) + γ(x)µ(y) + ϕ(x)ϕ(y) (mod p).

Proof. By the left distributive law, we have

xy = (xa)y1 + (xb)y2 + (xc)y3 = (ax1 + bx2 + cx3)y1 + (aα(x)+
+bβ(x) + cγ(x))y2 + (aν(x) + bµ(x) + cϕ(x))y3.

Furthermore, Lemma 10 implies that

(ax1 + bx2 + cx3)y1 = ax1(y1 + x2
(
y1

2

)
p) + bx2y1 + cx3y1,

(aα(x) + bβ(x) + cγ(x))y2 =
= aα(x)(y2 + β(x)

(
y2

2

)
p) + bβ(x)y2 + cγ(x)y2,

and
(aν(x) + bµ(x) + cϕ(x))y3 =
= aν(x)(y3 + µ(x)

(
y3

2

)
p) + bµ(x)y3 + cϕ(x)y3.

By Lemma 10, we have

bx2y1 + aα(x)(y2 + β(x)
(
y2

2

)
p)

= aα(x)(y2 − β(x)
(
y2

2

)
p)(1− x2y1p) + bx2y1

and

bβ(x)y2 + aν(x)(y3 + µ(x)
(
y3

2

)
p)

= aν(x)(y2 − µ(x)
(
y2

2

)
p)(1− β(x)y2) + bβ(x)y2.

Thus we get

xy = a((x1y1 + α(x)y2) + (x1x2
(
y1

2

)
+ α(x)y2 + α(x)x2y1y2p+

+ α(x)β(x)
(
y2

2

)
)p+ ν(x)y3 + ν(x)x2y1y2p+ ν(x)β(x)y2y3p+

+ ν(x)µ(x)
(
y3

2

)
p) + b(x2y1 + β(x)y2 + µ(x)y3)+

+ c(x3y1 + γ(x)y2 + ϕ(x)y3).

As 0 · a = a · 0 = 0, the nearring R is zero-symmetric if and only if 0 =
0 · b = aα(0) + bβ(0) + cγ(0) and 0 = 0 · c = aν(0) + bµ(0) + cϕ(0) whence
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α(0) = β(0) = γ(0) = ν(0) = µ(0) = ϕ(0) = 0. Similarly, from the equalities
b = ab = aα(a) + bβ(a) and c = ac = aν(c) + bµ(c) + cϕ(c) it follows that
α(a) = 0, β(a) = 1, γ(a) = 0, ν(c) = 0, µ(c) = 0 and ϕ(c) = 1, we obtain
statement (1). Since (xb)p = x(bp) = 0 and xb = aα(x)+bβ(x)+cγ(x), we have
0 = (aα(x)+bβ(x)+cγ(x))p = aα(x)(p+β(x)

(
p
2

)
p) = aα(x)p by Lemma 10 and

hence α(x) ≡ 0 (mod p). Moreover, (xc)p = x(cp) = 0 and xc = aν(x)+bµ(x)+
cϕ(x), we have 0 = (aν(x) + bµ(x) + cϕ(x))p = aν(x)(p + µ(x)

(
p
2

)
p) = aν(x)p

by Lemma 10 and hence ν(x) ≡ 0 (mod p), and so statement (2). Therefore we
obtain

xy = a(x1y1 + α(x)y2 + x1x2
(
y1

2

)
p+ ν(x)y3)+

+ b(x2y1 + β(x)y2 + µ(x)y3) + c(x3y1 + γ(x)y2 + ϕ(x)y3),

as desired in (∗∗).
Finally, the associativity of multiplication in R implies that x(yb) = (xy)b =

aα(xy) + bβ(xy) + cγ(xy) and x(yc) = (xy)c = aν(xy) + bµ(xy) + cϕ(xy). Fur-
thermore, substituting yb = aα(y) + bβ(y) + cγ(y) instead of y in formula (∗∗),
we also have

x(yb) = a(x1α(y) + α(x)β(y) + x1x2
(
α(y)
2

)
p+ ν(x)γ(y)) + b(x2α(y)+

+ β(x)β(y) + µ(x)γ(y)) + c(x3α(y) + γ(x)β(y) + ϕ(x)γ(y)).

Comparing the coefficients under a and b in two expressions obtained for x(yb),
we derive statements (3)–(5) of the lemma.

Next, substituting yc = aν(y) + bµ(y) + cϕ(y) instead of y in formula (∗∗),
we get

x(yc) = a(x1ν(y) + α(x)µ(y) + x1x2
(
µ(y)
2

)
p+ ν(x)ϕ(y)) + b(x2ν(y)+

+ β(x)µ(y) + µ(x)ϕ(y)) + c(x3ν(y) + γ(x)µ(y) + ϕ(x)ϕ(y)).

Finally, comparing the coefficients under a and b in two expressions obtained
for x(yc), we derive statements (6)–(8) of the lemma.

3.7. Local nearrings whose additive groups are isomorphic
to G5

Let R be a local nearring whose additive group R+ is isomorphic to G5.
Then R+ = ⟨a⟩ + ⟨b⟩ + ⟨c⟩ with elements a, b and c, where a coincides with
identity element of R and the relations ap2 = bp = cp = 0, a+ b = b+ a(1− p),
a + c = c + a and b + c = c + b are valid. Moreover, each element x ∈ R is
uniquely written in the form x = ax1 + bx2 + cx3 with coefficients 0 ≤ x1 < p2,
0 ≤ x2 < p and 0 ≤ x3 < p.

