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Leavitt inverse semigroups of polynomial growth
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Abstract. We relate growth functions of graph inverse semi-
groups, Leavitt inverse semigroups and Leavitt path algebras and
discuss structure of Leavitt inverse semigroups of polynomially
bounded growth.

Introduction

Let F be a field and let n ≥ 1 be a natural number. In 1962 W. Lea-
vitt [13] constructed an algebra LF (1 : n) with remarkable properties.
A C∗-analog of this algebra is known as Cuntz algebra [8].

In 2004, G. Abrams, A. Aranda-Pino [1] and P. Ara, M.A. Moreno,
E. Pardo [5] generalized Leavitt’s construction and defined the so-called
Leavitt path algebras corresponding to an arbitrary quiver.

In [6], C.J. Ash and T.E. Hall introduced graph inverse semigroups
I(Γ) corresponding to an arbitrary quiver Γ. Finally, in [14], J. Meakin,
D. Milan and Z. Wang introduced Leavitt inverse semigroups LI(Γ) as
multiplicative subsemigroups of Leavitt path algebras LF (Γ) and, si-
multaneously, homeomorphic images of graph inverse semigroups I(Γ).
Leavitt path algebras of polynomially bounded growth were described by
A. Alahmadi, H. Alsulami, S.K. Jain and E. Zelmanov in [3, 4].

In this paper, we relate growth functions of graph inverse semigroups
I(Γ), Leavitt inverse semigroups LI(Γ) and Leavitt path algebras LF (Γ).
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Then we discuss structure of Leavitt inverse semigroups of polynomially
bounded growth.

Theorem 1. Let Γ be a finite quiver. Let gI(Γ)(n), gLI(Γ)(n), gL(Γ)(n)
be growth functions of the inverse semigroups I(Γ), LI(Γ) and the algeb-
ra LF (Γ) respectively, corresponding to natural generators. Then there
exists a constant K such that

gLI(Γ)(n) ≤ gI(Γ)(n) ≤ K · n · gLI(Γ)(n),

gL(Γ)(n) ≤ gLI(Γ)(n) ≤ K · n · gL(Γ)(n).

If the graph Γ does not contain no-exit cycles then

gI(Γ)(n) ≤ K · gLI(Γ)(n), gLI(Γ)(n) ≤ K · gL(Γ)(n).

Theorem 2. Let Γ be a finite quiver such that the Leavitt inverse semi-
group LI(Γ) has polynomially bounded growth. Then LI(Γ) has a finite
ascending chain of ideals

I0 < I1 < · · · < Is = LI(Γ)

such that

(1) the ideal I0 embedds into a block diagonal extended Brandt semi-
group B̃(P, 1), 1 is the identity group;

(2) each factor Ii/Ii−1, 1 ≤ i ≤ s, embedds in a block diagonal extended
Brandt semigroup B̃(E , T ), where T is the infinite cyclic group.

Theorem 2 is an analog of Theorem 1 in [3, 4]. It generalizes Theo-
rem 4.5 in [14].

1. Definitions

Let Γ be a finite quiver, i.e. a directed graph with the set of vertices V
and the set of edges E. Consider the range mapping r : E → V and the
source mapping s : E → V . We think of an edge e as a directed edge
from the source s(e) to the range r(e). For a vertex v ∈ V , the number
|s−1(v)| is called the index of v.

A path p is a finite sequence p = e1 · · · en of edges ei ∈ E such that
r(ei) = s(ei+1) for i = 1, . . . , n− 1. We define s(p) = s(e1), r(p) = r(en)
and refer to p as a path from s(p) to r(p).
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If s(p) = r(p), then the path is closed. If p = e1 · · · en is a closed
path and the vertices s(e1), s(e2), . . . , s(en) are distinct, then the path p
is called a cycle.

