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Spectral multiplicity functions
of adjacency operators of graphs
and cospectral infinite graphs

Pierre de la Harpe

Communicated by R. I. Grigorchuk

Abstract. The adjacency operator of a graph has a spectrum
and a class of scalar-valued spectral measures which have been sys-
tematically analyzed; it also has a spectral multiplicity function
which has been less studied. The first purpose of this article is to
review some examples of infinite graphs for which the spectral mul-
tiplicity function of the adjacency operator has been determined.
The second purpose of this article is to show explicit examples of
infinite connected graphs which are cospectral, i.e., which have uni-
tarily equivalent adjacency operators, and also explicit examples of
infinite connected graphs which are uniquely determined by their
spectrum.

1. Introduction

Let G be a graph with vertex set V and edge set E. Here graphs are
without loops and multiple edges (except in Section 6), and E is a set
of unordered pairs of vertices. The degree deg(u) of a vertex u ∈ V is
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the number of edges incident to u. We assume below that V is non-
empty, countable (infinite or finite), and that G is of bounded degree,
i.e., that maxu∈V deg(u) < ∞. Let ℓ2(V ) denote the complex Hilbert
space of functions ξ : V → C such that

∑
u∈V

|ξ(u)|2 < ∞. It has a

canonical orthonormal basis (δu)u∈V ; the value of δu ∈ ℓ2(V ) is 1 at u
and 0 at other vertices. The adjacency operator of G is the bounded
self-adjoint linear operator AG on ℓ2(V ) defined by

(AGξ)(u) =
∑

v∈V, {u,v}∈E

ξ(v) for all ξ ∈ ℓ2(V ) and u ∈ V.

Adjacency operators appear in the theory of both finite graphs and in-
finite graphs. From the vast literature, we quote [16], [17], [7], [27], [11]
for finite graphs, and [33], [36], [26], [37], [5], [24], [29] for infinite graphs.

As for any self-adjoint operator, the Hahn–Hellinger Multiplicity The-
orem implies that AG is characterized up to unitary equivalence by three
invariants (see Section 2):

— the spectrum Σ(AG), also called the spectrum of G, which is a
nonempty compact subset of R;

— a scalar-valued spectral measure µG which is a finite Borel
measure on Σ(AG), well-defined up to equivalence, sometimes vie-
wed as a measure on R with closed support Σ(AG);

— the spectral multiplicity function mG, which is a measurable
function from Σ(AG) to {1, 2, . . . ,∞}, well defined up to equality
µG-almost everywhere.

We define the marked spectrum of G to be the triple

(Σ(AG), [µG],mG),

where [µG] denotes the class of a spectral valued measure µG. Two graphs
are cospectral if they have the same marked spectrum. A graph G is
determined by its marked spectrum if any graph of bounded degree
with the same marked spectrum is isomorphic to G.

Let G = (V,E) be a graph which is finite, or more generally a graph
such that ℓ2(V ) has an orthonormal basis of eigenvectors of AG, for
example the Cayley graph of a lamplighter group as in [30] and [6]. The
scalar-valued spectral measures of AG are precisely the measures which
charge every eigenvalue of AG, so that the meaningful part of the marked
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spectrum of G reduces to the pair (Σ(AG),mG). For such a graph, the
spectral multiplicity functions can be defined as in finite graph theory:
mG(x) = dimker(xId−AG) for all x ∈ Σ(AG). For more general graphs,
see Definition 2.10.

For finite graphs, spectra and multiplicities of eigenvalues have been
studied intensively. For infinite graphs, spectra of adjacency operators
have attracted a lot of attention, but in contrast spectral measures a bit
less, and spectral multiplicity functions even less (even if there are precise
computations of multiplicities for some classes of graphs, for example for
sparse trees [9]).

The first purpose of this article is to review a small number of examp-
les of infinite connected graphs G = (V,E) for which the spectral multi-
plicity function of AG has been determined. All this is well-known to ex-
perts, but we did not find good references in the literature. In Section 2,
we review various kinds of multiplication operators, the Hahn–Hellinger
Multiplicity Theorem, and the definition of the spectral multiplicity func-
tion for a bounded self-adjoint operator. In Propositions 3.1, 3.2, and 3.4,
we show:

Proposition 1.1. The adjacency operator of the infinite ray R has spec-
trum [−2, 2], scalar-valued spectral measure equivalent to Lebesgue mea-
sure, and uniform multiplicity one.

The adjacency operator of the infinite line L has spectrum [−2, 2],
scalar-valued spectral measure equivalent to Lebesgue measure, and uni-
form multiplicity two.

For d ≥ 2, the adjacency operator of the lattice Ld has spectrum
[−2d, 2d], scalar-valued spectral measure equivalent to Lebesgue measure,
and infinite uniform multiplicity.

Section 4 is a study of spherically symmetric rooted trees. For the
particular case of regular trees, we need in Section 5 to recall results on
operators defined by infinite Jacobi matrices. In Propositions 4.7 and 5.3,
we show:

Proposition 1.2. For d ≥ 2, the adjacency operator of the infinite regu-
lar rooted tree T root

d of branching degree d has spectrum [−2
√
d, 2

√
2],

scalar-valued spectral measure equivalent to Lebesgue measure, and infi-
nite uniform multiplicity.

For d ≥ 3, the adjacency operator of the regular rooted tree Td of de-
gree d has spectrum [−2

√
d− 1, 2

√
d− 1], scalar-valued spectral measure

equivalent to Lebesgue measure, and infinite uniform multiplicity.
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Examples of cospectral finite graphs date back to the very first papers
in spectral graph theory. They include a pair of graphs with 5 vertices,
a pair of connected graphs with 6 vertices, a pair of trees with 8 vertices
(already in [16]), and pairs of regular connected graphs with 10 vertices;
for these and much more, see [11] and [31]. It is striking that examp–
les of cospectral pairs appear that early in spectral graph theory. In con-
trast, the study of the spectrum of the Laplacian of geometric objects
like bounded open domains in Euclidean spaces goes back to [46], and the
question of existence of cospectral plane domains (rather called isospec-
tral plane domains) was open for a long time, indeed from before [32],
until the discovery of explicit examples of cospectral plane domains [28].

The second purpose of this article is to show explicit examples of
cospectral infinite connected graphs. To our knowledge, such examples
do not appear explicitly in the literature. As an immediate consequence
of the two previous propositions, we have Corollaries 4.8 and 5.4:

Corollary 1.3. For any integer d ≥ 2, the graphs Ld, T
root
d2 and Td2+1

are cospectral.

Note that Ld and Td2+1 are Cayley graphs. Further examples of
multiplets of cospectral spherically symmetric rooted trees are shown in
Example 4.9. The final Section 6 is a very short account of an uncoun–
table family of cospectral Schreier graphs, from [29].

Our third purpose is to show examples of graphs determined by their
spectra. There are well-known finite graphs determined by their spectra:
finite paths, cycles, complete graphs Kn, complete bipartite graphs Kn,n,
triangular graphs T (n) with n ̸= 8; to cite but a few. For some experts
“it seems more likely that almost all graphs are determined by their
spectrum, than that almost all graphs are not”; see [11, Chapter 14, and
in particular Section 14.4]. Some finite graphs are determined by their
spectra among connected graphs, but not among all finite graphs; this is
the case for finite graphs G with ∥AG∥ ≤ 2 [18]. For infinite graphs, we
have Propositions 3.8 and 3.9:

Proposition 1.4. The infinite graph R is determined by its marked spec-
trum.

Each of the following three graphs is determined by its marked spec-
trum among connected graphs of bounded degree: R, the graph D∞ of
Proposition 3.7, and the infinite line L.
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2. Spectral measures and the Hahn–Hellinger Multipli-
city Theorem

This section is a reminder on various notions of spectral measures and on
the theorem of the title, which is due to E. Hellinger in 1907 and H. Hahn
in 1912; references to the original papers can be found in [23, Section X.6,
p. 928]. All Hilbert spaces which appear here are complex, and separable
whenever needed. The scalar product of two vectors ξ, η in a Hilbert
space H is denoted by ⟨ξ |η⟩; it is linear in ξ and antilinear in η. We use
the following notation: N = {0, 1, 2, . . . , } and N∗ = {1, 2, . . . ,∞}.

2.A. Spectrum, spectral measures, and dominant vectors

Let H be a Hilbert space, L(H) the algebra of bounded linear operators
on H, and X ∈ L(H). The spectrum of X is the set Σ(X) of λ ∈ C
such that λId−X is not invertible in L(H). It is a compact subset of C,
and a non-empty one unless H = {0}. Assume from now on that X is
self-adjoint, so that Σ(X) is a compact subset of R. Denote by BΣ(X)

the σ-algebra of Borel subsets of Σ(X). By the spectral theorem, there
exists a projection-valued spectral measure EX : BΣ(X) → Proj(H)
such that X =

∫
Σ(X) xdEX(x). A vector ξ ∈ H determines a local

spectral measure at ξ on Σ(X), denoted by µξ, defined by µξ(B) =
⟨EX(B)ξ | ξ⟩ for all B ∈ BΣ(X); then ⟨Xξ | ξ⟩ =

∫
Σ(X) xdµξ(x). A vec-

tor ξ is dominant for X if µη is absolutely continuous with respect to µξ

for all η ∈ H. (“Dominant vector” is the terminology of [44, p. 306]; the
terminology of [8, p. 446] is “vector of maximal type”, and that of [20]
is “separating vector” for the W∗-algebra generated by X). A scalar-
valued spectral measure for X is a measure on Σ(X) of the form µξ,
for ξ dominant. Two scalar-valued spectral measures for X are equiva-
lent, i.e., are absolutely continuous with respect to each other. A vector
ξ ∈ H is cyclic for X if the closed linear span of {Xnξ}n∈N is the whole
of H.

We denote by B(Σ(X)) the algebra of bounded Borel-measurable
functions on Σ(X). For f in this algebra, the operator f(X) is defined
by Borel functional calculus.

Proposition 2.1 (existence and characterizations of dominant
vectors for self-adjoint operators). Let X be a bounded self-adjoint
operator on a separable Hilbert space H. Let B(Σ(X)) and EX be as
above.
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(1) There exist dominant vectors for X. More precisely, for any η ∈ H,
there exists a dominant vector ξ for X such that η is in the closed
linear span of {Xnξ}n∈N.

(2) A vector ξ ∈ H is dominant for X if and only if, for any
f ∈ B(Σ(X)), the equality f(X)ξ = 0 implies f(X) = 0.

(3) A vector ξ ∈ H is dominant for X if and only if, for any Borel sub-
set B of Σ(X), the equality µξ(B) = 0 is equivalent to the equality
EX(B) = 0.

(4) Cyclic vectors for X are dominant vectors for X.

