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Abstract. In this paper, we will prove some theorems con-
cerning the commutativity of a 3-prime near-rings which satisfy
some differential identities on semigroup ideals and Jordan ideals
of a near-ring N admitting a multiplicative derivation. After this,
we discuss an example to prove that the necessity of the 3-prime-
ness hypothesis imposed on the various theorems cannot be margi-
nalized.

Introduction

Throughout this paper, N represent a right near-ring and Z(N ) stands
multiplicative center of N , that is, Z(N )={x∈N|xy=yx for all y∈N}.
For all x, y ∈ N , we write [x, y] = xy − yx and x ◦ y = xy + yx for the
Lie product and Jordan product, respectively. A near-ring N is called
a zero-symmetric if x.0 = 0.x = 0 for all x ∈ N ; knowing that 0.x = 0
follows from the fact that N is a right near-ring. N is called 2-torsion
free if (N ,+) has no elements of order 2 and know as 3-prime if for
x, y ∈ N , xN y = {0} implies x = 0 or y = 0. In [4], the notion of
Jordan ideal was defined as follows: an additive subgroup J of N is said
to be a Jordan ideal of N if j ◦ n ∈ J and n ◦ j ∈ J for all j ∈ J ,
n ∈ N . A nonempty subset I of N is said to be a semigroup left ideal
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(resp. semigroup right ideal) if NI ⊆ I (resp. IN ⊆ I); note that I
is said to be semigroup ideal if I is both a semigroup left ideal and a
semigroup right ideal of N . An additive mapping d : N → N is called
a derivation if d(xy) = d(x)y + xd(y) hold for all x, y ∈ N , or equiv-
alently as noted in [13], that d(xy) = xd(y) + d(x)y for any x, y ∈ N .
The concept of derivation has been generalized in different directions by
various authors, for more details see for example [2], [4], [8], [10], [11],
and [12], where further references can be found. In [5], the notion of mul-
tiplicative derivation on ring was introduced by Daif as follows: a map-
ping d : N → N , which is not assumed to be additive, is called a multi-
plicative derivation if d(xy) = xd(y)+d(x)y holds for all x, y ∈ N . In [6],
the authors have worked on these mappings thereby giving them a com-
plete description. Clearly, any derivation is a multiplicative derivation,
but the converse is not true in general. To be convinced of this difference,
see for example [1, Examples 1.1 & 1.2]. Motivated by this difference, we
pursue this research path and study the structure of 3-prime near-rings in
which multiplicative derivations satisfy certain identities involving Jor-
dan’s ideal. The results obtained are very precise and cover others known
in the literature while neglecting an important property marked in the
hypotheses of various subsequent works, that is the additivity property
considered in the different maps used.

1. Preliminary results

In this section, we include some well-known results which will be used
for developing the proof of our main results.

Lemma 1. Let N be a 3-prime near-ring and I be a nonzero semigroup
ideal of N .

(i) [3, Lemma 1.4 (i)] If x, y ∈ N and xIy = {0}, then x = 0 or y = 0.

(ii) [3, Lemma 1.3 (i)] If x ∈ N and xI = {0} or Ix = {0}, then x = 0.

Lemma 2 ([9, Lemma 3]). Let N be a 3-prime near-ring admitting a
nonzero multiplicative derivation d, then N satisfies the following partial
distribution law:

z(xd(y) + d(x)y) = zxd(y) + zd(x)y for all x, y, z ∈ N .

Lemma 3. Let N be a 3-prime near-ring and J a nonzero Jordan ideal
of N .
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(i) [4, Lemma 1] If J x = 0, then x = 0.

(ii) [4, Lemma 3] If N is 2-torsion free and J ⊆ Z(N ), then N is a
commutative ring.

Lemma 4 ([9, Lemma 3]). Let N be a 3-prime near-ring. If N admits a
nonzero multiplicative derivation d such that ad(N ) = {0} or d(N )a = {0},
then a = 0.

Lemma 5 ([7, Lemma 2.1]). A near-ring N admits a multiplicative
derivation if and only if it is zero-symmetric.

Lemma 6 ([3, Lemma 1.2 (iii)]). Let N be a 3-prime near-ring. If
z ∈ Z(N ) \ {0} and xz ∈ Z(N ), then x ∈ Z(N ).

