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Abstract. Let G be a finite group and σ = {σi|i ∈ I} be
some partition of the set of all primes. A subgroup A of G is said to
K-Nσ-subnormal in G if there is a subgroup chain A = Ao ≤ A1 ≤
· · · ≤ An = G such that either Ai−1 �Ai or Ai/(Ai−1)Ai ∈ Nσ for
all i = 1, . . . , n, whereNσ is a hereditaryK-lattice saturated forma-
tion of all σ-nilpotent groups. The formation Nσ is called K-lattice
if in every finite group G the set LKNσ

(G), of all K-Nσ-subnormal
subgroup of G, is a sublattice of the lattice L(G) of all subgroups
of G. In this paper we prove that if every Schmidt subgroup of G
is K-Nσ-subnormal subgroup of G, then the commutator subgroup
G′ of G belongs to hereditary K-lattice saturated formation Nσ.

Introduction

Throughout this paper, all groups are finite and G always denotes a finite
group. Moreover, P is the set of all primes, π = {p1, . . . , pn} ⊆ P and
π′ = P\π. If n is an integer, the symbol π(n) denotes the set of all primes
dividing n; as usual, π(G) = π(|G|), the set of all primes dividing the
order of G.

Following [13, 7, 9, 10], a set H of subgroups of G is said to be a
complete Hall σ-set of G if every non-identity member of H is a Hall
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σi-subgroup of G for some σi ∈ σ(G) and H contains exactly one Hall
σi-subgroup for every σi ∈ σ(G). G is said to be; σ-full if G possesses a
complete Hall σ-set; σ-primary if G is a σi-group for some i; σ-nilpotent
if G = G1×G2 · · ·×Gn for some σ-primary groups G1, . . . , Gn; σ-soluble
if every chief factor of G is σ-primary. A subgroup A of a G is said to
σ-subnormal in G if there is a subgroup chain A = Ao ≤ A1 ≤ · · · ≤
An = G such that either Ai−1 � Ai or Ai/(Ai−1)Ai is σ-primary for all
i = 1, . . . , n.

The symbol Nσ denotes the class of all σ-nilpotent groups, then Nσ

is a formation [13]. Fσ(G) is the σ-Fitting subgroup of G, that is, the
product of all normal σ-nilpotent subgroups of G.

Recall that a class of groups F is called a formation if: (i) G/N ∈ F
whenever G ∈ F, and (ii) G/(N ∩ R) ∈ F whenever G/N ∈ F and
G/R ∈ F. The formation F is called: saturated or local if G ∈ F whenever
G/Φ(G) ∈ F; hereditary if A ∈ F whenever A ≤ G ∈ F. The GNσ denotes
the Nσ-residual of G [1], that is, the intersection of all normal subgroups
N of G with G/N ∈ Nσ.

A subgroup A of G is said to be K-Nσ-subnormal [11] in G if there
is a chain of subgroups A = A0 ≤ A1 ≤ · · · ≤ At = G such that either
Ai−1 �Ai or Ai/(Ai−1)Ai ∈ Nσ for all i = 1, . . . , t.

The set LKNσ(G), of all Nσ-subnormal subgroups of G, is partially
ordered with respect to set inclusion. Moreover, in the case where Nσ is
a hereditary formation the set LKNσ(G) is a lattice since G ∈ LKNσ(G)
and, by [1, 6.1.7], for any A1, . . . , An ∈ LKNσ(G) the subgroup A1 ∩
· · · ∩An ∈ LKNσ(G), so this intersection is the greatest lower bound for
{A1, . . . , An} in LKNσ(G).

The formation Nσ is called K-lattice [1] if in every group G the lattice
LKNσ(G) is a sublattice of the lattice L(G) of all subgroups G, that is,
A ∩B, ⟨A,B⟩ ∈ LKNσ(G) for all A,B ∈ LKNσ(G).

The full classification of K-lattice hereditary saturated formations
were given in the remarkable papers [1, 2, 13, 18], and the authors proved
useful in the study of many problems in the theory of finite groups. In
the given article, we obtain further applications of the theory of K-lattice
formations.

Let F be a class of groups. If G /∈ F but every proper subgroup H ∈ F
of G, then G is called F-critical [4, p. 517]. An N-critical group is called
Schmidt group, where N is the class of all nilpotent groups.