(5) If X has at least one cyclic vector, dominant vectors for X are
cyclic vectors for X.

Let (εj)j≥1 be an orthonormal basis of H. For j ≥ 1, let µj denote the
local spectral measure at εj.

(6) If ξ ∈ H is such that the local spectral measure µξ dominates µj for
all j ≥ 1, then ξ is a dominant vector.

References for the proof. For (1) and (2), see [44, Lemma 5.4.7 and Pro-
blem 3 of § 5.4.]. For (3), see [15, Theorem IX.8.9]. For (4), let ξ ∈ H and
f ∈ B(Σ(X)) be such that f(X)ξ = 0; then f(X)Xnξ = Xnf(X)ξ = 0
for all n ≥ 0, hence f(X)η = 0 for all η in the closed convex hull of
{Xnξ}n∈N; if ξ is cyclic then f(X)η = 0 for all η ∈ H, hence f(X) = 0,
and therefore ξ is dominant. We leave the proofs of (5) and (6) to the
reader; alternatively, see [14, Proposition 2.2 and Corollary 2.5].

The marked spectrum of a scalar multiple of a bounded self-adjoint
operator can easily be written in terms of the marked spectrum of the
original operator. For future reference, we make this precise in the fol-
lowing proposition, which is an immediate consequence of the definitions.

Proposition 2.2. Let H be a separable Hilbert space, X a bounded self-
adjoint operator on H, and ξ ∈ H. Let k > 0 be a positive real number
and let Y = kX. Denote by µX

ξ the local spectral measure of X at ξ and

by µY
ξ the local spectral measure of Y at ξ. Let [m,M ] be the convex hull

of the spectrum of X. Assume that µX
ξ is of the form ρXξ λ, where ρXξ is

a function in L1([m,M ], λ) with values in R+ and where λ denotes the
Lebesgue measure on [m,M ]. Then:
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(1) ∥Y ∥ = k∥X∥;

(2) Σ(Y ) = kΣ(X);

(3) µY
ξ = ρYξ λ where ρYξ (x) = k−1ρXξ (x/k) for all x ∈ [km, kM ].

For our analysis of lattice graphs Ld in Section 3, we will need the
following facts on local spectral measures of some operators defined
on tensor products. Let H1,H2 be two separable Hilbert spaces. For
j ∈ {1, 2}, let Xj be a bounded self-adjoint operator on Hj ; choose a
vector ξj in Hj , and let µj be the local spectral measure of Xj at ξj ;
we view µj as a finite measure on R with closed support contained
in Σ(Xj). Let Idj denote the identity operator on Hj . Let H be the
Hilbert space tensor product H1⊗H2 and let X ∈ L(H) be the operator
X1 ⊗ Id2 + Id1 ⊗X2. It is well-known that the operator X is bounded,
self-adjoint, of norm ∥X∥ = ∥X1∥+ ∥X2∥, and of spectrum

Σ(X) = {z ∈ R : z = x+ y for some x ∈ Σ(X1) and y ∈ Σ(X2)}

(see [13] or [43]). Let ξ = ξ1 ⊗ ξ2 ∈ H and let µ be the local spectral
measure of X at ξ.

Proposition 2.3. Let X1 be a self-adjoint operator on H1 and X2 a
self-adjoint operator on H2; let ξ1, ξ2, µ1, µ2, X = X1 ⊗ Id2 + Id1 ⊗X2,
ξ = ξ1 ⊗ ξ2, and µ be as above.

Then µ is the convolution product µ1 ∗ µ2.

Proof. Recall that the convolution of two finite measure ν1, ν2 onR is the
direct image of the measure ν1⊗ν2 on R2 by the map R2 → R, (x, y) 7→
x+ y. We have∫

R
f(z)d(ν1 ∗ ν2)(z) =

∫
R

∫
R
f(x+ y)dν1(x)dν2(y)

for any continuous function f : R → C which tends to zero at infinity;
when ν1 and ν2 are measures with compact support, this holds more
generally for any continuous function f : R → C. See [42, Chapter 7,
Exercise 5].

For the next computation, observe that the operators X1 ⊗ Id2 and
Id1 ⊗X2 commute, and that (X1 ⊗ Id2)

j (Id1 ⊗X2)
k = Xj

1 ⊗Xk
2 for all
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j, k ≥ 0. For all n ∈ N, we have∫
Σ(X)

zndµ(z) = ⟨(X1 ⊗ Id2 + Id1 ⊗X2)
n(ξ1 ⊗ ξ2) | ξ1 ⊗ ξ2⟩

=

〈
n∑

j=0

(
n

j

)
(Xj

1 ⊗Xn−j
2 )(ξ1 ⊗ ξ2)

∣∣∣∣ ξ1 ⊗ ξ2

〉

=
n∑

j=0

(
n

j

)
⟨Xj

1ξ1 | ξ1⟩⟨X
n−j
2 ξ2 | ξ2⟩,

hence∫
Σ(X)

zndµ(z) =
n∑

j=0

(
n

j

)∫
Σ(X1)

xjdµ1(x)

∫
Σ(X2)

yn−jdµ2(y)

=

∫
Σ(X1)

∫
Σ(X2)

 n∑
j=0

(
n

j

)
xjyn−j

 dµ1(x)dµ2(y)

=

∫
Σ(X1)

∫
Σ(X2)

(x+ y)ndµ1(x)dµ2(y)

=

∫
Σ(X)

znd(µ1 ∗ µ2)(z).

This shows that the moments of µ are the same as the moments of µ1∗µ2.
Since µ and µ1 ∗ µ2 are measures with compact support, it follows that
µ = µ1 ∗ µ2.

Remark 2.4. For each positive integer d, there is a similar fact which
holds for operators of the form

X = X1⊗ Id2⊗· · ·⊗ Idd+Id1⊗X2⊗· · ·⊗ Idd+ · · ·+Id1⊗ Id2⊗· · ·⊗Xd

which have spectral measures of the form µ = µ1 ∗ µ2 ∗ · · · ∗ µd.

2.B. Multiplication operators

We recall successively the definition of the Hilbert space L2(Σ, µ,m),
some facts on functions φ ∈ L∞(Σ, µ), and on multiplications operators
MΣ,µ,m,φ.

Let Σ be a non-empty metrizable compact space. Let BΣ the σ-algeb-
ra of Borel subsets of Σ, and µ a finite positive measure on (Σ,BΣ).
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Let m : Σ → N∗ be a measurable function. Denote by ℓ2∞ the Hilbert
space of square summable sequences (zj)j≥1 of complex numbers and,
for each n ≥ 1, by ℓ2n the subspace of sequences such that zj = 0 for
all j ≥ n + 1. Let L2(Σ, µ,m) be the separable Hilbert space of mea-
surable functions ξ : Σ → ℓ2∞ such that ξ(x) ∈ ℓ2m(x) for all x ∈ Σ and∫
Σ ∥ξ(x)∥2ℓ2∞dµ(x) < ∞. In more sophisticated terms, L2(Σ, µ,m) is the
Hilbert space of square summable vector fields of the µ-measurable field
of Hilbert spaces (Hx)x∈Σ, where Hx = ℓ2m(x) for all x ∈ Σ. The space

L2(Σ, µ,m) can also be seen as a Hilbert direct sum⊕
n∈N∗

L2(Σn, µn, ℓ
2
n),

where Σn = m−1(n), the measure µn is defined by µn(B) = µ(B ∩ Σn)
for all Borel sets B ∈ BΣ, and L2(Σn, µn, ℓ

2
n) is the Hilbert space of

square-summable ℓ2n-valued functions on (Σn, µn). Note that Σn = ∅
when m(x) ̸= n for all x ∈ Σ, and more generally that µn = 0 and
L2(Σn, µn, ℓ

2
n) = {0} when m(x) ̸= n for µ-almost all x ∈ Σ. Note also

that µn can be seen either as a measure on Σn, or as a measure on Σ such
that µn(Σ∖ Σn) = 0; in the latter case, the measures µn ’s are pairwise
singular with each other.

Let φ : Σ → R be a measurable complex-valued function on Σ. The
essential supremum of φ is the infimum ∥φ∥∞ of the numbers c ≥ 0
such that µ ({x ∈ Σ : |φ(x)| > c}) = 0. We assume from now on that φ is
essentially bounded, i.e., that ∥φ∥∞ < ∞. The essential range of φ
is the set Rφ of complex numbers z such that µ({x ∈ Σ : |φ(x) − z| <
ε}) > 0 for all ε > 0; we have ∥φ∥∞ = sup{|z| : z ∈ Rφ}. In other words,
Rφ is the closed support of the measure φ∗(µ) on C, the push forward
of µ by φ, and therefore Rφ is a closed subset of C, indeed a compact
subset of C since φ is essentially bounded. Below, ∥φ∥∞ and Rφ will be
the norm and the spectrum of a multiplication operator.

For z ∈ C and ε > 0, let Dε(z) denote the closed disc {w ∈ C :
|w − z| ≤ ε}. Note that µ(φ−1(Dε(z))) > 0 for all ε > 0 when z ∈ Rφ.
For z ∈ Rφ, the essential pre-image φ−1

µ (z) is defined as the set of
those x ∈ Σ for which, for every neighborhood V of x in Σ, we have

lim inf
ε→0

µ
(
V ∩ φ−1(Dε(z))

)
µ (φ−1(Dε(z)))

> 0.

For z ∈ C ∖ Rφ, set φ
−1
µ (z) = ∅. When φ is continuous, φ−1

µ (z) is con-
tained in φ−1(z) [2, Theorem 6]; equality need not hold [2, p. 853–854].
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Below, the cardinalities of the essential pre-images of φ will be the values
of the spectral multiplicity function of a multiplication operator.

Let φ,φ′ : Σ → C be two measurable functions which are equal
µ-almost every where; then the norms ∥φ∥∞, ∥φ′∥∞ are equal, φ,φ′

have the same essential range, and φ,φ′ have the same essential pre-
images. From now on, we consider such functions as being equal, and
write (abusively) “function” for “equivalence class of functions modu-
lo equality µ-almost everywhere”. The space L∞(X,µ) of essentially bo-
unded complex-valued functions on (Σ, µ) is a Banach space for the norm
∥·∥∞. It is the dual of L1(X,µ), hence it can be considered with both its
norm topology and its w∗-topology (see for example [22, Theorem 1.45]).

Suppose that Σ is a nonempty compact subset of the real line. Denote
by C(Σ) the algebra of continuous functions on Σ, with the sup-norm,
and by P(Σ) the subalgebra of functions which are restrictions to Σ
of polynomial functions on R. Then P(Σ) is dense in C(Σ), by the
Stone–Weierstrass theorem, and the natural image of C(Σ) in L∞(Σ, µ)
is w∗-dense, see [22, Corollary 4.53]. It follows that P(Σ) is w∗-dense
in L∞(Σ, µ).