If v ∈ V , s−1(v) = ∅, then the vertex v is called a sink.
Graph inverse semigroups. Let Γ = (V,E) be a quiver. Define the

graph inverse semigroup I(Γ) as the semigroup with zero 0 presented by
generators {v, v ∈ V }, {e, e∗, e ∈ E} and the set of relations

(1) s(e) e = e r(e) = e, r(e) e∗ = e∗s(e) = e∗ for all e ∈ E;

(2) u v = 0 for all u, v ∈ V, u ̸= v; v2 = v;

(3) e∗f = 0 if e ̸= f, e, f ∈ E;

(4) e∗e = r(e) if e ∈ E.

Recall that a semigroup S is called an inverse semigroup if for an
arbitrary element a ∈ S there exists a unique element a−1 ∈ S such that

aa−1a = a, a−1aa−1 = a−1

(see [9, 12]).
It is easy to see that I(Γ) is an inverse semigroup. The mapping

v 7→ v, e 7→ e∗, e∗ 7→ e extends to an involution ∗ : I(Γ) → I(Γ). If
p = e1 · · · en is a path, then p∗ = e∗n · · · e∗1.

An arbitrary element a ∈ I(Γ) can be uniquely represented as
a = pq∗, where p, q are paths (possibly of zero length) and r(p) = r(q).

Leavitt path algebras. Let F be a field and let Γ be a finite quiver.
The Leavitt path algebra LF (Γ) is presented by generators {v, v ∈ V },
{e, e∗ e ∈ E} and defining relations (1)-(4) plus the additional Cuntz-
Krieger relations

(5) v =
∑

e∈s−1(v)

e e∗, v ∈ V, v is not a sink.

Let F0I(Γ) be the contracted semigroup algebra, that is, the factor
algebra of the semigroup algebra FI(Γ) modulo the ideal F 0, where 0 is
the zero of the semigroup I(Γ). Let

id
(
v −

∑
e∈s−1(v)

e e∗, v ∈ V
)

be the ideal of F0I(Γ) generated by the Cuntz-Krieger elements. It is
clear from the definitions that

LF (Γ) ∼= F0I(Γ)
/
id
(
v −

∑
e∈s−1(v)

e e∗, v ∈ V
)
.
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For more information about Leavitt path algebras, see [2].
Following [14], consider the multiplicative subsemigroup LI(Γ) of

LF (Γ) generated by elements v ∈ V ; e, e∗ ∈ E ∪ E∗. In [14], it is shown
that LI(Γ) is an inverse semigroup, which is presented by generators
v ∈ V ; e, e∗ ∈ E ∪E∗, and defining relations (1)− (4) plus the additional
relations

(5′) v = ee∗, s(e) = v, where v runs over all vertices of index 1.
The involution ∗ on I(Γ) gives rise to the involution ∗ on LI(Γ).
Let us describe the so-called normal basis in LF (Γ) and normal cano-

nical form in LI(Γ). For an arbitrary vertex v ∈ V , that is not a sink,
choose an edge in s−1(v) and call it special.

• [3] Elements v, pq∗, where p, q are paths in Γ (one of them may
have zero length), r(p) = r(q), p = e1 · · · en, q = f1 · · · fm, and
either en ̸= fm or en = fm, the index of s(en) is ≥ 2 and the edge
en is not special, form a basis in LF (Γ).

•• [14] An arbitrary element of LI(Γ) can be uniquely represented
as v or pq∗, where p, q are paths in Γ (one of them may have zero
length), r(p) = r(q), p = e1 · · · en, q = f1 · · · fm, and either en ̸= fm
or en = fm, the index of s(en) is ≥ 2.

2. Growth in Leavitt semigroups and algebras

Let S be a semigroup generated by a finite set X. Consider the function
gX(n) defined to be the number of distinct elements in

n⋃
k=1

Xk.

The weakly increasing function gX(n) is called the growth function of S
with respect to the generating set X.

Since the function gX(n) depends on a choice of X, we introduce the
following definition.

Given two weakly increasing functions f, g : N → [1,∞), we say that
f is asymptotically greater than or equal to g (written f ⪰ g or g ⪯ f) if
there exists a positive integer C such that

g(n) ≤ f(Cn)

for all n. If g ⪯ f and f ⪯ g then we say that the functions f and g are
asymptotically equivalent (denoted f ∼ g). If X,Y are finite generating



26 Leavitt inverse semigroups

subsets of S, then gX(n) ∼ gY (n). The growth of S is the equivalence
class of growth functions gX(n).