A large number of publications are related to the study of influence on
the structure of the group of its critical subgroups, in particular, Schmidt
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subgroups. Our main goal here is to prove the following result.

Theorem 1. Let Nσ be a hereditary K-lattice saturated formation of all
σ-nilpotent groups. If every Nσ-critical subgroup of G is K-Nσ-subnormal
in G, then G/Fσ(G) ∈ Nσ. Moreover, if all Schmidt subgroup of G is
K-Nσ-subnormal in G, then G/Fσ(G) is abelian.

Note: It is notable that every σ-subnormal subgroup of G is K-Nσ-sub-
normal in G. But the converse is not true.

Corollary 1 ([14, Theorem 1.2]). If every Schmidt subgroup of G is
σ-subnormal in G, then G/Fσ(G) is abelian.

In the case when σ = {{2}, {3}, . . .}, we get from Theorem 1 the
following results.

Corollary 2 ([17]). If every Schmidt subgroup of G is subnormal in G,
then G is metanilpotent.

Corollary 3 ([12]). If every Schmidt subgroup of G is subnormal in G,
then G/F (G) is abelian.

Corollary 4. The set of all K-Nσ-subnormal subgroups of G forms a
sublattice of the lattice of all subgroups of G.

Proof. It follows directly from [13, Proposition 2.3], [1, Theorem 6.3.9
and Lemma 6.3.11].

Example 1. Let Nσ be the class of all σ-nilpotent groups. It is not
difficult to show that G ∈ Nσ if and only if G = G1 × · · · ×Gt for some
σ-primary groups G1, · · · , Gt. Hence Nσ is a hereditary formation [13].
Moreover, the class Nσ is a hereditary K-lattice saturated formation [13,
Lemma 2.5].

Remark 1. According to Skiba in view of [13, Proposition 2.3], a subgro-
up A of a σ-group G is σ-subnormal in G if and only if it is K-Nσ-subnor-
mal in G.

Remark 2. G is nilpotent if and only if it is σ0-nilpotent where σ0 =
{{2}, {3}, . . .}.
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1. Preliminaries

Recall that G is said to be π-decomposable if G is σ-nilpotent, where
σ = {π, π′}, that is, G = Oπ(G)×Oπ′(G).

Lemma 1 ([3]). If G is an F-critical group, where F is the class of all
π-decomposable groups, then G is Schmidt group.

Lemma 2 ([13, Lemma 2.6]). Let A, K and N be subgroups of G. Sup-
pose that A is σ-subnormal in G and N is normal in G.

(i) A ∩K is σ-subnormal in K.
(ii) AN/N is σ-subnormal in G/N .
(iii) If A is a σi-group, then A ≤ Oσi(G).

Lemma 3 ([8, III, 5.2] or [5, Ch. 1, Proposition 1.9]). If G is Schmidt
group, then G = P ⋊Q, where P = GN is a Sylow p-subgroup of G and
Q = ⟨x⟩ is a cyclic Sylow q-subgroup of G. Moreover, ⟨xq⟩ ≤ Φ(G) and P
is of exponent p or exponent 4 if P is a non-abelian 2-group.

Lemma 4 ([6, Lemma 2.1.3]). Let N be a normal subgroup of G and F
be a formation. Then (G/N)F = GFN/N .

Lemma 5 ([13, Lemma 2.5]). The class of all σ-nilpotent groups Nσ is
closed under taking direct products, homomorphic images and subgroups.
Moreover, if E is a normal subgroup of G and E/E∩Φ(G) is σ-nilpotent,
then E is σ-nilpotent.

Lemma 6 ([16, Theorem B]). If G is σ-soluble, then G is a σ-full group.

Lemma 7 ([14, Proposition 1.6]). Suppose that G is σ-soluble and let F
be the class of all σ′

i-closed groups for some i. If G is an F-critical group,
then G is σi-closed Schmidt group.

2. Proof of Theorem

Proof. Suppose that this is false and let G be a counterexample of mini-
mal order. Then D = GNσ ̸= 1 and, |σ(G)| > 1.

(1) G is σ-soluble. Hence G is σ-group and G possesses an abelian
minimal normal subgroup L.