Consider a coincides with identity element of R, so that xa = ax = x for
each x ∈ R. Furthermore, for each x ∈ R there exist integers α(x), β(x),
γ(x), ν(x), µ(x) and ϕ(x) such that xb = aα(x) + bβ(x) + cγ(x) and xc =
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aν(x)+ bµ(x)+ cϕ(x). It is clear that modulo p2, p, p and p2, p, p, respectively,
these integers are uniquely determined by x and so some mappings α : R →
Zp2 , β : R → Zp, γ : R → Zp, ν : R → Zp2 , µ : R → Zp and ϕ : R → Zp are
determined.

By Corollary 1, L is the normal subgroup of order p3 or p2 in R. Through
this section let R be a local nearring with |R : L| = p.

If |L| = p3, then L = ⟨ap⟩+ ⟨b⟩+ ⟨c⟩. Since R∗ = R \ L it follows that

R∗ = {ax1 + bx2 + cx3 | x1 ̸≡ 0 (mod p)}

and x = ax1 + bx2 + cx3 is invertible if and only if x1 ̸≡ 0 (mod p). Since L is
the (R,R)-subgroup in R+ by statement 1) of Lemma 2 it follows that xb ∈ L
and xc ∈ L, hence aα(x) ∈ L and aν(x) ∈ L for each x ∈ R. Thus α(x) ≡ 0
(mod p) and ν(x) ≡ 0 (mod p), as in statement (2) of Theorem 12. Therefore,
for local nearrings R we have the same multiplication as for nearrings with
identity, i.e. multiplication (∗∗).

Lemma 12. Let x = ax1 + bx2 + cx3 and y = ay1 + by2 + cy3 be elements of R
and |R : L| = p. If a coincides with identity element of R, then multiplication
(∗∗) holds for the mappings from Theorem 12.

Next, we will give examples of local nearrings.

Lemma 13. Let R be a local nearring whose additive group of R+ is isomorphic
to G5 and |R : L| = p. If x = ax1 + bx2 + cx3, y = ay1 + by2 + cy3 ∈ R, then
the mappings α : R → Zp2 , β : R → Zp, γ : R → Zp, ν : R → Zp2 , µ : R → Zp

and ϕ : R→ Zp can be one of the following:

1) β(x) = ϕ(x) =

{
1, if x1 ̸≡ 0 (mod p);
0, if x1 ≡ 0 (mod p),

α(x) = γ(x) = µ(x) = ν(x) = 0;

2) β(x) = ϕ(x) = 1, α(x) = γ(x) = µ(x) = ν(x) = 0.

Proof. It is easy to check that the functions from statements 1) and 2) satisfy
conditions 1)–8) of Theorem 7.

As a consequence of Lemma 13 we have the following result.

Theorem 5. For each odd prime p there exists a local nearring R whose additive
group R+ is isomorphic to G5.

Example 4. Let G ∼= (C9 ⋊ C3) × C3. If x = ax1 + bx2 + cx3 and y =
ay1 + by2 + cy3 ∈ G and (G,+, ·) is a local nearring, then by Lemma 8 “ · ” can
be one of the following multiplications.

(1) x · y = a(x1y1 +3x1x2
(
y1

2

)
) + b(x2y1 + β(x)y2) + c(x3y1 + ϕ(x)y3), where

β(x) = ϕ(x) =

{
1, if x1 ̸≡ 0 (mod 3);
0, if x1 ≡ 0 (mod 3),
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(2) x · y = a(x1y1 + 3x1x2
(
y1

2

)
) + b(x2y1 + y2) + c(x3y1 + y3).

A computer program verified that for p = 3 the nearring obtained in
Lemma 13 is indeed a local nearring (see Example 4), is deposited on GitHub:

https://github.com/raemarina/Examples/blob/main/LNR_81-13.txt.
From the package LocalNR and [24] we have the following number of all

non-isomorphic local nearrings on groups G5 of orders 81 and 625.

StructureDescription(R+) n(R+)
(C9 × C3)⋊ C3 337
(C25 × C5)⋊ C5 630

3.8. The groups G6

Let G6 be additively written group from Theorem 3. Then G6 = ⟨a⟩+ ⟨b⟩+
⟨c⟩ for some elements a, b and c of R satisfying the relations ap2 = 0, bp = 0,
cp = 0, a+ b = b+ a, a+ c = c+ a, c+ b = b+ c+ ap.

Lemma 14. G6 is not endocyclic.

Proof. Consider the group G6 = ⟨a, b, c : ap2 = bp = cp = 0, a+b = b+a, a+c =
c+ a, c+ b = b+ c+ ap⟩. Since a subgroup ⟨ap⟩ is a unique subgroup of order
p2 it follows that ⟨ap⟩ is fixed under the action of EndG6. Hence G6 is not
endocyclic by Definition 3.

Conjecture 1. There does not exist a local nearring whose additive group
is isomorphic to G6.
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