Definition 2.5. Let Σ, µ,m and φ be as above. The multiplication
operator MΣ,µ,m,φ is the operator defined on the space L2(Σ, µ,m) by

(MΣ,µ,m,φξ)(x) = φ(x)ξ(x) for all ξ ∈ L2(Σ, µ,m) and x ∈ Σ.

When m is the constant function of value 1, we write MΣ,µ,φ instead of
MΣ,µ,m,φ.

A straight multiplication operator MΣ,µ,m is an operator of this
type in the particular case of a compact subset Σ of the real line and of
the function φ given by the inclusion Σ ⊂ R, so that (MΣ,µ,m)(x) = xξ(x)
for all ξ ∈ L2(Σ, µ,m) and x ∈ Σ.

Proposition 2.6. Let Σ, µ, m : Σ → N∗, L2(Σ, µ,m), φ ∈ L∞(Σ, µ) be
as above, and MΣ,µ,m,φ the corresponding multiplication operator, as in
Definition 2.5. Suppose now that φ is a real-valued function.

(1) MΣ,µ,m,φ is a bounded self-adjoint operator, ∥MΣ,µ,m,φ∥ = ∥φ∥∞.

(2) The spectrum of MΣ,µ,m,φ is the essential range Rφ of φ, and λ ∈ R
is an eigenvalue of MΣ,µ,m,φ if and only if µ({x ∈ Σ : φ(x) = λ}) > 0.

(3) The spectral measure EMΣ,µ,m,φ
is given by

EMΣ,µ,m,φ
(B) = MΣ,µ,m,χφ−1(B)
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for any Borel subset B of Rφ, where χφ−1(B) stands for the cha-
racteristic function of the inverse image of B by φ.

(4) The measure µ is a scalar-valued spectral measure for MΣ,µ,m,φ.

Suppose that, in particular, Σ ⊂ R and that φ is given by the in-
clusion Σ ⊂ R; let MΣ,µ,m be the corresponding straight multiplication
operator, as in Definition 2.5. Let Σµ denote the closed support of µ.

(5) ∥MΣ,µ,m∥ = sup{|x| : x ∈ Σµ}.

(6) The spectrum of MΣ,µ,m is Σµ.

(7) EMΣ,µ,m
(B) = MΣ,µ,m,χB

for any Borel subset B of Σµ.

(8) µ is a scalar-valued spectral measure for MΣ,µ,m.

Suppose moreover that m = 1Σ is the constant function of value 1, so
that the operator M = MΣ,µ,1Σ

acts on L2(Σ, µ).

(9) For ξ ∈ L2(Σ, µ), the following conditions are equivalent:

(i) ξ is cyclic for M ;

(ii) ξ is dominant for M ;

(iii) µ({x ∈ Σ : ξ(x) = 0}) = 0.

(10) In particular, the function on Σ of constant value 1 is a cyclic
vector for M .

On the proof. Let mµ denote the restriction of the function m to Σµ. The
spaces L2(Σ, µ,m) and L2(Σµ, µ,mµ) are canonically isomorphic, and M
can be seen as an operator on L2(Σµ, µ,mµ). It follows that we can
assume without loss of generality that Σ = Σµ, namely that the closed
support of µ is the whole of Σ.

The arguments to prove Claims (1) to (4) are standard; see for examp-
le Sections 4.20 to 4.28 in [22], or any of [1, 2, 34].

Let ξ ∈ L2(Σ, µ). Suppose first that the condition µ({x ∈ Σ : ξ(x) =
0}) = 0 of (9) (iii) is satisfied. Let η ∈ L2(Σ, µ) be orthogonal to Mnξ for
all n ∈ N; we are going to show that η = 0. Note that the product ξη is
in the weak∗ dual L1(Σ, µ) of L∞(Σ, µ), because ξ and η are in L2(Σ, µ).
Since ⟨Mnξ |η⟩ =

∫
Σ xnξ(x)η(x)µ(x) = 0 for all n ∈ N, we have∫

Σ
f(x)ξ(x)η(x)dµ(x) = 0
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for all f ∈ P(Σ), and therefore also for all f ∈ L∞(Σ, µ) because P(Σ)
is w∗-dense in L∞(Σ, µ). This implies that ξη = 0 in L1(Σ, µ), hence
that ξ(x)η(x) = 0 for µ-almost all x ∈ Σ, hence by hypothesis on ξ that
η(x) = 0 for µ-almost all x ∈ Σ, hence that η = 0. It follows that ξ is
cyclic for M .

This shows (10) because the condition of (9) (iii) is clearly satisfied
for ξ the constant function of value 1. Moreover, a vector in L2(Σ, µ) is
cyclic for M if and only if it is dominant for M , by Proposition 2.1.

Suppose now on the contrary that ξ ∈ L2(Σ, µ) is such that µ({x ∈
Σ : ξ(x) = 0}) > 0. Define a Borel function χ : Σ → C by χ(x) = 1
when x is such that ξ(x) ̸= 0 and χ(x) = 0 otherwise. Then χ(M) ̸= 0
and χ(M)ξ = 0. It follows that ξ is not dominant for M .

This concludes the proof of (9).

An operator X1 on a Hilbert space H1 and an operator X2 on a
Hilbert space H2 are unitarily equivalent if there exists a unitary
operator (= a surjective isometry) U : H1 → H2 such that X2 = UX1U

∗.
If X1 ∈ L(H1) and X2 ∈ L(H2) are two self-adjoint operators which

are unitarily equivalent, their spectra coincide, Σ(X1) = Σ(X2), and
their scalar-valued spectral measures are the same.

Example 2.7 (unitarily equivalent pairs of multiplication ope-
rators). Let [a1, b1], [a2, b2] be two intervals of the real line, with −∞ <
a1 < b1 < ∞ and −∞ < a2 < b2 < ∞. We consider the Hilbert spaces
L2([a1, b1], λ) and L2([a2, b2], λ), where λ is the Lebesgue measure. Let

φ2 : [a2, b2]
≈−→ [a1, b1]

be a function of class C1, injective, mapping [a2, b2] onto [a1, b1], and such
that |φ′

2(x)| > 0 for all x ∈ ]a2, b2[. Define an operator M1 = M[a1,b1],λ,1

on L2([a1, b1], λ) by

(M1ξ1)(x) = xξ1(x) for all ξ1 ∈ L2([a1, b1]) and x ∈ [a1, b1]

and an operator M2 = M[a2,b2],λ,1,φ2
on L2([a2, b2], λ) by

(M2ξ2)(x) = φ2(x)ξ2(x) for all ξ2 ∈ L2([a2, b2]) and x ∈ [a2, b2].

Then M1 and M2 are unitarily equivalent.

Proof. Let U : L2([a1, b1], λ) → L2([a2, b2], λ) be the operator defined by

(Uξ1)(x) =
√

|φ′
2(x)| ξ1(φ2(x))
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for all ξ1 ∈ L2([a1, b1], λ) and x ∈ [a2, b2]. Then U is unitary. Indeed, for
ξ1 ∈ L2([a1, b1], λ) and ξ2 ∈ L2([a2, b2], λ), we have

∥Uξ1∥2 =
∫ b2

a2

|(Uξ1)(x)|2dx =

∫ b2

a2

|ξ1(φ2(x))|2|φ′
2(x)|dx

=

∫ b1

a1

|ξ1(y)|2dy = ∥ξ1∥2,

and similarly ∥U−1ξ2∥2 = ∥ξ2∥2.
For ξ1 ∈ L2([a1, b1], λ), we have

(M2Uξ1)(x) = φ2(x)

(√
|φ′

2(x)| ξ1
(
φ2(x)

))
=
√

|φ′
2(x)|

(
φ2(x)ξ1(φ2(x))

)
=
√

|φ′
2(x)| (M1ξ1)(φ2(x)) = (UM1ξ1)(x).

It follows that M2U = UM1, and this ends the proof.

Here are two particular cases; this will be useful in the proof of Propo-
sition 3.2.

Example 2.8. (1) Let [a1, b1] = [a2, b2] = [0, 1] and φ2(x) = xα for some
α ∈ R, α > 0. The operator M1 of multiplication by x and the operator
Mα of multiplication by xα on L2([0, 1], λ) are unitarily equivalent. The
unitary operator U on L2([0, 1], λ) is given by (Uξ)(x) =

√
αxα−1ξ(xα),

and MαU = UM1.
(2) Let [a1, b1] = [−2, 2], [a2, b2] = [0, π], and φ2(x) = 2 cos(x).

The operator M1 of multiplication by x on L2([−2, 2], λ) and the opera-
tor M2 cos of multiplication by 2 cos(x) on L2([0, π], λ) are unitarily equi-
valent. Similarly, the operator M1 on L2([−2, 2], λ) and the operator of
multiplication by 2 cos(x) on L2([π, 2π], λ) are unitarily equivalent.

2.C. The Hahn–Hellinger Multiplicity Theorem,
and spectral multiplicity functions

The following Theorem 2.9 is the keystone of Hahn–Hellinger theory.

Theorem 2.9. Any self-adjoint operator X on a separable Hilbert space
H is unitarily equivalent to the straight multiplication operator MΣ,µ,m of
Definition 2.5 for the spectrum Σ = Σ(X) of X, a scalar-valued spectral
measure µ for X, and a measurable function m : Σ → {1, 2, . . . ,∞}.
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Moreover, if µ′ is a measure on Σ and m′ : Σ → {1, 2, . . . ,∞} a mea-
surable function, then X is unitarily equivalent to the straight multipli-
cation operator MΣ,µ′,m′ if and only if the measures µ, µ′ are equivalent,
and the functions m,m′ are equal µ-almost everywhere.

For a sample of other formulations of the theorem and for proofs, see
[23, Theorem X.5.10], [20, Chap. II, § 6], [4, Section 2.2], [34], [15, Theo-
rem 10.16 and Theorem 10.20], [44, Section 5.4], and [8, Theorem 10.4.6].

Definition 2.10. Let H, X, Σ, µ and m be as in the previous theorem.
The function m is the spectral multiplicity function of X. The opera-
tor X is of finite multiplicity if there exists a finite constant N such
that m(x) ≤ N for µ-almost all x ∈ Σ. The operator X is multiplicity-
free, or simple, if m(x) = 1 for µ-almost all x ∈ Σ, equivalently if
it is unitarily equivalent to the operator of multiplication by x on the
Hilbert space L2(Σ, µ), where µ is a scalar-valued spectral measure on the
spectrum Σ of X. The operator X is of uniform multiplicity n ∈ N∗

if m(x) = n for µ-almost all x ∈ Σ(X), equivalently if X is unitarily
equivalent to a direct sum X1 ⊕ · · · ⊕Xn of pairwise unitarily equivalent
multiplicity-free self-adjoint operators X1, . . . , Xn.