2. Main results

This section is devoted to the study of the behavior of a right near-ring N
under the action of certain algebraic identities by taking into account only
the two particular subsets Jordan ideal and semigroup ideal of N instead
of integer N . The results obtained vary between the commutativity of
N and the non-existence of such a nonzero multiplicative derivation d
which gives important meaning to the different hypotheses considered.
Indeed, we have obtained the following results.

Theorem 1. Let N be a 2-torsion free 3-prime near-ring, I be a nonzero
semigroup ideal of N and J be a nonzero Jordan ideal of N . If N admits
a multiplicative derivation d such that d(J ) is nonzero, then the following
assertions are equivalent:

(i) d([x, j]) = [x, j] for all x ∈ I, j ∈ J ;

(ii) d([x, j]) = −[x, j] for all x ∈ I, j ∈ J ;

(iii) d([x, j]) = [x, d(j)] for all x ∈ I, j ∈ J ;

(iv) N is a commutative ring.

Proof. It is easy to verify that condition (iv) implies both properties (i),
(ii), and (iii).
Let’s show that (i) ⇒ (iv), for this suppose that

d([x, j]) = [x, j] for all x ∈ I, j ∈ J . (1)
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Substituting xj for x in (1), because of [xj, j] = [x, j]j, we infer that

xjd(j) = jxd(j) for all x ∈ I, j ∈ J . (2)

Taking tx instead of x in (2), where t ∈ N , we arrive at

tjxd(j) = jtxd(j) for all t ∈ N , x ∈ I, j ∈ J ,

which leads to

[t, j]Id(j) = {0} for all t ∈ N , j ∈ J . (3)

In view of Lemma 1 (i), equation (3) shows that

d(j) = 0 or j ∈ Z(N ) for all j ∈ J . (4)

By hypotheses we have d(J ) ̸= {0}, so there exists an element j0 ∈
J such that d(j0) ̸= 0, and hence (4) assures that j0 ∈ Z(N ). Now,
substituting xj0 for x in (1), we get

xjd(j0) = jxd(j0) for all x ∈ I, j ∈ J . (5)

Replacing x by tx, where t ∈ N , in (5) and using it again, we obtain

tjxd(j0) = jtxd(j0) for all t ∈ N , x ∈ I.

So that,
[t, j]Id(j0) = {0} for all t ∈ N , j ∈ J . (6)

In virtue of Lemma 1 (i) and d(j0) ̸= 0, (6) gives J ⊆ Z(N ) which means
that N is a commutative ring by Lemma 3 (ii).

(ii) ⇒ (iv), using arguments similar to those used above with some
suitable modifications, we obtain the required result.

(iii) ⇒ (iv) Assume that

d([x, j]) = [x, d(j)] for all x ∈ I, j ∈ J . (7)

Putting xj instead of x in (7) and using it again, we arrive at

−jxd(j) + xd(j)j = 0 for all x ∈ I, j ∈ J ,

that is
xd(j)j = jxd(j) for all x ∈ I, j ∈ J . (8)
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Taking tx instead of x in (8), where t ∈ N , we find that

tjxd(j) = jtxd(j) for all t ∈ N , x ∈ I, j ∈ J ,

which can be written as

[t, j]Id(j) = {0} for all t ∈ N , j ∈ J .

The rest of the proof is similar to the steps used after equation (3) in the
proof of (i) ⇒ (iv).

Theorem 2. Let N be a 2-torsion free 3-prime near-ring, I be a nonzero
semigroup ideal of N and J be a nonzero Jordan ideal of N . There is
no multiplicative derivation d of N such that d(J ) ̸= {0} and d satisfies
one of the following conditions:

(i) d([x, j]) = x ◦ j for all x ∈ I, j ∈ J ;

(ii) d([x, j]) = −(x ◦ j) for all x ∈ I, j ∈ J ;

(iii) d(x ◦ j) = [x, j] for all x ∈ I, j ∈ J ;

(iv) d(x ◦ j) = −[x, j] for all x ∈ I, j ∈ J .

Proof. (i) Assume that N admits a multiplicative derivation d such that
d(J ) ̸= {0} and d satisfies

d([x, j]) = x ◦ j for all x ∈ I, j ∈ J . (9)

Substituting xj for x in (9), we get

[x, j]d(j) = 0 for all x ∈ I, j ∈ J ,

and thus
xjd(j) = jxd(j) for all x ∈ I, j ∈ J . (10)

Replacing x by tx, where t ∈ N , in (10) and using it again, we obtain

tjxd(j) = jtxd(j) for all t ∈ N , x ∈ I, j ∈ J ,

which implies that

[t, j]Id(j) = {0} for all t ∈ N , j ∈ J .

