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Quasi-idempotents in certain transformation
semigroups
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ABSTRACT. Let P, and T,, be the partial transformations se-
migroup and the (full) transformations semigroup on the set X,, =
{1,...,n}, respectively. In this paper, we first state the orbit struc-
ture of quasi-idempotents (non-idempotent element whose square
is an idempotent) in P,. Then, for 2 < r < n — 1, we find the
quasi-idempotent ranks of the subsemigroup PK(n,r) = {a € P, :
h(a) < r} of P,, and the subsemigroup K(n,r) = {a € T, :
h (o) < r} of T,,, where h (o) denotes the cardinality of the image
set of a.

Introduction

Let P, and T,, be the partial transformations semigroup and the (full)
transformations semigroup on the set X,, = {1,...,n}, respectively. An
element o € P, is called an idempotent if a® = «, and, it is well-known
that, a € P, is an idempotent if and only if za = x for each = € im («).
Now we borrow the concept of quasi-idempotent, as mentioned in [6],
introduced by Garba and Imam. In like manner, an element o € P, is
called a quasi-idempotent if

a#a? =at,
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that is, « is a non-idempotent element whose square is an idempotent.
We denote the set of all idempotents (all quasi-idempotents) in any subset
U of any semigroup by E(U) (by Q(U)).

For any o € P, the digraph I',, is defined by

V() = X, and
ﬁ(FQ) = {(u,v) € X;, x X, 1 u € dom (o), uax = v}.

As emphasized in [4] that the digraph T',, decomposes into a disjoint union
of connected components (connected subdigraphs), and the connected
components of I', are called orbits of a. Clearly, the orbit structure of «
provides valuable information about the structure of . Hence, first we
investigate the orbit structure of any quasi-idempotent in P,, and, as its
special case, the orbit structure of any quasi-idempotent in 7,.

Let S be a semigroup. For any () # A C S, the smallest subsemigroup
of S containing A is called the subsemigroup generated by A and denoted
by (A). It is easy to see that (A) is the set of all finite products of elements
of A. If S = (A), then A is called a generating set of S. Moreover, if
there exists a finite subset ) # A C S such that S = (A), then S is
called a finitely generated semigroup. In this case, there exists a unique
positive integer defined as

rank (S) = min{ |A4] : (A) = S},

and this integer is called the rank of S. Recently, some important results
obtained by examining the similar terms: the quasi-idempotent genera-
ting set of a semigroup S, defined as a generating set of S consists entirely
of quasi-idempotents, and the quasi-idempotent rank of S, defined as

grank (S) = min{ |A]| : (4) =5, A C Q(5)},

for various transformation semigroups (see, for examples, [2, 3, 8]).

Now, for any a € P,, let im () denotes the image set of «, and
let h(a) denotes the cardinality of im (), called the height of «, say
h(a) = |im (a)]. Also, for 1 <r <n—1, let

PK(n,r) = {a€P,:h(a)<r},
K(n,r) = {aeT,:h(a)<r}.

For 2 < r < n—1, Howie and McFadden proved in [7] that the rank of the
subsemigroup K (n,r) of T), is S(n,r), and Garba proved in [5] that the
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rank of the subsemigroup PK (n,r) of P, is S(n+1,r + 1) where S(k,t)
denotes the Stirling number of the second kind. Hence, as a second aim
of this article, we examine the quasi-idempotent ranks of PK(n,r) and
K(n,r)for2<r<mn-—1.

1. The orbit structure of quasi-idempotents in P, and T,

A digraph (in other words, a directed graph) IT consists of a non-empty fi-
nite set V (II) of elements called vertices, and a finite list E(H) C V(II) x
V(IT) of ordered pairs of elements of V(II) called directed edges (arcs). A
directed edge (u,v) € ﬁ(H) is represented by u — v. Here, V/(I) is called
the vertex set and E(H) is called the directed edge list of II. For k-many
(k > 2) vertices uy,...,ux € V(II), if (u1,u2), (u2,us3), ..., (ug—1,ug) €

(IT), then u; — --- — wuy is called a directed path from uy to ug of
size k, if also (ug,u1) € E(H), then the closed directed path uy — -+ —
up — uyq is called a (directed) cycle of size k (k-cycle) and denoted by
(uq ...ux). Moreover, for two vertices u,v € V(II), we say u is connected
to v in II if either (u,v) € E(H) or there exists a directed path from
u to v. The directed path u; — -+ — wuy is called a chain of size k
(k-chain) if there is no directed edge in E (IT) \ {(u1,u2), ..., (ur—1,ux)}
which contains any of u;’s for 1 < i < k, and denoted by [uj ...ug]. In
particular, for any v € V(II), if (u,u) € E(II) then the cycle u — u is
called a 1-cycle (a fized point or a loop) and denoted by (u); and if there
is no vertex v € V(II) such that (u,v) € E(II) or (v,u) € ﬁ(l’[), then
the single point u is called 1-chain and denoted by [u].

Recall that two digraphs are said to be disjoint if their vertex sets are
disjoint, and that, a digraph is called connected if its underlying graph
is a connected graph. Also, recall that an arbitrary connected digraph
whose underlying graph contains no cycle is called a (directed) tree. For
any finite tree Y, there exists at least one u € V(Y) such that there is
no vertex v € V(T) such that (u,v) € ﬁ('f), and in this case u is called
a root. We define the size of a tree as the maximum size of all directed
paths in the tree if there exist some directed paths, otherwise the tree
consists of a root and we define the size of a root as 1. (For unexplained
terms for graphs and digraphs we refer [9], for example.)