Corollary 2.11 (reformulation of part of Theorem 2.9). Let X1, X2

be two self-adjoint operators on two Hilbert spaces H1,H2. Suppose that
X1 and X2 have same spectrum, equivalent scalar-valued spectral mea-
sures, and spectral multiplicity functions which are equal almost every-
where; in other words, suppose that X1 and X2 have the same marked
spectrum.

Then X1 and X2 are unitarily equivalent.

Proposition 2.12. For a self-adjoint operator X on a separable Hilbert
space H, the following properties are equivalent:

(i) X is multiplicity-free;

(ii) X has a cyclic vector.

Reference for a proof, and comments. Suppose that X satisfies Condi-
tion (i). Let MΣ,µ,m = MΣ,µ,1Σ

be as in Theorem 2.9. Then MΣ,µ,1Σ
has

a cyclic vector by (10) of Proposition 2.6, hence X has a cyclic vector.

The converse implication (ii) ⇒ (i) can be seen as one form of the
spectral theorem; we refer to [44, Theorem 5.1.7].
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The next proposition is a complement to Proposition 2.6 for the spec-
tral multiplicity function, in the simple case of m = 1Σ. We use it below
in the proof of Proposition 3.4. For the proof, we refer to [1, Theorem 5].

Proposition 2.13. Let Σ be a non-empty metrizable compact space and
µ a finite positive measure on Σ; assume that the closed support of µ is
the whole of Σ. Let φ be a continuous real-valued function on Σ, viewed
as φ ∈ L∞(Σ, µ). Let M = MΣ,µ,1Σ,φ be the multiplication operator by
φ on L2(Σ, µ), as in Definition 2.5; recall from Proposition 2.6 that the
spectrum of M is the essential range Rφ.

Then the spectral multiplicity function m for MΣ,µ,1Σ,φ satisfies

m(x) = ♯
(
φ−1
µ (x)

)
for µ-almost all x ∈ Σ(M) = Rφ.

For infinite connected graphs, spectral multiplicity functions of adja-
cency operators have not been much studied. It would be interesting (at
least for us!) to understand which of these graphs have multiplicity-free
adjacency operators.

In contrast, many results have been shown concerning finite graphs
and adjacency operators with simple eigenvalues; we quote a few.

All eigenvalues are simple for finite paths, and for all trees with at
most 10 vertices (see the tables of [17]).

If G is a finite graph such that all eigenvalues of AG are simple, any
automorphism of G is of order 2; more precisely, the automorphism group
of G is an elementary abelian 2-group ([38], see also [11, Corollary 1.6.1]).

Let G = (V,E) be a finite graph with n = |V | vertices and AG

its adjacency matrix. We denote by 1V the vector in ℓ2(V ) defined by
1V (v) = 1 for all v ∈ V . Say G is controllable if 1V is a cyclic vector
for AG. It is conjectured in [25] and proved in [40] that almost all finite
graphs are controllable, and therefore multiplicity-free. This is made pre-
cise as follows. Consider a positive integer n and a probability p ∈ ]0, 1[.
Let G(n, p) be the set of all graphs with vertex set {1, 2, . . . , n} having
⌊p
(
n
2

)
⌋ edges. Let MFG(n, p) be the subset of G(n, p) of multiplicity-free

graphs. We denote by ♯S the cardinality of a set S. Then

lim
n→∞

♯MFG(n, p)/♯G(n, p) = 1.

3. The infinite ray, the infinite line, and the lattices

Let again G = (V,E) be a graph, (δv)v∈V the standard orthonormal basis
of the Hilbert space ℓ2(V ), and AG its adjacency operator on ℓ2(V ). A
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vertex v ∈ V is dominant if the vector δv is dominant for AG, and v is
cyclic if the vector δv is cyclic for AG. The vertex spectral measure
at v ∈ V is the local spectral measure at δv on the spectrum Σ(AG) of
AG.

The infinite ray is the graph R with vertex set N = {0, 1, 2, 3, . . .}
and edge set E = {{j, j + 1} : j ∈ N}. The adjacency operator AR of R
is defined by

(ARξ)(u) = ξ(u− 1) + ξ(u+ 1) for all ξ ∈ ℓ2(N) and u ∈ N,

where ξ(−1) should be read as 0. With respect to the standard basis
(δn)n∈N of the Hilbert space ℓ2(N) the adjacency operator AR is the
free Jacobi matrix:

AR = J =


0 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .


with entries Jm,n = 1 if |m − n| = 1 and Jm,n = 0 otherwise. The
following proposition collects standard results on J .

Proposition 3.1. Let R be the infinite ray and let AR = J be its adja-
cency operator.

(1) The norm of AR is 2.

(2) The spectrum of AR is [−2, 2], and AR does not have any eigen-
value.

(3) The vertex spectral measure of AR at 0 is given by

dµ(x) =
1

2π

√
4− x2dx

for x ∈ [−2, 2]; it is a scalar-valued spectral measure for AR.

(4) The vertex 0 is cyclic in R and the operator AR is multiplicity-free.

(It is known that all vertices of R are cyclic [14, Proposition 7.1].)
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Proof. The strategy of the proof is to view J as the matrix of an operator
of multiplication by x on a Hilbert space of functions on [−2, 2] with
respect to an appropriate basis of orthogonal polynomials. For some
background on orthogonal polynomials and their relations with Jacobi
matrices, see [44, Section 4.1].

Consider the sequence (Pn)
∞
n=0 of functions defined on the interval

[−2, 2] of the real line by

Pn(2 cos θ) =
sin((n+ 1)θ)

sin(θ)

for θ ∈ [0, π]. Note that P0(x) = 1, P1(x) = x, P2(x) = x2 − 1, for all
x ∈ [−2, 2]. Define P−1 to be the zero function. From the trigonometric
formula

2 cos(θ) sin(nθ) = sin((n− 1)θ) + sin((n+ 1)θ),

it follows that

xPn−1(x) = Pn−2(x) + Pn(x) for all n ≥ 1. (3.1)

This implies, by induction on n, that Pn is a polynomial, of the form
Pn(x) = xn + (lower order terms) for all n ≥ 0.

The Pn ’s are Chebychev polynomials, up to a scale change. More
precisely, if Un(x) denotes the Chebychev polynomial of the second kind
of degree n, defined by Un(cos θ) = sin((n + 1)θ)/ sin(θ), then Pn(x) =
Un(x/2).

Define a probability measure µ on [−2, 2] by

dµ(x) =
1

2π

√
4− x2 dx for x ∈ [−2, 2].

Let m,n ≥ 0; using the change of variables x = 2 cos(θ), we compute∫ 2

−2
Pm(x)Pn(x)dµ(x) =

=
1

2π

∫ 2

−2
Pm(x)

√
4− x2 Pn(x)

√
4− x2

dx√
4− x2

=
1

2π

∫ π

0
Pm(2 cos(θ))2 sin(θ) Pn(2 cos(θ))2 sin(θ) dθ

=
2

π

∫ π

0
sin((m+ 1)θ) sin((n+ 1)θ) dθ
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=
1

π

∫ π

0

[
cos
[
(m+ 1)θ − (n+ 1)θ

]
− cos

[
(m+ 1)θ) + (n+ 1)θ

]]
dθ

=
1

π

∫ π

0

[
cos
[
(m− n)θ

]
− cos

[
(m+ n+ 2)θ

]]
dθ

= 0 if m ̸= n and 1 if m = n.

It follows that (Pn)n≥0 is an orthonormal basis of L2([−2, 2], µ). If Mµ

denotes the operator of multiplication by x on this space, we have by
Equation (3.1) above

MµPn = Pn−1 + Pn+1 for all n ≥ 0, (3.2)

where P−1 should be read as 0.

This shows that J is the matrix of Mµ with respect to the basis
(Pn)n≥0. The claims of Proposition 3.1 follow therefore from the corre-
sponding facts of Proposition 2.6.

The line is the graph L with vertex set Z = {. . . ,−1, 0, 1, . . .} and
edge set E = {{j, j + 1} : j ∈ Z}. The line can be seen as the Cayley
graph of the infinite cyclic group Z generated by {1,−1}. The adjacency
operator AL of L is defined by

(ALξ)(u) = ξ(u− 1) + ξ(u+ 1) for all ξ ∈ ℓ2(Z) and u ∈ Z.

The following proposition can be viewed as an exercise in Fourier series.

Proposition 3.2. Let L be the infinite line and let AL be its adjacency
operator.

(1) The norm of AL is 2.

(2) The spectrum of AL is [−2, 2].

(3) For all j ∈ Z, the vertex spectral measure µj of AL at j is given by
its density with respect to the Lebesgue measure:

dµj(x) =
1

π
√
4− x2

dx for x ∈ [−2, 2].

The measure µj is independent of j, it is a scalar-valued spectral
measure for AL, and the vertex j is dominant.

(4) The operator AL is of uniform multiplicity 2.
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Lemma 3.3. The adjacency operator AL of the line L is unitarily equi-
valent to the operator M[0,2π],λ,2 cos of multiplication by the function 2 cos
on the Hilbert space L2([0, 2π], λ), where λ stands for the Lebesgue mea-
sure on the interval.

Proof. The Fourier transform

U : ℓ2(Z) → L2([0, 2π], λ), (Uξ)(x) =
∑
n∈Z

ξ(n)einx

is a surjective isometry with inverse

U−1 : L2([0, 2π], λ) → ℓ2(Z), (U−1η)(n) =
1

2π

∫ 2π

0
η(x)e−inxdx.

For any η ∈ L2([0, 2π], λ), we have(
UALU

−1η
)
(x) =

∑
n∈Z

(
ALU

−1η
)
(n)einx

=
∑
n∈Z

( (
U−1η

)
(n− 1)einx +

(
U−1η

)
(n+ 1)einx

)
=
(∑

k∈Z

(
U−1η

)
(k)eikx

)
eix +

(∑
k∈Z

(
U−1η

)
(k)eikx

)
e−ix

=
(
U(U−1η)

)
(x)eix +

(
U(U−1η)

)
(x)e−ix = 2 cos(x)η(x)

for all x ∈ [0, 2π], so that

UALU
−1 = M[0,2π],λ,2 cos

as was to be proved.

Proof of Proposition 3.2. For (1) and (2), use Lemma 3.3: the norm of
AL is the norm of M[0,2π],λ,2 cos, which is sup−2≤x≤2 |2 cos(x)| = 2, and
the spectrum of AL is the spectrum of M[0,2π],λ,2 cos, which is the range
of the function 2 cos, namely which is [−2, 2].