Invoking Lemma 1 (i), we obtain

d(j) = 0 or j ∈ Z(N ) for all j ∈ J . (11)
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Suppose there is an element j0 ∈ J , such that d(j0) = 0. As d(J ) ̸= {0},
there exists an element i0 ∈ J such that d(i0) ̸= 0, then (11) assures that
i0 ∈ Z(N ). Now, returning to (9) and replacing respectively x and j by
xi0 and j0, we find that

xj0d(i0) = j0xd(i0) for all x ∈ I. (12)

Taking tx instead of x, where t ∈ N , in (12) and using it again, we infer
that

tj0xd(i0) = j0txd(i0) for all t ∈ N , x ∈ I,

that is [t, j0]Id(i0) = {0} for all t ∈ N . In view of Lemma 1 (i) and the
fact that d(i0) ̸= 0, the last result gives j0 ∈ Z(N ) and therefore (11)
implies that j ∈ Z(N ) for all j ∈ J . So, N is a commutative ring by
Lemma 3 (ii). In this case, by 2-torsion freeness, equation (9) reduces
to xj = 0 for all x ∈ I, j ∈ J . Thus Ij = {0} for all j ∈ J , it follows
that j = 0 for all j ∈ J by Lemma 1 (ii). Accordingly, J = {0} which
contradicts our original assumption that J ̸= {0}.

(ii) Using similar arguments, we get the required result.

(iii) Assume that N admits a multiplicative derivation d satisfies d(J ) ̸=
{0} and

d(x ◦ j) = [x, j] for all x ∈ I, j ∈ J . (13)

Substituting xj for x in (13), we get

(x ◦ j)d(j) = 0 for all x ∈ I, j ∈ J ,

and thus
xjd(j) = (−j)xd(j) for all x ∈ I, j ∈ J . (14)

Replacing x by tx, where t ∈ N , in (14) and using (14), we obtain

t(−j)xd(j) = (−j)txd(j) for all x ∈ I, t ∈ N , j ∈ J ,

which implies that

[t,−j]Id(j) = {0} for all t ∈ N , j ∈ J .

Invoking Lemma 1 (i), the last equation shows that

d(j) = 0 or − j ∈ Z(N ) for all j ∈ J . (15)

Suppose there is an element j0 ∈ J such that d(j0) = 0. As d(J ) ̸= {0},
there exists an element i0 ∈ J and d(i0) ̸= 0, then (15) assures that
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−i0 ∈ Z(N ). Now, we prove that d(−i0) ̸= 0. Indeed suppose that
d(−i0) = 0, in this case, replacing j by −i0 in (13), we arrive at

d(x+ x)(−i0) = 0 for all x ∈ I.

Right multiplying the previous relation by t, where t ∈ N , and using the
fact −i0 ∈ Z(N ), we find that

d(x+ x)t(−i0) = 0 for all x ∈ I, t ∈ N ,

and hence
d(x+ x)N (−i0) = {0} for all x ∈ I.

By the 3-primeness of N , we find that

d(x+ x) = 0 or − i0 = 0 for all x ∈ I. (16)

If −i0 = 0, then i0 = 0 which implies that d(i0) = d(0.0) = 0.d(0) +
d(0).0 = 0 by Lemma 5; a contradiction. Now, we treat the firste case of
(16) that is, we have that d(x+x) = 0 for all x ∈ I. Writing xi0 instead
of x in previous expression and using it again, we arrive at

2xd(i0) = 0 for all x ∈ I.

In view of the 2-torsion freeness of N , the last result gives Id(i0) = {0}
which implies, because of Lemma 1 (ii), that d(i0) = 0, a contradiction
again. Consequently, d(−i0) ̸= 0. On the other hand, replacing x and j
by x(−i0) and j0, respectively, in (13), we arrive at

xj0d(−i0) = (−j0)xd(−i0) for all x ∈ I. (17)

Substituting tx for x, where t ∈ N , in (17) and using it again, we get

[t,−j0]Id(−i0) = {0} for all t ∈ N . (18)

Since d(−i0) ̸= 0, equation (18) implies that −j0 ∈ Z(N ) and therefore
(15) reduces to −j ∈ Z(N ) for all j ∈ J which, in virtue of (J ,+)
is an additive subgroup, means that J ⊆ Z(N ). Accordingly, N is a
commutative ring by Lemma 3 (ii). Now, returning to (13), we can see
that

d(xj + xj) = 0 = (x+ x)d(j) + d(x+ x)j for all x ∈ I, j ∈ J .