Since G is not σ-nilpotent, it has an Nσ-critical subgroup K. Then,
for some i, K is anNσ0-critical group, where σ0 = {σi, σ′

i}. It follows that
G is Schmidt group by [3]. Therefore G is soluble by [6, Theorem 1.10.7].
Hence G is σ-soluble, and G is σ-group by [13]. So (1) holds.
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(2) If H is a proper subgroup of G, then HNσ ≤ Fσ(H). Further-
more, if each Schmidt subgroup of G is K-Nσ-subnormal in G, then
H ′ ≤ Fσ(H).

This follows from Claim (1), Remark 2, Lemma 2(i) and the choice
of G.

(3) IfN is a minimal normal subgroup ofG, then (G/N)Nσ ≤ Fσ(G/N).
Furthermore, if each Schmidt subgroup of G is K-Nσ-subnormal in G,
then (G/N)′ ≤ Fσ(G/N).

If G/N ∈ Nσ, it is evident. Now let G/N /∈ Nσ. We show that in this
case the hypothesis holds for G/N . Assume that H/N is any Schmidt
subgroup (respectively, any Nσ-critical subgroup) of G/N . Let E be a
minimal supplement to N in H. Then E/E ∩ N ∼= EN/N = H/N is a
Schmidt subgroup (respectively, an Nσ-critical subgroup) and E ∩N ≤
Φ(E). Let Φ = Φ(E) and A be a Schmidt subgroup (respectively, an
Nσ-critical subgroup) of E. According to Claim (1) and Lemmas 1 and 3
we have

(E/E ∩N)/Φ(E/E ∩N) = (E/E ∩N)/(Φ/E ∩N) ∼= E/Φ = P ⋊Q,

where P is a Sylow p-subgroup and Q is a Sylow q-subgroup of E/Φ
with |Q| = q, for some primes p ̸= q. It follows, again by Lemma 3, that
A = Ap ⋊ Aq, where A = (Aq)

A. Then Aq ≰ Φ, since Φ is nilpotent. It
follows that ΦAq/Φ is a Sylow q-subgroup of H/Φ and thus

(ΦAq/Φ)
E/Φ = (Aq)

EΦ/Φ = E/Φ.

Hence (Aq)
E = E, thus H = EN = (Aq)

EN . It follows that, if H/N
is an Nσ-critical group, then A is an Nσ-critical group and, so A is
K-Nσ-subnormal subgroups of G by hypothesis. Hence the subgroup AE

is K-Nσ-subnormal subgroups of G since Nσ is K-lattice by hypothesis,
so H/N = AEN/N is K-Nσ-subnormal in G/N by Claim (1), Remark 2
and Lemma 2(ii). Therefore the hypothesis holds for G/N , so the choice
of G implies that we have (3).

(4) L ≰ Φ(G) and for some p ∈ σj we have L = CG(L) = Op(G) ≤
Oσj (G). Moreover, |L| > p and for some maximal subgroup M of G, we
have G = L⋊M .

It is notable that for some p ∈ σj we have L ≤ Op(G) ≤ Oσj (G) by
Claim (1). Claim (3) and Lemma 4 imply that the group

(G/L)Nσ = GNσL/L = DL/L ∼= D/D ∩ L

(respectively, the derived subgroup (G/L)′ = G′L/L ∼= G′/G′ ∩ L of
G/L) is σ-nilpotent. Assume that G has a minimal normal subgroup
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R ̸= L. Then D/D∩R (respectively, G′/G′∩R) is σ-nilpotent. But then
D ∼= D/(D ∩ L) ∩ (D ∩ R) (respectively, G′ ∼= G′/(G′ ∩ L) ∩ (G′ ∩ R))
is σ-nilpotent. It follows that G/Fσ(G) is σ-nilpotent (respectively,
G/Fσ(G) is abelian), contrary to the choice of G. Hence L is the unique
minimal normal subgroup of G. Furthermore, if L ≤ Φ(G) then D (res-
pectively G′) is σ-nilpotent by Lemma 5. Hence L ≰ Φ(G) and L =
CG(L) = Op(G) ≤ Oσj (G) by [4, A, 15.6(2)]. If |L| = p, then G/CG(L) =
G/L is cyclic, so G′ is cyclic, it follows that G/Fσ(G) is abelian, a con-
tradiction. Hence we have (4).