(3) Let j ∈ Z, viewed as a vertex of L. The vertex spectral measure
µj at j is defined by∫

[−2,2]
f(x)dµj(x) = ⟨f(AL)δj | δj⟩
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for all continuous function f on the spectrum of AL. For n ∈ N, its nth

moment is ∫
[−2,2]

xndµj(x) = ⟨(AL)
nδj | δj⟩.

This number is also the number of paths of length n from j to j in the
graph L. When n is odd, this number is clearly 0. When n = 2m is even,
each such path has m left steps and m right steps, so that this number
is the binomial coefficient

(
2m
m

)
.

The moments of the measure 1
π
√
4−x2

dx on [−2, 2] are also easy to

compute. Moments of odd order vanish, because
∫ 2
−2

f(x)

π
√
4−x2

dx = 0 when

f is an odd function, in particular when f(x) = x2m+1 for some m ∈ N.
For moments of even order 2m, using again the change of variables x =
2 cos θ, we have∫ 2

−2

x2m

π
√
4− x2

dx =
1

π

∫ π

0

(2 cos θ)2m

2 sin θ
2 sin θ dθ

=
1

π

∫ π

0

(
eiθ + e−iθ

)2m
dθ

=
1

π

2m∑
k=0

(
2m

k

)∫ π

0
ei2(m−k)θ dθ =

(
2m

m

)
,

because all but one term (k = m) vanish in the sum over k.

These computations show that the measures µj and
dx

π
√
4−x2

on [−2, 2]

have the same moments, hence they are equal. In particular µj is inde-
pendent of j. It follows from Proposition 2.1 (6) that this measure is a
scalar-valued spectral measure for AL, and that the vertex j is dominant.

On the one hand, Claim (4) follows from Proposition 2.13. On the
other hand, we prefer to show it with a more elementary argument, as
follows.

We view the operator M[0,2π],λ,2 cos of Lemma 3.3 as the direct sum
of two operators: the operator M[0,π],λ,2 cos of multiplication by 2 cos on
L2([0, π], λ) and the operator M[π,2π],λ,2 cos of multiplication by 2 cos on
L2([π, 2π], λ). By Example 2.8, each of these two operators is unitarily
equivalent to the operator M1 of multiplication by x on L2([−2, 2], λ). It
follows thatM[0,2π],λ,2 cos, and therefore also the adjacency operator AL of
the line, are unitarily equivalent to the operator of multiplication by x on
the space L2([−2, 2], λ,C2), so that AL is of uniform multiplicity 2.
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Let now d be an integer, d ≥ 1. Let {e1, . . . , ed} be the canonical
basis of the free abelian group Zd. The lattice Ld is the graph with
vertex set Zd and edge set

E = {{u, v} : u ∈ Zd, v = u+ ej for some j ∈ {1, . . . , d}}.

In other words, Ld is the Cayley graph of the group Zd with respect to
the generating set {±e1, . . . ,±ed}. The adjacency operator Ad of Ld is
given by

(Adξ)(u) =
d∑

j=1

ξ(u− ej) + ξ(u+ ej) for all ξ ∈ ℓ2(Zd) and u ∈ Zd.

When d = 1, the lattice L1 is the infinite line L of Proposition 3.2;
now we denote by µ1 the vertex spectral measure of the line, given by
dµ1(x) =

1
π
√
4−x2

dx for all x ∈ [−2, 2].

Proposition 3.4. Let d ≥ 2. Let Ld be the lattice graph of dimension d
and let Ad be its adjacency operator.

(1) The norm of Ad is 2.

(2) The spectrum of Ad is [−2d, 2d].

(3) The vertex spectral measure µd of a vertex v in Ld is independent
of v; it is the convolution of d copies of the spectral measure µ1 of
Proposition 3.2. It is a scalar-valued spectral measure for Ad and
it is equivalent to the Lebesgue measure supported on [−2d, 2d].

(4) The operator Ad had infinite uniform multiplicity.

For the proof of the proposition above, we begin as for Proposi-
tion 3.2, with minor modifications. Much of what follows holds for d ≥ 1,
rather than for d ≥ 2 only. Proposition 2.13 is used for the only slightly
delicate point, which is our proof of (4).

Lemma 3.5. Let λ denote the Lebesgue measure on [0, 2π]d. The Fourier
transform

U : ℓ2(Zd) → L2([0, 2π]d, λ), (Uξ)(x) =
∑
u∈Zd

ξ(u)ei⟨u|x⟩
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(where ⟨u |x⟩ =
d∑

j=1
ujxj) is a surjective isometry with inverse

U−1 : L2([0, 2π]d, λ) → ℓ2(Zd),

(U−1η)(u) =
1

(2π)d

∫
[0,2π]d

η(x)e−i⟨u|x⟩dx.

Let 2
∑

cos be the function [0, 2π]d → R, x = (xj)
d
j=1 7→ 2

d∑
j=1

cos(xj).

The operators Ad and M[0,2π]d,λ,2
∑

cos are unitarily equivalent; more
precisely:

UAdU
−1 = M[0,2π]d,λ,2

∑
cos.

Proof. For any η ∈ L2([0, 2π]d, λ), we have(
UAdU

−1η
)
(x) =

∑
u∈Zd

(
AdU

−1η
)
(u)ei⟨u|x⟩

=
∑
u∈Zd

d∑
j=1

( (
U−1η

)
(u− ej)e

i⟨u|x⟩ +
(
U−1η

)
(u+ ej)e

i⟨u|x⟩
)

=
d∑

j=1

( ∑
k∈Zd

(
U−1η

)
(k)ei⟨k|x⟩

)
eixj +

d∑
j=1

( ∑
k∈Zd

(
U−1η

)
(k)ei⟨k|x⟩

)
e−ixj

=

d∑
j=1

U(U−1η)(x)eixj +

d∑
j=1

U(U−1η)(x)e−ixj =

2

d∑
j=1

cos(xj)

 η(x),

so that UALU
−1 is the operator of multiplication by 2

∑
cos on the

Hilbert space L2([0, 2π]d, λ).

Proof of Proposition 3.4. By Proposition 2.6, M[0,2π]d,λ,2
∑

cos, the ope-

rator of multiplication by the function 2
∑d

j=1 cos(xj) on L2([0, 2π]d, λ),
has norm 2d and spectrum [−2d, 2d]. Claims (1) and (2) follow from
Lemma 3.5.

Observe that there is a natural isomorphism

ℓ2(Z)⊗ ℓ2(Z)⊗ · · · ⊗ ℓ2(Z) → ℓ2(Zd)

by which we can identify the operators

A1 ⊗ Id⊗ · · · ⊗ Id + · · ·+ Id⊗ · · · ⊗ Id⊗A1 and Ad.
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By Proposition 2.3, the vertex spectral measure of Ad at a vertex of Ld

is the convolution of d copies of the vertex spectral measure of A1 at a
vertex of L1. It follows from Proposition 2.1 (6) that the vertex spectral
measure of Ad at a vertex of Ld is a scalar-valued spectral measure for
Ad. This proves the first part of Claim (3).

By Proposition 3.2, the vertex spectral measure at a vertex of the
line L1 is dµ1(x) = f(x)dx, where f(x) = 1

π
√
4−x2

if −2 < x < 2 and

f(x) = 0 otherwise. The vertex spectral measure at a vertex of the lattice
Ld, which is the convolution power µd ≑ µ1 ∗ µ1 ∗ · · · ∗ µ1 (d factors),
is consequently of the form fd(x)dx, where fd is a continuous function,
fd(x) > 0 for all x ∈ ]−2d, 2d[, and fd(x) = 0 for all x such that |x| ≥ 2d.
In particular, this measure µd is equivalent to the Lebesgue measure on
the interval [−2d, 2d]. This concludes the proof of Claim (3).

By Proposition 2.13, the operatorM[0,2π]d,λ,2
∑

cos has uniform infinite
spectral multiplicity. By Lemma 3.5, Claim (4) follows.

Remark 3.6. Consider the so-called discrete Laplacian Dd = 2d Id−Ad

on the lattice Ld, acting on ℓ2(Zd). Proposition 3.4 shows that Dd has
spectrum [0, 4d] and uniform multiplicity, 2 when d = 1 and ∞ when

d ≥ 2. The continuous Laplacian ∆d = −
d∑

j=1

∂2

∂x2
j
on the Euclidean space

Rd is an unbounded self-adjoint operator with domain

Dom(∆d) =

{
ξ ∈ L2(Rd, λ) :

∫
Rd

∥k∥2 |ξ̂(k)|2dλ(k) < ∞
}
,

where λ denotes the Lebesgue measure and ξ̂ the Fourier transform of ξ.
The spectrum of ∆d is [0,∞[. The operators Dd and ∆d share the same
multiplicities: it is known that ∆d has uniform multiplicity, 2 when d = 1
and ∞ when d ≥ 2.

Let D∞ = (V ′, E′) be the graph obtained from R = (V,E) by adding
one vertex 0′ to the set of vertices V of R and one edge {0′, 1} to the set
of edges E of R. Thus V ′ = {0′} ∪N and

E′ =
{
{0′, 1}, {0, 1}, {1, 2}, {2, 3}, . . .

}
= {0′, 1} ∪ E.

Let AD be the adjacency operator of D∞.

Proposition 3.7. The spectrum of AD is [−2, 2] and 0 is an eigenvalue
of AD. The vertices 0 and 0′ are cyclic, and AD is multiplicity-free.
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Proof. The spectrum Σ(X) of a bounded self-adjoint operator X is the
union of the essential spectrum Σess(X) and a discrete set of points in
R ∖ Σess(X) which are eigenvalues of finite multiplicity. In particular
Σess(J1) = Σ(J1) = [−2, 2] by Proposition 3.1.

Let R′ = (V ′, E) be the graph obtained from R = (V,E) by adding
one isolated vertex {0′}, and let A′

R be its adjacency operator. The
marked spectrum of A′

R is the union of that of AR = J1 and of the simple
eigenvalue 0. The operator AD is a perturbation of A′

R by an operator of
finite rank, indeed of rank 2. If K is a compact self-adjoint operator on
the same space as X, it is a theorem of Weyl that Σess(X+K) = Σess(X)
[44, Theorem 3.14.1]. In particular

Σess(AD)
(by Weyl)

= Σess(A
′
R) = Σ(A′

R) = [−2, 2]. (3.3)

Let n ≥ 4. The finite graph Dn has vertex set {0′, 0, 1, . . . , n − 2}
and edge set

{
{0′, 1}, {0, 1}, {1, 2}, . . . , {n − 3, n − 2}

}
. The spectrum

Σ(Dn) of its adjacency operator is well-known [11, Theorem 3.1.3] to be
a finite subset of ]−2, 2[. Let D′

n be the graph with vertex set V ′ and
the same edge set as Dn. Since 0 ∈ Σ(Dn), the spectrum of D′

n is the
same as that of Dn. For n → ∞, the sequence of the adjacency operators
of D′

n converges strongly to AD. It follows that Σ(AD) is contained in
the union

⋃
n≥4Σ(D

′
n), hence in [−2, 2]; see [23, Section X.7]. Together

with (3.3), this shows that Σ(AD) = [−2, 2].
Let ξ ∈ ℓ2(V ′) be defined by ξ(0) = 1, ξ(0′) = −1 and ξ(j) = 0 for all

j ≥ 1. Then ADξ = 0, so that 0 is an eigenvalue of AD. It is easy to check
that 0 and 0′ are cyclic vertices; if necessary, see [14, Example 7.2].