In particular, putting x = xj in the latter term of the previous relation
and taking account that N is 2-torsion free, we infer that jxd(j) = 0 for
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all x ∈ I, j ∈ J which can be rewritten as jId(j) = {0} for all j ∈ J .
Now, applying Lemma 1 (i), we conclude that j = 0 or d(j) = 0 for all
j ∈ J . But in the both cases, we have d(j) = 0 and hence d(J ) is zero
which is contrary to our hypothesis that d(J ) ̸= {0}.

(iv) Using a similar arguments, we get the required result. This com-
pletes the proof of our Theorem.

Theorem 3. Let N be a 2-torsion free 3-prime near-ring, I be a nonzero
semigroup ideal of N and J be a nonzero Jordan ideal of N . If N admits
a multiplicative derivation d such that d(Z(N )) ̸= {0}, and d satisfies
one of the following conditions:

(i) d([x, j]) ∈ Z(N ) for all x ∈ I, j ∈ J ;

(ii) d(x ◦ j) ∈ Z(N ) for all x ∈ I, j ∈ J ;

(iii) d([x, j]) ◦ t ∈ Z(N ) for all x ∈ I, j ∈ J , t ∈ N ;

(iv) d(x ◦ j) ◦ t ∈ Z(N ) for all x ∈ I, j ∈ J , t ∈ N ;

then N is a commutative ring.

Proof. (i) Let z ∈ Z(N ) such that d(z) ̸= 0. By hypotheses given, we
have d([xz, j])t = td([xz, j]) for all t ∈ N , x ∈ I, j ∈ J which implies
that

d(z[x, j])t = td(z[x, j]) for all t ∈ N , x ∈ I, j ∈ J . (19)

In the light of Lemma 2, equation (19) gives

d(z)[x, j]t = td(z)[x, j] for all t ∈ N , x ∈ I, j ∈ J . (20)

Substituting xj for x in (20) and using it, we get

d(z)[x, j]jt = d(z)[x, j]tj for all t ∈ N , x ∈ I, j ∈ J .

Once again, because of (20), the previous relation can be rewritten as

[j, t]d(z)[x, j] = 0 for all t ∈ N , x ∈ I, j ∈ J . (21)

Now, right multiplying equation (21) by m, where m ∈ N , and applying
(20), we find that

[j, t]md(z)[x, j] = 0 for all t,m ∈ N , x ∈ I, j ∈ J
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which implies that

[j, t]Nd(z)[x, j] = {0} for all t ∈ N , x ∈ I, j ∈ J .

Using the 3-primeness of N , we get

j ∈ Z(N ) or d(z)[x, j] = 0 for all x ∈ I, j ∈ J . (22)

Suppose there is an element j0 ∈ J such that j0 ̸∈ Z(N ), then

d(z)[x, j0] = 0 for all x ∈ I. (23)

Returning to (19) and replacing j by j0, and using the fact that z ∈ Z(N ),
we find that d([x, j0]z)t = td([x, j0]z) for all t ∈ N , x ∈ I. Applying
Lemma 2 and after simplifying, we obtain [x, j0]d(z)t = t[x, j0]d(z) for
all t ∈ N , x ∈ I which means that [x, j0]d(z) ∈ Z(N ). Right multiplying
equation (23) by d(z)m, where m ∈ N , we find that d(z)[x, j0]d(z)m = 0
for all m ∈ N , x ∈ I. It follows that

d(z)N [x, j0]d(z) = {0} for all x ∈ I.

Using the 3-primeness of N and taking account that d(z) ̸= 0, we con-
clude that [x, j0]d(z) = 0 for all x ∈ I which yields to

xj0d(z) = j0xd(z0) for all x ∈ I. (24)

Taking tx instead of x, where t ∈ N , in (24) and using it again, we arrive
at

[t, j0]Id(z) = {0} for all t ∈ N .