For algebras, one can produce analogous functions as follows. If A is
a finitely generated algebra over a field F and V is a finite-dimensional
subspace that generates A as an F -algebra, then

gV (n) = dimF V
n,

where V n is the subspace of A spanned by all k-fold products in V with
1 ≤ k ≤ n. As above, for any two finite-dimensional generating subspaces
V and W of the algebra A we have gV (n) ∼ gW (n).

For more information on growth of groups, semigroups and algebras,
see [7, 10,11].

Let gI(Γ)(n), gLI(Γ)(n), gL(Γ)(n) be the growth functions of the semi-
groups I(Γ), LI(Γ), and the algebra LF (Γ) with respect to “natural”
generators v ∈ V , e, e∗, e ∈ E.

Definition 1. A path p = e1 · · · en, ei ∈ E, is called a no-exit path if
every vertex s(ei), 1 ≤ i ≤ n, has index 1.

Lemma 1. Every no-exit path p can be represented as p = e1 · · · enCk,
where the vertices s(e1), . . . , s(en), r(en) are distinct, C is a no-exit cycle.

Proof. Let p = e1 · · · em. If all vertices s(e1), . . . , s(em), r(em) are dis-
tinct, then we are done. Suppose that s(ei) = s(ej), i < j, and j − i is
minimal with this property. Then C = eiei+1 · · · ej−1 is a no-exit cycle.

Since r(ej−1) = s(ei) has index 1, it follows that ej = ei, ej+1 = ei+1

and so on. We have

p = e1 · · · ei−1C
kC ′,

where C ′ is a beginning of the cycle C, hence C = C ′C ′′. Now,

p = e1 · · · ei−1C
′(C ′′C ′)k,

where C ′′C ′ is a no-exit cycle, all vertices on e1 · · · ei−1C
′ are distinct.

If all vertices s(e1), . . . , s(em) are distinct but s(ej) = r(em), then
ej · · · em is a no-exit cycle. This completes the proof og the lemma.

Proof of Theorem 1. The value gI(Γ)(n) is the number of elements of
length ≤ n in the normal form pq∗, r(p) = r(q), length(p)+length(q) ≤ n.
The value gLI(Γ)(n) is the number of products of length ≤ n in the normal
form in LI(n).
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Let p = p′p1, q = q′p1, where p1 is a no-exit path. Then pq∗ is in the
normal form in I(Γ) but in LI(Γ) pq∗ = p′q′∗.

Let P be the set of no-exit paths e1 · · · ek such that the vertices
s(e1), . . . , s(ek), r(ek) are distinct. Since the graph Γ is finite, it follows
that |P| <∞. Let C1, . . . , Cr be all distinct no-exit cycles in Γ. Clearly,
distinct no-exit cycles do not intersect.

By Lemma 1, any arbitrary no-exit path can be represented as pCt
i ,

p ∈ P, 1 ≤ i ≤ r. Hence, the number of no-exit paths of length ≤ n is
≤ |P| · r · n.

Let pq∗ be an element in the normal form in I(Γ), length(p) +
length(q) ≤ n; and let p = p′p1, q = q′p1, where p1 is a no-exit path
and p1 is maximal with this property. Then p′q′∗ is in a normal form in
LI(Γ). Clearly p′, q′∗ and p1 uniquely determine the element pq∗. This
implies that

gI(Γ)(n) ≤ gLI(Γ)(n) · |P| · r · n, K = |P| · r.

Suppose that for an arbitrary vertex of index ≥ 2, we selected a
special edge in s−1(v). If the index of the vertex v is 1, then the only
edge in s−1(v) is special.

A path is called special if all edges on this path are special. Distinct
special cycles do not intersect.

Repeating the proof of Lemma 1, we get

Lemma 2. Every special path p can be represented as p = e1 · · · enCk,
where the vertices s(e1), . . . , s(en), r(en) are distinct, C is a special cycle.