Proposition 3.8. Let G be an infinite connected graph of bounded de-
gree with adjacency operator AG such that ∥AG∥ ≤ 2. Then ∥AG∥ = 2,
Σ(AG) = [−2, 2], and G is isomorphic to one of the three following
graphs:

– the infinite ray R and then AG is multiplicity-free, without eigen-
value;

– the graph D∞ and then AG is multiplicity-free, with an eigenvalue;

– the infinite line L and then AG is of uniform multiplicity two, with-
out eigenvalue.

It follows that these three graphs are determined by their marked spectrum
among connected graphs of bounded degree.



68 Spectral multiplicity functions of graphs

Proof. Let F = (VF , EF ) be a finite subgraph of G = (VG, EG), and let
Find = (VF , Eind) be the subgraph of G induced by VF . Then ∥AF ∥ ≤
∥AFind

∥ by Perron–Frobenius theory and ∥AFind
∥ ≤ ∥AG∥ by standard

arguments (details in [14, proof of Proposition 3.1]), so that ∥AF ∥ ≤ 2.
Computations with finite graphs show we would have ∥AF ∥ > 2 if F

was a connected finite graph containing strictly one of Ãn (n ≥ 2), D̃n

(n ≥ 4), Ẽn (n = 6, 7, 8), and this is not possible. Here Ãn denotes the
cycle with n + 1 vertices, D̃n the graph obtained from a segment with
vertices v1, . . . , vn−1 and edges {vj , vj+1} (1 ≤ j ≤ n− 2) by adding two

vertices v0, vn and two edges {v0, v2}, {vn−2, vn}, and Ẽ6, Ẽ7, Ẽ8 the stars
with respectively 7, 8, 9 vertices described in [11]; see Theorem 3.1.3 in
this book. It follows that G is a tree, because it does not contain strictly
any Ãn (n ≥ 2). Also G does not have vertices of degree ≥ 4, and G has
at most one vertex of degree 3, because it does not contain strictly any
D̃n (n ≥ 4). And finally, if G contains a vertex of degree 3, two of the
segments starting from this vertex must be of length 1, because it does
not contain strictly any Ẽn (n = 6, 7, 8). It follows that G is isomorphic
to one of R,D∞, L, hence ∥AG∥ = 2 and Σ(AG) = [−2, 2].

Since R,D∞, and L have different multiplicity functions, each of them
is determined by its marked spectrum among connected graphs.

Proposition 3.9. The infinite ray R is determined by its marked spec-
trum.

Proof. Let G be a graph of bounded degree with the same marked spec-
trum as that of R. Let (Gi)i∈I be the connected components of G.
Denote by AG the adjacency operator of G and, for each i ∈ I, by Ai

that of Gi. There cannot exist i ∈ I with Gi finite; otherwise Σ(Ai)
would consist of eigenvalues, and thus Σ(AG) would contain eigenvalues,
but this is impossible since Σ(AR) does not; hence each Gi is infinite. By
Proposition 3.8, each Gi is isomorphic to one of R,D∞, or L; but D∞
is impossible because AR does not have eigenvalue and L is impossible
because AR has uniform spectral multiplicity 1; hence each Gi is isomor-
phic to R. The graph G cannot be the union of 2 or more connected
components isomorphic to R, again because AR has uniform spectral
multiplicity 1; hence G is isomorphic to R.

Note that the infinite line L is not characterized by its marked spec-
trum. Indeed, the adjacency operator AL and the adjacency operator of
a graph with two connected components isomorphic to R are unitarily
equivalent, as it follows from Corollary 2.11 and Propositions 3.1 & 3.2.
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It is natural to ask whether there are other infinite connected graphs

G with ∥AG∥ <
√
2 +

√
5 ∼ 2.058 which are characterized by their mar-

ked spectrum among connected graphs; see [12]. The range
√
2 +

√
5 ≤

∥AG∥ ≤ 3
2

√
2 ∼ 2.121 could also be investigated [47].

4. Spherically symmetric infinite rooted trees

Let T = (V,E) be a spherically symmetric rooted tree, of bounded degree
and without leaves, and let AT be its adjacency operator. The main
technical result of this section is Proposition 4.6, showing an orthogonal
decomposition of ℓ2(V ) in subspaces invariant by AT on each of which AT

is an infinite Jacobi matrix. This is standard, it has been used for trees
as here and in other contexts; see [41], [3, Lemma 1], [45, Theorem 3.2],
[9, Theorem 2.4].

Let T = (V,E) be a tree. Choose a root v0 ∈ V . For v ∈ V , denote
by |v| the distance from v to v0. For an integer r ≥ 0, let Sr = {v ∈ V :
|v| = r} be the sphere in V of radius r around v0. For v ∈ V , denote
by N+

v the set of neighboring vertices of V at distance |v| + 1 from v0.
For v ∈ V different from v0, denote by v− the neighboring vertex of v at
distance |v| − 1 from v0; note that, for v ̸= v0, the set of neighbors of v
is {v−} ∪ N+

v , and therefore the degree of v is deg(v) = 1 + |N+
v |. The

set of neighbors of v0 is N+
v0 = S1.

The infinite rooted tree T is spherically symmetric if, for every
r ≥ 0, every vertex in Sr has exactly dr ≥ 1 adjacent vertices in Sr+1, for
some sequence (dr)r≥0 of positive integers, the sequence of branching
degrees of T . From now on, we consider an infinite spherically symmet-
ric rooted tree T of bounded degree, with sequence of branching degrees
such that

dr ≥ 2 for all r ≥ 0 and sup
r

dr < ∞. (4.1)

For r ≥ 0, we identify ℓ2(Sr) with the subspace of ℓ2(V ) of functions
which vanish on V ∖ Sr. We set ℓ2(S−1) = {0}. Define an operator H
on ℓ2(V ) by

(Hξ)(v) = ξ(v−) if |v| ≥ 1 and (Hξ)(v0) = 0 for all ξ ∈ ℓ2(V ). (4.2)

Proposition 4.1. Let T = (V,E) be a spherically symmetric infinite
rooted tree with root v0 ∈ V , and with sequence of branching degrees
(dr)r≥0 such that Condition (4.1) holds. Let AT and H be as above.



70 Spectral multiplicity functions of graphs

(1) The operator H is bounded on ℓ2(V ) of norm
√
maxr≥0 dr, and is

injective.

(2) The adjoint H∗ of H is given by

(H∗ξ)(v) =
∑

w∈N+
v

ξ(w) for all ξ ∈ ℓ2(V ) and v ∈ V, (4.3)

and we have

AT = H +H∗.

(3) For all r ≥ 0:

◦ the restriction 1√
dr
H
∣∣
ℓ2(Sr)

is an isometry from ℓ2(Sr) into

ℓ2(Sr+1) and
1
dr
H∗H

∣∣
ℓ2(Sr)

= Idℓ2(Sr);

◦ H∗(ℓ2(Sr)) = ℓ2(Sr−1) and HH∗(ℓ2(Sr)) ⊂ ℓ2(Sr).

(4) Let r ≥ 0 and k ≥ 0. If ξ and η in ℓ2(Sr) are orthogonal, then Hkξ
and Hkη in ℓ2(Sr+k) are also orthogonal.

Proof. (1) Let ξ ∈ ℓ2(V ). We have

∥Hξ∥2 =
∑
v∈V

|(Hξ)(v)|2 =
∑

v∈V,v ̸=v0

|ξ(v−)|2 =
∑
w∈V

d|w| |ξ(w)|2

≤
(
max
r≥0

dr
) ∑
w∈V

|ξ(w)|2 =
(
max
r≥0

dr
)
∥ξ∥2,

hence ∥H∥ ≤
√

maxr≥0 dr. For the equality, see the end of (3) below.

If Hξ = 0, i.e., if ξ(v−) = 0 for all v ∈ V ∖ {v0}, then ξ = 0, hence
H is injective.

(2) We use temporarily Formula (4.3) as a definition of H∗. Then
H∗ is bounded; indeed, using the Cauchy–Schwarz inequality, we have
for all ξ ∈ ℓ2(V )

∑
v∈V

|(H∗ξ)(v)|2 =
∑
v∈V

∣∣∣ ∑
w∈N+

v

ξ(w)
∣∣∣2 ≤ ∑

v∈V
d|v|

∑
w∈N+

v

|ξ(w)|2

=
∑

w∈V,w ̸=v0

d|w|−1|ξ(w)|2 ≤
(
max
r≥0

dr
)
∥ξ∥2.
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And H∗ is the adjoint of H because, for ξ, η ∈ ℓ2(V ), we have

⟨H∗ξ |η⟩ =
∑
v∈V

(H∗ξ)(v)η(v) =
∑
v∈V

∑
w∈N+

v

ξ(w)η(v)

=
∑
w ̸=v0

ξ(w)η(w−) =
∑
w ̸=v0

ξ(w)(Hη)(w) = ⟨ξ |Hη⟩.

The equality AT = H +H∗ follows from (4.2) and (4.3).

(3) Let ξ ∈ ℓ2(Sr). It is obvious that Hξ ∈ ℓ2(Sr+1). Moreover, the
computation of the proof of (1) continues as

∥Hξ∥2 =
∑
w∈V

d|w| |ξ(w)|2 = dr
∑
w∈Sr

|ξ(w)|2 = dr∥ξ∥2,

hence 1√
dr
H
∣∣
ℓ2(Sr)

is an isometry from ℓ2(Sr) into ℓ2(Sr+1). We have also

(H∗Hξ)(v) =
∑

w∈N+
v

(Hξ)(w) = drξ(v) for all v ∈ V,

hence
1

dr
H∗H

∣∣
ℓ2(Sr)

= Idℓ2(Sr). (4.4)

It follows that H∗ maps ℓ2(Sr+1) onto ℓ2(Sr), and also that ∥H∥ ≥
√
dr.

It follows now that ∥H∥ =
√
maxr≥0 dr.