In view of Lemma 1 (i) together d(z) ̸= 0, the previous expression assures
that j0 ∈ Z(N ). Consequently, (22) reduces to J ⊆ Z(N ) and Lem-
ma 3 (ii) shows that N is a commutative ring.

(ii) Let z ∈ Z(N ) such that d(z) ̸= 0. By hypothesis we have

d(xz ◦ j)t = td(xz ◦ j) for all t ∈ N , x ∈ I, j ∈ J .

So that,

d((x ◦ j)z)t = td((x ◦ j)z) for all t ∈ N , x ∈ I, j ∈ J . (25)

Applying Lemma 2 and after simplifying, equation (25) yields

(x ◦ j)d(z)t = t(x ◦ j)d(z) for all t ∈ N , x ∈ I, j ∈ J
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it follows that

(x ◦ j)d(z) ∈ Z(N ) for all x ∈ I, j ∈ J . (26)

Returning to (25) and using the fact that z ∈ Z(N ), we find that

d(z(x ◦ j))t = td(z(x ◦ j)) for all t ∈ N , x ∈ I, j ∈ J .

Once again, in view of Lemma 2, we obtain

d(z)(x ◦ j)t = td(z)(x ◦ j) for all t ∈ N , x ∈ I, j ∈ J ,

which means that

d(z)(x ◦ j) ∈ Z(N ) for all x ∈ I, j ∈ J . (27)

Replacing x by xj in (27), we get

d(z)(x ◦ j)j ∈ Z(N ) for all x ∈ I, j ∈ J .

Hence, in the light of Lemma 6, the previous result shows that

d(z)(x ◦ j) = 0 or j ∈ Z(N ) for all x ∈ I, j ∈ J . (28)

Assume that
d(z)(x ◦ j) = 0 for all x ∈ I, j ∈ J . (29)

Right multiplying (29) by d(z)m, where m ∈ N , and invoking (26) we
find that

d(z)m(x ◦ j)d(z) = 0 for all m ∈ N , x ∈ I, j ∈ J

that is,
d(z)N (x ◦ j)d(z) = {0} for all x ∈ I, j ∈ J .

Using the 3-primeness of N together d(z) ̸= 0, we infer that

xjd(z) = −jxd(z) for all x ∈ I, j ∈ J . (30)

Substituting tx for x in (30), where t ∈ N , we have

t(−j)xd(z) = (−j)txd(z) for all t ∈ N , x ∈ I, j ∈ J .

So that
[t,−j]Id(z) = {0} for all t ∈ N , j ∈ J .
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In view of Lemma 1 (i) and d(z) ̸= 0, the last equation assures that
j∈Z(N ) for all j∈J , and henceN is a commutative ring by Lemma 3 (ii).
Accordingly, from (29) and 2-torsion freeness of N we get d(z)xj = 0
for all x ∈ I, j ∈ J , so that d(z)Ij = {0} for all j ∈ J . In view of
Lemma 1 (i) and d(z) ̸= 0, we conclude that J = {0}, a contradiction.
Consequently, there is x0 ∈ I, j0 ∈ J such that d(z)(x0 ◦ j0) ̸= 0. From
(28), it follows that j0 ∈ Z(N ). On the other hand, as N is a zero
symmetric near-ring and d(z)(x0 + x0)j0 ̸= 0, then necessarily d(z) ̸= 0,
x0 + x0 ̸= 0 and j0 ̸= 0. Now, replacing j by j0 in (26), we have

(x+ x)d(z)j0 ∈ Z(N ) for all x ∈ I.

As 0 ̸= j0 ∈ Z(N ), applying Lemma 6 to the previous equation, we
obtain

(x+ x)d(z) ∈ Z(N ) for all x ∈ I. (31)

Taking r(x0 ◦ j0) instead of x in (31), where r ∈ N , we find that

(r + r)(x0 ◦ j0)d(z) ∈ Z(N ) for all r ∈ N .

In view of (26) and Lemma 6, it follows that

(x0 ◦ j0)d(z) = 0 or r + r ∈ Z(N ) for all r ∈ N . (32)

We prove that (x0 ◦ j0)d(z) ̸= 0. In fact, suppose that (x0 ◦ j0)d(z) = 0.
In this case, left multiply both sides of the equation by md(z), where
m ∈ N , we get md(z)(x0 ◦ j0)d(z) = 0 for all m ∈ N . Since, because of
(27), d(z)(x0 ◦ j0) ∈ Z(N ), we can see that

d(z)(x0 ◦ j0)Nd(z) = {0}.