An element in the normal basis of the Leavitt inverse semigroup LI(Γ)
that is not in the normal form in the Leavitt path algebra LF (Γ) looks as

p′p1(q
′p1)

∗,

where p1 is a special path. Let p1 be a maximal special path with this
property. The element p′q′∗ is in the normal form in LI(Γ).

Let S be the set of special paths e1 · · · en having the vertices s(e1),
. . . , s(en), r(en) distinct. Let C1, . . . , Cd be all distinct special cycles.

By Lemma 2, an arbitrary special path can be represented as pCk
i ,

p ∈ S, 1 ≤ i ≤ d. Hence, the number of special paths of length ≤ n is
≤ |S| · d · n.

Arguing as above, we get

gLI(Γ)(n) ≤ gL(Γ)(n) · |S| · d · n,

this completes the proof of the theorem.



28 Leavitt inverse semigroups

Corollary 1. The inverse semigroups I(Γ), LI(Γ), and the algebra
LF (Γ) simultaneously have or have not polynomially bounded growths.

A. Alahmadi, H. Alsulami, S.K. Jain and E. Zelmanov [3] proved that
a Leavitt path algebra LF (Γ) has polynomially bounded growth if and
only if any two distinct cycles of Γ do not have common vertices. By
Theorem 1, this description works also for graph inverse semigroups and
Leavitt inverse semigroups.

If distinct cycles have a common vertex, then they generate a free
semigroup (see [3]). Hence, a Leavitt path algebra or a Leavitt inverse
semigroup can not have an intermediate growth.

3. Structure of Leavitt inverse semigroups with polyno-
mially bounded growth

Given two vertices v1, v2 ∈ V, we say that v2 is a descendant of v1 if there
exists a path p such that s(p) = v1, r(p) = v2.

A nonempty subset W ⊆ V is called hereditary if all descendants of
elements of W again lie in W .

For a hereditary subset W , we may consider a subgraph Γ(W ) =
(W,EW ), EW = {e ∈ E|s(e) ∈W}.

For a hereditary subset W ⊆ V , we consider the subset

W̃ = {v ∈ V | all descendants of v lie in W}.

Clearly, W ⊆ W̃ . The subset W̃ is called a hereditary saturated subset if
W̃ =W .

G. Abrams and A. Aranda Pino [1] established a 1−1 correspondence
between ideals of the Leavitt path algebra and hereditary saturated sub-
sets of V. In particular, they showed that if W is a hereditary saturated
subset of V and I is the ideal of LF (Γ) generated by W,

I = Span (pq∗; p, q are paths, r(p) = r(q) ∈W ),

then I ∩ V =W .
Let us recall some semigroup constructions. Let P be a set (of in-

dices), and let G be a group. Let ZG be the group ring of the group G.
Consider the set MP×P(ZG) of P × P matrices over ZG.

For i, j ∈ P, a ∈ ZG, consider the matrix eij(a) having the element a
at the intersection of the i-th row and j-th column and zeros everywhere
else. Let O denote the zero matrix.
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The set
B(P, G) = {O, eij(g); i, j ∈ P, g ∈ G}

is an inverse semigroup with zero. It is called a Brandt semigroup.
Consider also the set

B̃(P, G) = {O, ei1j1(g)+· · ·+eikjk(g)}; i1, . . . , ik, j1, . . . , jk ∈ P, g ∈ G;

indices i1, . . . , ik are distinct and indices j1, . . . , jk are distinct.

The subset B̃(P, G) consists of P × P matrices: (i) having finitely
many nonzero entries, (ii) each row is either a zero row or contains a
fixed element g ∈ G as the only nonzero entry, (iii) each column is either
a zero column or contains a fixed element g ∈ G as the only nonzero
entry.

It is easy to see that B̃(P, G) is an inverse semigroup. We call it the
extended Brandt semigroup.