(5) L ≤ Oσi(G) = Fσ(G) [This directly follows from Claims (1), (3)
and (4)].

(6) D ≤ Oσi(G).

Suppose that σj ∈ σ\{σi}. Let G be not σ′
j-closed. Then G possesses

an M-critical subgroup A, where M is the class of all σ′
j-closed groups.

In view of Claim (1) and Lemma 7, A is a σj-closed Schmidt group. Let
P = Oσj (A). By hypothesis, A is K-Nσ-subnormal in G, so A is σ-sub-
normal in G by Claim (1) and Remark 2. But then P is also σ-subnormal
in G, therefore 1 < P < Oσj (G) by Lemma 2(iii), contrary to Claim (5).
Thus G is σ′

j-closed for every σj ∈ σ\{σi}. Therefore we have (6).

(7) L = Fσ(G) = Oσi(G) is a Hall σi-group of G.

According to Claims (1), (4) and Lemma 6 we have Fσ(G) = Oσi(G) ≤
H, where H is a Hall σi-group of G. Since D = GNσ ≤ Oσi(G)
by Claim (6), H/Oσi(G) � G/Oσi(G). Hence H ≤ Oσi(G), it follows
that H = Oσi(G). Thus Fσ(G) = H. Now assume that L < H. By
the Schur-Zassenhaus theorem G has a σi-complement, say W . Then
U = LW < G , so Claim (2) implies that U/Fσ(U) is abelian. Clearly,
Fσ(U) = L×(Fσ(U)∩W ), where Fσ(U)∩W is a σ′

i-group. But Claim (4)
implies that CG(L) ≤ L. Hence Fσ(U) = L and so W ∼= U/L is abelian.
Therefore G/Fσ(U) = G/Oσi(G) = G/H is abelian, contrary to the
choice of G. So we have (7).

(8) A Hall σ′
i-subgroup M of G is a U-critical group of order qn for

some prime q, where U is the class of all abelian groups.

It is clear that M is a Hall σ′
i-subgroup of G by Claims (4) and (7).

Indeed, let S be any maximal subgroup of M . Then LS/Fσ(LS) is abeli-
an by Claim (2). In view of Claim (7), L = (LS)′ and hence S ∼= LS/L is
abelian. Thus the choice of G and Claim (7) imply that M is a U-critical
group. Therefore, M is either a Schmidt group or a minimal non-abelian
group of prime power order qn. In the former case, by Lemma 3, M =
Q ⋊ V , where Q = MN ∈ Sylq(M), V ∈ Sylr(M) and q ̸= r, and M is
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K-Nσ-subnormal subgroups of G. According to Claim (1) and Remark 2
we have M is σ-subnormal in G, so Q is σ-subnormal in G too. By using
Claim (7) and Lemma 2(iii), we get that Q ≤ Oσj (G) for some j ̸= i.
But this is impossible by Claim (5). This contradiction shows that we
have (8).

Final contradiction. According to Claim (8), Z(M) ̸= 1. Let W
be a subgroup of order q in Z(M) and H = LW . Then W ≰ Z(H)
by Claim (4), thus H is not nilpotent and hence it contains a Schmidt
subgroup A = Ap ⋊ W . Note that L = L1 × · · · × Lm, where Rk is a
minimal normal subgroup of H for all k = 1, . . . ,m by the Mashcke’s
theorem. By the hypothesis, A is a K-Nσ-subnormal subgroup of G.
Thus A is σ-subnormal in G by Claim (1), Remark 2 and Lemma 2(i).
Suppose that A < H. Then there is a proper subgroup V of H such
that A ≤ V and either H/VH is a σi-group or V is normal in H. Since
W ≤ VH < H, for some k we have Lk ≰ VH . Hence Lk ≤ CH(VH),
therefore Lk ≤ NG(W ) = M . But then LG

k = LLM
k = LM

k ≤ M ,
which implies that L ≤ M , a contradiction. Therefore A = H, thus
L = Ap and W acts irreducibly on L. Clearly, W ≤ Φ(M) and therefore
every proper subgroup of M acts irreducibly on L, it follows that every
maximal subgroup of M is cyclic. Hence q = 2 and so |L| = p, contrary
to Claim (4). The theorem is proved.
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