By the 3-primeness of N and d(z) ̸= 0, the previous relation gives
d(z)(x0◦j0) = 0 which contradicts our hypothesis. Consequently, (x0◦j0)
d(z) ̸= 0 and therefore (32) shows that r+r ∈ Z(N ) for all r ∈ N . Now,
replacing r by r2 in the last relation and invoking Lemma 6, we arrive
at 2r = 0 or r ∈ Z(N ) for all r ∈ N . Since N is 2-torsion free, the first
condition yields r = 0 ∈ Z(N ). So, from the both cases, we conclude
that N ⊆ Z(N ) and thus N is a commutative ring.

(iii) By hypothesis, we have

d([x, j]) ◦ t ∈ Z(N ) for all t ∈ N , x ∈ I, j ∈ J . (33)
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Substituting td([x, j]) for t in (33), we get

(d([x, j]) ◦ t)d([x, j]) ∈ Z(N ) for all t ∈ N , x ∈ I, j ∈ J .

By application of Lemma 6, we obtain

d([x, j]) ◦ t = 0 or d([x, j]) ∈ Z(N ) for all t ∈ N , x ∈ I, j ∈ J . (34)

Let (x, j)∈ I×J . If there exists an element t∈N such that d([x, j])◦t ̸= 0,
then from (34) we conclude that d([x, j]) ∈ Z(N ). Else, we will have
d([x, j]) ◦ t = 0 for all t ∈ N , then

(−d([x, j]))t = td([x, j]) for all t ∈ N . (35)

Taking tr instead of t, where r ∈ I, in (35) and using it again, we find
that

(−d([x, j]))tr = t(−d([x, j]))r for all t ∈ N , r ∈ I

and hence [−d([x, j]), t]I = {0} for all t ∈ N . In virtue of Lemma 1(ii),
the preceding result shows that −d([x, j]) ∈ Z(N ). Consequently, for all
(x, j) ∈ I × J , we have either

d([x, j]) ∈ Z(N ) or − d([x, j]) ∈ Z(N ). (36)

As d(Z(N )) ̸= {0}, there exists an element z ∈ Z(N ) such that z ̸= 0.
In particular, replacing t by z in (33), we obtain

(d([x, j]) + d([x, j]))z ∈ Z(N ) for all x ∈ I, j ∈ J .

Since z ̸= 0 and in view of Lemma 6, we infer that

(d([x, j]) + d([x, j])) ∈ Z(N ) for all x ∈ I, j ∈ J .

Once again, taking t = d([x, j]) in (33), we find that

(d([x, j]) + d([x, j]))d([x, j]) ∈ Z(N ) for all x ∈ I, j ∈ J ,

which, because of Lemma 6, implies that

d([x, j]) ∈ Z(N ) or d([x, j]) + d([x, j]) = 0 for all x ∈ I, j ∈ J .

In another way,

d([x, j]) ∈ Z(N ) or d([x, j]) = −d([x, j]) for all x ∈ I, j ∈ J . (37)
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Accordingly, from (36) and (37) we conclude that d([x, j]) ∈ Z(N ) for
all x ∈ I, j ∈ J , so that N is a commutative ring by (i).

(iv) By hypotheses, we have

d(x ◦ j) ◦ t ∈ Z(N ) for all t ∈ N , x ∈ I, j ∈ J . (38)

Substituting td(x ◦ j) for t in (38), we get

(d(x ◦ j) ◦ t)d(x ◦ j) ∈ Z(N ) for all t ∈ N , x ∈ I, j ∈ J .

By application of Lemma 6, the preceding expression indicates that

d(x ◦ j) ◦ t = 0 or d(x ◦ j) ∈ Z(N ) for all t ∈ N , x ∈ I, j ∈ J . (39)

Now, consider x ∈ I, j ∈ J and suppose that d(x ◦ j) ◦ t = 0 for all
t ∈ N . It follows that

(−d(x ◦ j))t = td(x ◦ j) for all t ∈ N . (40)

Taking tr instead of t, where r ∈ I, in (40) and using it again, we find
that (−d(x ◦ j))tr = t(−d(x ◦ j))r for all t ∈ N , r ∈ I which can be
written as [−d(x ◦ j), t]I = {0} for all t ∈ N . Applying Lemma 1 (ii),
we get −d(x ◦ j) ∈ Z(N ). Hence, (39) reduces to

d(x ◦ j) ∈ Z(N ) or − d(x ◦ j) ∈ Z(N ) for all x ∈ I, j ∈ J . (41)