If P = ∪̇kPk is a disjoint union of subsets, then B(∪̇Pi, G) and
B̃(∪̇Pi, G) denote the block diagonal versions of the semigroups B(P, G),
B̃(P, G): all entries at positions (i, j), where i, j do not belong to the
same subset Pk, are equal to zero.

Let Si, i ∈ I, be a disjoint family of semigroups with zero. Let 0i be
the zero of the semigroup Si. The semigroup

S =
⋃
i

(Si\{0i})
⋃̇

{0}

is defined as follows: if a, b ∈ Si\{0i} and ab ̸= 0i, then a, b are multiplied
in S as in Si. If ab = 0i, then we define ab = 0. If a ∈ Si, b ∈ Sj , i ̸= j,
then ab = 0. The semigroup S is called the 0-disjoint union of the
semigroups Si.

Let A be an associative F -algebra. Let P be a countable set. The
algebra of P × P matrices over A with finitely many nonzero entries is
denoted as M∞(A).

Now, let us go back to Leavitt inverse semigroup LI(Γ). Let Γ be a
finite quiver; and let

V0 = {v ∈ V | no path starting at v ends on a cycle}.

Clearly, all sinks lie in V0.
It is easy to see that the subset V0 is hereditary and saturated.
Let I0 be the ideal of the semigroup LI(Γ) generated by V0,

I0 = {pq∗ | p, q are paths, r(p) = r(q) ∈ V0}.
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In [4], it is shown that the ideal SpanF (I0) of the Leavitt path algebra
spanned dy I0 is isomorphic to a finite sum of finite-dimensional matrix
algebras Mn(F ) and infinite-dimensional matrix algebras M∞(F ).

The subgraph Γ(V0) is a tree. In [14], it is shown that the Leavitt in-
verse semigroup of a tree is a finite 0-disjoint union of Brandt semigroups
B(X, 1), |X| <∞.

The structure of the ideal I0 is more complicated.
Let v1, . . . , vr be all distinct sinks of the graph Γ. Let Pi be the set

of paths on Γ that end at vi.
We will embed the semigroup I0 in the block diagonal extended

Brandt semigroup B̃(∪̇Pi, 1).
For a vertex v ∈ V0, let Pi(v) be the set of paths p such that s(p) = v,

r(p) = vi. Clearly, |Pi(v)| <∞. Let

P(v) =

r⋃
i=1

Pi(v).

We will define the mapping

φ : I0 → B̃

(
r⋃

i=1

Pi, 1

)
.

Let

φ(v) =
∑

p∈P(v)

ep,p(1) ∈ B̃

(
r⋃

i=1

Pi, 1

)
.

For an element pq∗ ∈ I0, we have

pq∗ =

r∑
i=1

p

 ∑
u∈Pi(r(p))

u u∗

 q∗

Define

φ(pq∗) =
∑
i=1

∑
u∈Pi(r(p))

epu,qu(1) ∈ B̃

(
r⋃

i=1

Pi, 1

)
.

It is straightforward that φ is an embedding of semigroups.
If vi, 1 ≤ i ≤ r, is one of the sinks, then {pq∗ | p, q ∈ Pi} is an ideal in

I0, and the image of this ideal is the Brandt semigroup B(Pi, 1). Hence,
the image φ(I0) contains the block diagonal Brandt semigroup B(∪̇Pi, 1)
that is isomorphic to the 0-disjoint union of the semigroups B(Pi, 1).

The semigroup B(∪̇Pi, 1) is an ideal in the extended Brandt semi-
group B̃(∪̇Pi, 1). Let us summarize the above.
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Lemma 3. There is an embedding of the ideal I0 of LI(Γ) into the block
diagonal extended Brandt semigroup B̃(∪̇Pi, 1), φ : I0 → B̃(∪̇Pi, 1). The
image φ(I0) lies between B(∪̇Pi, 1) and B̃(∪̇Pi, 1).

Let S be a semigroup, and let I be an ideal of S. Consider the
semigroup with zero S/I = (S \ I) ∪ {0}; a · b is the product of elements
a, b in S if ab /∈ I. If ab ∈ I, then we let a · b = 0.