(4) For ξ and η orthogonal in ℓ2(Sr) we have, using Equality (4.4),

⟨Hξ |Hη⟩ = ⟨H∗Hξ |η⟩ = dr⟨ξ |η⟩ = 0,

so that Hξ and Hη are orthogonal in ℓ2(Sr+1). For k ≥ 2, the same
argument repeated k times shows that Hkξ and Hkη are orthogonal.

Set

U0,0 = ℓ2(S0) and U0,r = Hr(U0,0) for each integer r ≥ 0.

Note that U0,r is the one-dimensional subspace of ℓ2(V ) of functions on
V which vanish outside Sr and which are constant on Sr. Set

V0 =
∞⊕
r=0

U0,r,
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which is the subspace of ℓ2(V ) of functions which are constant on each
sphere.

We define now subspaces Un,r and Vn for n ≥ 1 and r ≥ n, by
induction on n. Let n ≥ 1; assume that Um,q has already been defined
when 0 ≤ m < n and q ≥ m. Define

Un,n = orthogonal complement of U0,n ⊕ U1,n ⊕ · · · ⊕ Un−1,n in ℓ2(Sn),

Un,r = Hr−n(Un,n) in ℓ2(Sr) for all r ≥ n,

Vn =
∞⊕
r=n

Un,r.

Observe that

ℓ2(V ) =

∞⊕
r=0

ℓ2(Sr) and ℓ2(Sr) =

r⊕
n=0

Un,r for all r ≥ 0. (4.5)

Proposition 4.2. Let the notation be as above. There are orthogonal
direct sums decompositions

ℓ2(V ) =

∞⊕
n=0

Vn =

∞⊕
n=0

∞⊕
r=n

Un,r.

For each n ≥ 0, the subspace Vn of ℓ2(V ) is invariant by H, H∗, and AT .

Proof. We continue to follow [3].

We first check that the direct sums are orthogonal. Let n1, r, s be
nonnegative integers such that r ̸= s and 0 ≤ n1 ≤ min{r, s}. The
spaces Un1,r and Un1,s are orthogonal, because they are respectively sub-
spaces of ℓ2(Sr) and ℓ2(Ss) which are orthogonal. It follows that Vn1 =
∞⊕

r=n1

Un1,r is an orthogonal sum. Let moreover n2 be an integer such that

n2 > n1. The spaces Un1,n2 and Un2,n2 are orthogonal by definition of
Un2,n2 . By (4) of Proposition 4.1, the spaces Un1,r = Hr−n2(Un1,n2) and
Un2,r = Hr−n2(Un2,n2) are orthogonal whenever r ≥ n2. It follows that

Vn1 =
∞⊕

r=n1

Un1,r and Vn2 =
∞⊕

r=n2

Un2,r are orthogonal, and therefore that

ℓ2(V ) =
∞⊕
n=0

Vr is an orthogonal sum.

By definition, each Vn is invariant by H. It remains to show that
each Vn is also invariant by H∗, i.e., that H∗(Un,r) ⊂ Vn for all r ≥ n.
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Let ξ ∈ Un,r for some n and r such that 0 ≤ n ≤ r; we distinguish
three cases.

Assume first that r > n. There exists η ∈ Un,n such that ξ =
Hr−nη. Then H∗ξ = (H∗H)(Hr−n−1η) = dr−1H

r−n−1η by (3) of Propo-
sition 4.1, hence H∗ξ ∈ Un,r−1 ⊂ Vn.

Assume now that r = n ≥ 1. Then H∗ξ ∈ ℓ2(Sn−1). We claim
that H∗ξ = 0. Indeed, choose ℓ ∈ {0, 1, . . . , n − 1} and ζ ∈ Uℓ,n−1.
Then Hζ ∈ Uℓ,n and ξ ∈ Un,n are orthogonal (because ℓ < n), so that
⟨H∗ξ | ζ⟩ = ⟨ξ | Hζ⟩ = 0; hence H∗ξ is orthogonal to Uℓ,n−1 for each
ℓ ≤ n− 1, i.e., H∗ξ is orthogonal to ℓ2(Sn−1), i.e., H

∗ξ = 0.

Assume finally that r = n = 0; then H∗ξ = 0. This shows that
H∗ξ ∈ Vn in all cases.

The next proposition is now straightforward:

Proposition 4.3. With the notation as above, we have

(1) dim ℓ2(Sn) = |Sn| =
∏n−1

q=0 dq for all n ≥ 0;

(2) dimUn,r =
(∏n−2

q=0 dq

)
(dn−1 − 1) for all n ≥ 2 and r ≥ n;

and dimU1,r = d0 − 1 for all r ≥ 1; and dimU0,r = 1 for all r ≥ 0;

(3) dimVn = ∞ for all n ≥ 0.

Let n ≥ 0. Denote by ℓ2(N,Un,n) the Hilbert space of sequences

(ξj)j≥0 of vectors in Un,n such that
∞∑
j=0

∥ξj∥2 < ∞. For all j ≥ 0, by (3)

of Proposition 4.1 and by definition of Un,n+j , the operator

1√∏n+j−1
q=n dq

Hj : Un,n → Un,n+j

is a surjective isometry.

Let ξ ∈ Vn. For all j ≥ 0, there exists ξn+j ∈ Un,n+j , and therefore
χn+j ∈ Un,n, such that

ξ =
(
ξn+j

)
j≥0 with ξn+j =

1√∏n+j−1
q=n dq

Hjχn+j for all j ≥ 0. (4.6)

Note that ∥ξn,j∥ = ∥χn,j∥. We have shown:
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Proposition 4.4. Let the notation be as above. For any n ≥ 0, the
operator

Wn : Vn → ℓ2(N,Un,n) defined by Wn

(
(ξn+j)j≥0

)
= (χn+j)j≥0

is a surjective isometry, and W ∗
n

(
(χn+j)j≥0

)
= (ξn+j)j≥0.

Let n ≥ 0. We define the weighted shift SU ,n on ℓ2(N,Un,n) by

SU ,n(χn, χn+1, χn+2, χn+3, . . .) =

= (0,
√

dnχn,
√
dn+1χn+1,

√
dn+2χn+2, . . .).

The operator SU ,n is the direct sum of dim(Un,n) copies of the standard
weighted shift Sn defined on the usual sequence space ℓ2(N) by

Sn(λ0, λ1, λ2, λ3, . . .) = (0,
√

dnλ0,
√

dn+1λ1,
√
dn+2λ2, . . .). (4.7)

Proposition 4.5. With the notation as above, we have for all n ≥ 0

WnHW ∗
n = SU ,n and WnH

∗W ∗
n = S∗

U ,n.

Proof. Let
(
χn+j

)
j≥0

∈ ℓ2(N,Un,n). The vector W ∗
n

(
(χn+j)j≥0

)
is the

vector ξ of (4.6), so that

HW ∗((χn+j)j≥0

)
= H

(
(ξn+j)j≥0

)
= H

(( √
dn+j√∏n+j
q=n dq

Hjχn+j

)
j≥0

)

= (0, η1, η2, . . . , ηk, . . .)

with

ηk =
√

dn+k−1
1√∏n+k−1

q=n dq

Hk−1χn+k−1 =
√
dn+k−1ξn+k−1

for all k ≥ 1. Therefore

WnHW ∗
n

(
(χn+j)j≥0

)
= Wn(0, η1, η2, . . . , ηk, . . .)

= Wn(0,
√
dnξn,

√
dn+1ξn+1,

√
dn+2ξn+2, . . .)

= SU ,n(χn, χn+1, χn+2, χn+3, . . .),

hence WnHW ∗
n = SU ,n. Finally WnH

∗W ∗
n = (WnHW ∗

n)
∗ = S∗

U ,n.



P. de la Harpe 75

For n ≥ 0, we denote by

δ∗,n the sequence (
√
dn,
√

dn+1, . . . ,
√
dn+j , . . .)

and we consider the infinite Jacobi matrix

Jδ∗,n =


0

√
dn 0 0 · · ·√

dn 0
√
dn+1 0 · · ·

0
√
dn+1 0

√
dn+2 · · ·

0 0
√
dn+2 0 · · ·

· · · · · · · · · · · · . . .

 . (4.8)

If we identify the operators Sn of (4.7) and S∗
n with their matrices with

respect to the standard basis (δj)j∈N of ℓ2(N), we have

Jδ∗,n = Sn + S∗
n.

Here is a reformulation of part of the previous propositions.

Proposition 4.6. Let T = (V,E) be an infinite spherically symmetric
tree with root v0 and with sequence of branching degrees (dr)r≥0 such that
dr ≥ 2 for all r ≥ 0 and supr dr < ∞.

The adjacency operator AT of T is unitarily equivalent to a direct

sum
∞⊕
n=0

mnJδ∗,n, where the multiplicities mn are given by

mn = dimUn,n =
( n−2∏

q=0

dq

)
(dn−1 − 1) for n ≥ 2

m1 = dimU1,1 = d0 − 1

m0 = dimU0,0 = 1

and where the Jδ∗,n ’s are the Jacobi matrices of (4.8).

As a first particular case, consider an integer d ≥ 2, the constant
sequence (d, d, d, . . .), and the regular rooted tree T root

d = (V,E) of
branching degree d; the relevant Jacobi matrix is the multiple

√
dJ of

the free Jacobi matrix J of Section 3. By Proposition 3.1 for the marked
spectrum of J and by Proposition 2.2, we obtain the marked spectrum
of

√
dJ :
(1) The norm of

√
dJ is 2

√
d.

(2) The spectrum of
√
dJ is [−2

√
d, 2

√
d].
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(3) The vertex spectral measure of
√
dJ at δ0 is

dµ(x) =
1

2πd

√
4d− x2 dx

for x ∈ [−2
√
d, 2

√
d] (where dx stands for the Lebesgue measure).

(4) The vector δ0 is cyclic for
√
dJ and

√
dJ is multiplicity-free.

By Proposition 4.6, the adjacency operator of T root
d is the direct sum of

infinitely many copies of
√
dJ , and we obtain the following:

Proposition 4.7. Let d ≥ 2 and let T root
d = (V,E) be the regular rooted

tree of branching degree d. Let Aroot
d denote the adjacency operator of

T root
d .

(1) The norm of Aroot
d is 2

√
d.

(2) The spectrum of Aroot
d is [−2

√
d, 2

√
d].

(3) The vertex spectral measure at 0 is dµ(x) = 1
2πd

√
4d− x2 dx for x

in Σ(Aroot
d ); it is a scalar-valued spectral measure for Aroot

d .

(4) Aroot
d has uniform infinite multiplicity.

Recall from the introduction that two graphs G,G′ of bounded degree
are cospectral if their adjacency operators have equal spectra, equiva-
lent scalar-valued spectral measures, and spectral multiplicity functions
which are equal almost everywhere.