In (38), replace t with a nonzero element z of Z(N ) and using the same
arguments as those used between the two relations (36) and (37), we
arrive at

d(x ◦ j) ∈ Z(N ) or d(x ◦ j) = −d(x ◦ j) for all x ∈ I, j ∈ J . (42)

Combining (41) and (42) we conclude that d(x◦ j) ∈ Z(N ) for all x ∈ I,
j ∈ J and hence N is a commutative ring by (ii).

As an application of the previous theorems, we can get the following
corollary if d acts as a derivation of N .

Corollary 1. Let N be a 2-torsion free 3-prime near-ring, I be a nonzero
semigroup ideal of N and J be a nonzero Jordan ideal of N . If N
admitting a derivation d such that d(Z(N )) ̸= {0}, then the following
assertions are equivalent:
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(i) d([x, j]) ∈ Z(N ) for all x ∈ I, j ∈ J ;

(ii) d(x ◦ j) ∈ Z(N ) for all x ∈ I, j ∈ J ;

(iii) N is a commutative ring.

Theorem 4. Let N be a 2-torsion free 3-prime near-ring, I be a nonzero
semigroup ideal of N and J be a nonzero Jordan ideal of N . There is
no nonzero multiplicative derivation d of N such that d(J ) ̸= {0} and
satisfies one of the following conditions:

(i) d([x, j]) = x ◦ d(j) for all x ∈ I, j ∈ J ;

(ii) d(x ◦ j) = [x, d(j)] for all x ∈ I, j ∈ J .

Proof. (i) Assume that N admits a multiplicative derivation d such that
d(J ) ̸= {0} and d satisfies

d([x, j]) = x ◦ d(j) for all x ∈ I, j ∈ J . (43)

Substituting xj for x in (43) and using it again, we get

[x, j]d(j) + (x ◦ d(j))j = xj ◦ d(j) for all x ∈ I, j ∈ J .

After solving this expression, we find that

xd(j)j = jxd(j) for all x ∈ I, j ∈ J . (44)

Replacing x by tx, where t ∈ N , in (44) and invoking (44), we obtain

tjxd(j) = jtxd(j) for all t ∈ N , x ∈ I, j ∈ J ,

which implies that [t, j]Id(j) = {0} for all t ∈ N , j ∈ J . In view of
Lemma 1 (i), the last equation assures that

d(j) = 0 or j ∈ Z(N ) for all j ∈ J . (45)

Suppose there is an element j0∈J , such that d(j0)= 0. Since d(J ) ̸={0},
there exists an element i0 ∈ J such that d(i0) ̸= 0, then (45) assures that
i0 ∈ Z(N ). Now, returning to (43) and replacing respectively x and j by
xi0 and j0, we find that

xj0d(i0) = j0xd(i0) for all x ∈ I. (46)
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Taking tx instead of x, where t ∈ N , in (46), we infer that

[t, j0]Id(i0) = {0} for all t ∈ N .

In view of Lemma 1 (i) and the fact that d(i0) ̸= 0, we conclude that
j0 ∈ Z(N ) and hence (45) shows that j ∈ Z(N ) for all j ∈ J . So, N is a
commutative ring by Lemma 3 (ii). In this case, our hypothesis becomes
2xd(j) = 0 for all x ∈ I, j ∈ J . By 2-torsion freeness of N , we can see
that Id(j) = {0} for all j ∈ J and therefore d(J) = {0} by Lemma 1 (ii),
but this contradicts our initial assumption that d(J ) ̸= {0}.

(ii) By hypotheses given, we have

d(x ◦ j) = [x, d(j)] for all x ∈ I, j ∈ J . (47)

Substituting xj for x in (47) and after simplifying, we arrive at

xd(j)j = (−j)xd(j) for all x ∈ I, j ∈ J . (48)

Putting tx instead of x in (48), where t ∈ N , and invoking (48), we
obtain

t(−j)xd(j) = (−j)txd(j) for all t ∈ N , x ∈ I, j ∈ J ,

implying that

[t,−j]Id(j) = {0} for all t ∈ N , j ∈ J .