Consider the graph Γ/V0 with the set of vertices V \ V0 and the set
of edges {e ∈ E | r(e) ∈ V \ V0}. Then

LI(Γ)/I0 ∼= LI(Γ/V0).

Passing to Γ/V0, we assume that V0 = ϕ.

Following [4], we consider the set

V1={v ∈ V | if p is a path such that s(p)=v and r(p) lies on a cycle C,

then C is a no-exit cycle}.

The set V1 is hereditary and saturated. Let I1 be the ideal generated by
the set V1 in LI(Γ),

I1 = {pq∗ | p, q are paths, r(p) = r(q) ∈ V1}.

Let C1, . . . , Cl be all no-exit cycles of Γ. In [14], it is shown that the
subsemigroup

LI(Ci) = {pq∗ | both paths p, q lie on the cycle Ci}

is isomorphic to the Brandt semigroup B(X,T ), where |X| is the number
of vertices on Ci; T is the infinite cyclic group. On each no-exit cycle Ci

let us fix a vertex vi.

Let Ei be the set of paths p = e1 · · · en such that s(e1), . . . , s(en) are
not equal to vi, but r(p) = vi. The set Ei is infinite if and only if there
exists a cycle C different from Ci and a path p such that s(p) lies on C,
r(p) lies on Ci.

Let E = ∪̇iEi. We will embed the semigroup I1 into the block diagonal
extended Brandt semigroup B̃ (∪̇iEi, T ), where T = ⟨t⟩ is the infinite cyc-
lic group generated by the element t.

For a vertex v ∈ V1, let Ei(v) be the set of paths p such that p ∈ Ei,
s(p) = v.
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Let E(v) = ∪̇iEi(v). Define

ψ(v) =
∑

p∈E(v)

ep,p(1) ∈ B̃
( r⋃
i=1

Ei, T
)
.

Consider an element pq∗ ∈ I1, r(p) does not lie on any of the cycles
C1, . . . , Cl. We have

pq∗ =

l∑
i=1

p

 ∑
u∈Ei(r(p))

uu∗

 q∗

in the Leavitt path algebra LF (Γ).

Define

ψ(pq∗) =
∑
i

∑
u∈Ei(r(p))

ep,u,qu(1) ∈ B̃

(
r⋃

i=1

Ei, T

)
.

Now, suppose that r(p) lies on a cycle Ci. Then p = p1u1, q = q1u2,
where p1, q1 ∈ Ei, u1, u2 are paths on the cycle Ci,

p q∗ = p1 u1 u
∗
2 q

∗
1.

Either u1u
∗
2 = p2 or u1u

∗
2 = p∗2, where p2 is a path on the cycle C. Let

m be the length of the path p2. Define

ψ(pq∗) = ep1,q1(t
m), if u1u

∗
2 = p2 is a path,

ψ(pq∗) = ep1,q1(t
−m), if u1u

∗
2 = p∗2.

We have proved

Lemma 4. There is an embedding of the ideal I1 of LI(Γ) into the block
diagonal extended Brandt semigroup B̃ (∪iEi, T ) ,

ψ : I1 → B̃

(⋃
i

Ei, T

)
.

The image ψ(I1) lies between B (∪iEi, T ) and B̃ (∪iEi, T ).
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Let Γ be a finite quiver such that the Leavitt inverse semigroup LI(Γ)
has polynomially bounded growth. Following [4], we construct an ascen-
ding chain of hereditary saturated subsets. The subset W0 = V0 was de-
fined above. Suppose that subsets W0 ⊂ W1 ⊂ · · · ⊂ Wi have been de-
fined. Consider the graph Γ/Wi. In this graph, let V1(Γ/Wi) be the sub-
set of V \Wi defined above. Let

Wi+1 = V1(Γ/Wi)
⋃

Wi.

In [4], it was shown that in finitely many steps we reach the whole set V ,
W0 ⊆ W1 ⊆ . . . ⊆ Ws = V . Let Ii be the ideal of the semigroup LI(Γ)
generated by Wi.

Now, Theorem 2 immediately follows from Lemmas 3, 4.
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