Corollary 4.8. For any integer d ≥ 2, the lattice graph Ld and the
regular rooted tree T root

d2 are cospectral.

Proof. This is an immediate consequence of Corollary 2.11 and of Propo-
sitions 3.4 and 4.7.

Note that the measure µd of Proposition 3.4 for Ld and the measure
µ of Proposition 4.7 for T root

d2 are not equal, but they are both equiva-
lent to the Lebesgue measure on [−d2, d2], and this is enough to apply
Corollary 2.11.

Example 4.9. Consider an integer p ≥ 2 and a sequence of integers
d∗ = (dr)r≥0 such that dr ≥ 2 and dp+r = dr for all r ≥ 0. For
s ∈ {0, 1, . . . , p − 1}, let Ts be the spherically symmetric rooted tree
with sequence of branching degrees d∗,s = (ds, ds+1, ds+2, . . .). When p is
the smallest period of the sequence d∗, the trees T0, . . . , Tp−1 are pairwise
non-isomorphic.

It follows from Proposition 4.6 that the p trees T0, . . . , Tp−1 are cos-
pectral.
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5. Regular trees

For any positive real number a, set

Ja =


0 a 0 0 · · ·
a 0 1 0 · · ·
0 1 0 1 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

 . (5.1)

Note that J1 is the free Jacobi matrix. Matrices J∗∗∗ here and below are
identified with the corresponding operators on the Hilbert space ℓ2(N),
with its canonical orthonormal basis.

Let d be an integer, d ≥ 3; let Td = (V,E) be the regular tree of
degree d. Choose one vertex v0 ∈ V to be the root of Td. Then Td is
the spherically symmetric rooted tree with sequence of branching degrees
(d, d− 1, d− 1, d− 1, . . .) of which all terms are d− 1 but the initial one
which is d. The matrix Jδ∗,0 of Proposition 4.6 is

J√d,
√
d−1

∞ =



0
√
d 0 0 0 · · ·√

d 0
√
d− 1 0 0 · · ·

0
√
d− 1 0

√
d− 1 0 · · ·

0 0
√
d− 1 0

√
d− 1 · · ·

0 0 0
√
d− 1 0 · · ·

...
...

...
...

...
. . .


,

= J√d,
√
d−1

∞ =
√
d− 1Ja for a =

√
d√

d− 1
.

(5.2)

Note that 1 ≤ a ≤
√

3/2, since d ≥ 3. The other matrices Jδ∗n of Propo-
sition 4.6, for n ≥ 1, are all equal to

√
d− 1J1. For Proposition 5.3 below,

we will need to know properties of the scalar-valued spectral measures
defined by these matrices. This is straightforward and very standard for
J1, as already shown in Proposition 3.1, but we did not find a simple ad
hoc argument for J√d/

√
d−1, and we rather quote the following

Proposition 5.1. Consider a real number a such that 0 < a ≤
√
2 and

the matrix Ja of (5.1), viewed as a self-adjoint operator acting on ℓ2(N),
with its canonical orthonormal basis (δn)n≥0.

(1) The norm of Ja is 2.
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(2) The spectrum of Ja is the interval [−2, 2].

(3) The vector δ0 is cyclic for the operator Ja.

(4) The vertex spectral measure of Ja is equivalent to the Lebesgue mea-
sure on [−2, 2], and it is a scalar-valued spectral measure.

Proof for (1) to (3) and reference for (4). As in the proof of Proposi-
tion 3.7, we have Σess(X + K) = Σess(X), so that Σess(Ja) = [−2, 2];
this holds for all a ≥ 0. The eigenvalue equation Jaξ = λξ for ξ =
(ξn)n≥0 ∈ ℓ2(N) gives rise to a difference equation of second order with
constant coefficients, and a routine computation shows that this equa-
tion has no solution in ℓ2(N) when 0 < a2 ≤ 2 (details for example
in [14, Lemma 4.6]); it follows that Σ(Ja) = Σess(Ja) = [−2, 2]. This
completes the proof of Claims (1) and (2). It is straightforward to check
Claim (3).

Claim (4) is more delicate to prove, and we quote here a particular
case of the result of [35] (particular because we impose diagonal coeffi-
cient bn = 0 here, and because we exclude eigenvalues):

Let (an)n≥0 be a sequence of positive real numbers such that

lim
n→∞

an = 1 and
∞∑
n=1

|an+1 − an| < ∞.

Let µ be the measure associated to the sequence of orthonormal polyno-
mials (Pn)n≥0 defined by the recurrence formula

xPn(x) = anPn+1(x) + an−1Pn−1(x) for n ≥ 0

(with a−1 = 0, P−1 = 0, P0 constant) and the normalisation Pn(x) =
γnx

n + lower order terms, γn > 0. Consider the operator J defined on
the Hilbert space ℓ2(N) with its canonical basis (δn)n∈N by the Jacobi
matrix 

0 a0 0 0 · · ·
a0 0 a1 0 · · ·
0 a1 0 a2 · · ·
0 0 a2 0 · · ·
...

...
...

...
. . .

 , (5.3)

and assume that this operator does not have any eigenvalue. Let µ be the
local spectral measure of J at δ0, defined by

∫
Σ(J) f(x)dµ(x) = ⟨f(J)δ0 |

δ0⟩ for any function f continuous on the spectrum Σ(J) of J .
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Then Σ(J) = [−2, 2] and µ = ρλ for a function ρ which is continu-
ous positive on ]−2, 2[ and zero outside [−2, 2] (where λ is the Lebesgue
measure). In particular, µ is equivalent to λ on [−2, 2].

Claim (4) follows. Rather than relying on [35], we could alternatively
quote [48, Theorem III.11], which provides an explicit formula for the
local spectral measure of Ja at the vector δ0, or quote results related to
that of [35], such as [21, Theorem 3] or [49, Theorem 8.18].

By Corollary 2.11, we have the following consequence of Proposi-
tion 5.1, surprising for us:

Corollary 5.2. For any a ∈ ]0,
√
2], the matrix Ja is unitarily equivalent

to J1.

In contrast, for a >
√
2, the operator Ja has two simple eigenva-

lues ± a2√
a2−1

, and therefore is not unitarily equivalent to J1. Let d ≥ 3

and a =
√
d/

√
d− 1; note that a <

√
2; since J√d,

√
d−1

∞ =
√
d− 1Ja,

see (5.2), Proposition 5.1 implies: (1) The norm of J√d,
√
d−1

∞ is 2
√
d− 1.

(2) The spectrum of J√d,
√
d−1

∞ is the interval [−2
√
d− 1, 2

√
d− 1].

(3) The vector δ0 is cyclic for the operator J√d,
√
d−1

∞ . (4) The vertex
spectral measure of J√d,

√
d−1

∞ is equivalent to the Lebesgue measure on

[−2
√
d− 1, 2

√
d− 1]; it is a scalar-valued spectral measure.

By Proposition 4.6, the adjacency operator Ad of Td is the direct sum
of one copy of J√d,

√
d−1

∞ and infinitely many copies of
√
d− 1J1, hence

we obtain the following:

Proposition 5.3. Let d ≥ 3 and let Td = (V,E) be the regular tree of
degree d. Let ATd

be the adjacency operator Td.

(1) The norm of ATd
is 2

√
d− 1.

(2) The spectrum of ATd
is [−2

√
d− 1, 2

√
d− 1].

(3) The vertex spectral measure at any vertex is equivalent to the Lebes-
gue measure on the spectrum of ATd

; it is a scalar-valued spectral
measure.

(4) ATd
has uniform infinite multiplicity.

Corollary 5.4. For any integer d ≥ 2, the lattice graph Ld and the
regular tree Td2+1 are cospectral.
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Remark: the vertex spectral measures of Td and T root
d which appear

here are equivalent to the Lebesgue measure on the appropriate interval.
This is in sharp contrast with large families of spherically symmetric
rooted trees, for which vertex spectral measures don’t have absolutely
continuous spectrum [10], [19].

6. An uncountable family of cospectral graphs

There are in [29] examples of uncountable families of pairwise non-
isomorphic cospectral Schreier graphs. They are defined in terms of
certain groups of automorphisms of infinite regular rooted trees called
spinal groups, and the actions of these groups on the boundaries of the
trees. We restrict here to the particular case of the Fabrykowski–Gupta
group, which is the simplest of the spinal groups acting on rooted trees
of branching degree ≥ 3, and we describe shortly one of these families as
follows.

Consider the regular rooted tree T = T root
3 of branching degree 3, its

boundary ∂T which is the Cantor space {0, 1, 2}N of infinite sequences
of 0, 1 and 2 ’s, and the Bernoulli measure ν on ∂T which is a probability
measure invariant by the automorphism group of T . The Fabrykowski–
Gupta group Γ is the group of automorphisms of T generated by the
symmetric set S = {a, a−1, b, b−1}, where a is the cyclic permutation of
the three main branches of T just below the root, and where b is the
automorphism of T usually defined recursively by b = (a, 1, b), see for
example [39, Subsection 8.2].

For ξ ∈ ∂T , let Stabξ(Γ) denote the stabilizer {g ∈ Γ : gξ = ξ}. Let
Scξ = Sc(Γ, Stabξ(Γ), S) be the Schreier graph of the indicated triple,
with vertex set the orbit Γξ (i.e., the coset space Γ/Stabξ(Γ)) and edges
the pairs of the form {gξ, sgξ} with g ∈ Γ and s ∈ S. This graph may
have loops (pairs with gξ = sgξ) and multiple edges (pairs {gξ, sgξ} and
{gξ, s′gξ} with s′ ̸= s and sgξ = s′gξ), but its adjacency operator Aξ

acting on ℓ2(Gξ) can be naturally defined.

It is known that there exists a measurable subset W of ∂T of full
measure, i.e., ν(W) = 1, such that for ξ ∈ W the adjacency operator Aξ

has the following properties:

− The closure of the set of eigenvalues of Aξ, which is the spectrum
of Aξ, is the union of a Cantor subset of R of Lebesgue measure
zero and of countably many points accumulating on this Cantor
set; see [5, Theorem 3.6 and Corollary 4.13] and [29, Theorem 1.5].
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− Aξ has a pure point spectrum, more precisely there exists an or-
thonormal basis of ℓ2(Γξ) of eigenvectors of Aξ, moreover each
eigenvector in this basis is a function of finite support on Γξ
[29, Theorem 1.8].

− The set of these eigenvalues and their multiplicities, which are all
infinite, do not depend on ξ [29, Section 5].

Moreover, for ξ ∈ W, the set of ξ′ ∈ W for which Scξ′ is isomorphic to
Scξ has ν-measure 0 [39, Corollary 7.13].

In particular, there are uncountably many graphs Scξ which are
cospectral and pairwise non-isomorphic.
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