In virtue of Lemma 1(i), the last equation yields

d(j) = 0 or − j ∈ Z(N ) for all j ∈ J . (49)

Let j0 an arbitrary element of J such that d(j0) = 0. As d(J ) ̸= {0},
there exists an element i0 ∈ J such that d(i0) ̸= 0, then (49) assures
that −i0 ∈ Z(N ). Now, in (47), replacing x and j by x(−i0) and j0,
respectively, we find that

xj0d(−i0) = (−j0)xd(−i0) for all x ∈ I. (50)

Taking tx instead of x, where t ∈ N , in (50) and using it again, we infer
that

t(−j0)xd(−i0) = (−j0)txd(−i0) for all t ∈ N , x ∈ I,

which can be rewritter as

[t,−j0]Id(−i0) = {0} for all t ∈ N .
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In view of Lemma 1 (i), we get

d(−i0) = 0 or − j0 ∈ Z(N ).

Since d(−i0) ̸= 0, then −j0 ∈ Z(N ) and therefore (49) implies that
J ⊆ Z(N ). So, N is a commutative ring by Lemma 3 (i) and thus (47)
becomes d(xj + xj) = d((x + x)j) = (x + x)d(j) + d(x + x)j = 0 for
all x ∈ I, j ∈ J . Substituting xj for x in the last equation and by
defining property of d, we get (j + j)xd(j) = 0 for all x ∈ I, j ∈ J .
Using the 2-torsion freeness of N , we obtain jId(j) = {0} for all j ∈ J .
Thereby, in view of Lemma 1 (i) we conclude that d(J ) = {0}, leading
to a contradiction.

Theorem 5. Let N be a 2-torsion free 3-prime near-ring, I be a nonzero
semigroup ideal of N and J be a nonzero Jordan ideal of N . If N admits
a nonzero multiplicative derivation d which satisfies d(x) ◦ j = 0 for all
x ∈ I, j ∈ J , then N cannot be a commutative ring.

Proof. In the following we assume that the multiplicative law of N is
commutative. By hypotheses given, we have d(x) ◦ j = 0 for all x ∈ I,
j ∈ J , so that

2jd(x) = 0 for all x ∈ I, j ∈ J .

By the 2-torsion freeness of N , the preceding equation gives jd(x) = 0
for all x ∈ I. Taking x = xt, where t ∈ N , by defining d and Lemma 2,
we find that jxd(t) = 0 for all j ∈ J , x ∈ I, t ∈ N . Which, because of
Lemma 3 (ii), forces that J = {0} or d = 0, but in both cases we will
have a contradiction. Thus our proof is complete.

The following example demonstrates that the 3-primeness condition
is essential in the assumptions of our theorems.

Example 1. Let S be a 2-torsion free zero-symmetric unitary right near-
ring. Let us defined N , J , I and d : N → N by

N =

{(
0 0 x
0 0 y
0 0 0

)
| 0, x, y ∈ S

}
, J =

{(
0 0 x
0 0 0
0 0 0

)
| 0, x ∈ S

}
,

I =

{(
0 0 0
0 0 x
0 0 0

)
| 0, x ∈ S

}
and d

(
0 0 x
0 0 y
0 0 0

)
=

(
0 0 x2

0 0 0
0 0 0

)
.

It is easy to verify that N is a 2-torsion free right near-ring which is not
a 3-prime, I is a nonzero semigroup ideal of N , J is a nonzero Jordan
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ideal of N and d is a nonzero multiplicative derivation of N . Further, it
can also be verified that d(J ) ̸= {0}, d(Z(N )) ̸= {0} and d satisfies the
following properties:

1. d([A, J ]) = [A, J ],

2. d([A, J ]) = −[A, J ],

3. d([A, J ]) = [A, d(J)],

4. d([A, J ]) = A ◦ J ,
5. d([A, J ]) = −(A ◦ J),
6. d(A ◦ J) = [A, J ],

7. d(A ◦ J) = −[A, J ],

8. d([A, J ]) ∈ Z(N ),

9. d(A ◦ J) ∈ Z(N ),

10. d([A, J ]) ◦B ∈ Z(N ),

11. d(A ◦ J) ◦B ∈ Z(N ),

12. d([A, J ]) = A ◦ d(J),
13. d(A ◦ J) = [A, d(J)],

14. d(A ◦ J) = 0

for all A ∈ I, J ∈ J , B ∈ N . However, N is not a commutative ring.
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