Recall that the orbits of o € P, are of three types: cycles, cycles
with some trees attached, and trees with one root; and that the orbits
of a € T}, are of two types: cycles and cycles with some trees attached.
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For any a € P,, let

C(a) = {z € dom (a) : za”

= z for some integer k > 1},
and it is clear that C'(«) is the union of all vertex sets of all cycles in the
digraph I',,.

Proposition 1. A non-idempotent map o € P, is a quasi-idempotent
if and only if xa? = z for each x € C(a), and either xa ¢ dom (a) or
ra? € C(a) for each x € dom (o) \ C(a).

Proof. (=) Let a non-idempotent map a € P, be a quasi-idempotent,
and let € C(a). If xaw = x then the result is clear. Now let xaw # .
Then, we have

r=za =20’ =za" =
or
r=za’=za*=2a%=--.
since a? = o*. However, when za® = z, we have za? = za® = zo® = z,

and so xa = za® = x which is a contradiction. Thus, we have za? = z.

Now, consider any element x € dom (a) \ C(a) such that za €
dom (). Then, also za? € dom (a), otherwise a? # ot which is a con-
tradiction. Moreover, since (ra?)a? = ra* = za?, we have za? € C(a),
as required.

(<) Let a non-idempotent map « € P, has the properties given in the
expression of the proposition. Then, for any x € C(a) clearly za* = za?,
and, for any x € dom () \ C(a), we have za ¢ dom () or za? € C(a),

and also ra? = (za?)a? = za?. Thus, o? = o, as required. O

As a consequence of Proposition 1, we can immetiately have the fol-
lowing corollary.

Corollary 1. A non-idempotent map o € P, is a quasi-idempotent if
and only if each one of orbits of a must be one of the following forms:

(1) 1-cycle or 2-cycle (without any tree attached);
(7i) 1-cycle or 2-cycle with some trees attached of size 2 or 3;

(7i1) tree of size 1 or 2 with one root.
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For any a € P,, for ease of notations, we write za« = — for each
x € X, \ dom («), and then « can be written as in the following tabular
form:
1 2 ... n
“= < la 2a -+ na ) € Fn.

With these notations, let

Then the orbit structure of « is as follows:

3 4
1
| @ |
5 6 3

8

Corollary 2. A non-idempotent map o« € T, is a quasi-idempotent if
and only if xa® = x for each x € C(a), and za® € C(a) for each
x € X, \Ca).

Corollary 3. A non-idempotent map o € T, is a quasi-idempotent if
and only if each one of orbits of o must be one of the following forms:

(1) 1-cycle or 2-cycle (without any tree attached);

(13) 1-cycle or 2-cycle with some trees attached of size 2 or 3.

2. Quasi-idempotent ranks of PK(n,r) and K(n,r)

The kernel of a € P, is defined by
ker(a) = {(z,y) € X, x X, : (z,y € dom («) and za = ya) or
(z,y ¢ dom (a))}.

It is well known that, for any o, § € P, (alsoin T}, ), ker(«) C ker(af) and
that ker(«) is an equivalence relation on X,, where the equivalence classes



186 QUASI-IDEMPOTENTS IN CERTAIN TRANSFORMATION SEMIGROUPS

of ker(«) are all different pre-image sets of elements in im («) with X, \
dom (). As in [1], we denote the set of all equivalence classes of ker(a)
except X, \ dom () by kp (), that is kp (o) = {ya™t : y € im(a)},
and call the kernel partition of «. Notice that kp (a) is a partition of
dom (a). Moreover, we denote the ordered pair (kp («), X, \dom (a)) by
ks (), and call the kernel structure of «. For any «, 8 € P,, notice that

ks (a) =ks(8) <« kp(a)=kp(B)
< ker(a) = ker(f) and dom («) = dom ().

For any « € P, with heigh k& (1 < k < n), it is easy to see that there

exists a unique kernel partition {Aj,..., Ax} of a such that ker(a) =
k+1
U (4; x A;) where Ag11 = X,,\dom («) and a subset {ay,...,a;} of X,
i=1
such that im (o) = {ay,...,ar}. Without loss of generality, let A;a0 = a;
for each 1 <14 < k. Then « also can be written as in the following tabular

form:
(A1 e Ay Ak+1)
o = .
al DR a/k —_
Now, recall from [4, Theorem 4.5.1] that the characterization of the
Green’s equivalences on P, (71},) can be stated as follows:

(1) aRpB < ks(a) =ks(B);
(i) alB < im (o) = im (B);
(ii) oDB & h(a) = h(B); and
(iv) aHp & ks(a) = ks (8) and im (a) = im (3)

for any o, 8 € P, (T,,). We denote the D-Green class of all elements in
P, (also in Ty,) of height k£ by Dy for 0 < k <n (for 1 <k <n).

Let U be a non-empty set and let P = {Uy,...,Ux} be a partition
of U to k non-empty subset for 1 < k < |U|. A representative set of a
partition P, denoted by R(P), is a set with the property that |[R(P)| = k
and |[R(P)NU;| =1 for each 1 <i < k.

For any 1 < k < n and A C X, with cardinality at most n — k,
let P4 be a partition of X, \ A to k subsets, and let I be a subset of
X, with cardinality k. Then we denote the H-Green class of the par-
tial transformations in P, with kernel structure (P4, A) and image set [
by H IP 4, In particular, when we investigate T, since the kernel struc-
ture of any element in 7;, has the form (P, (), we can use the simplier
notation P instead of Py, and the notation H¥ for the H-Green class of
the transformations in 7}, with kernel partition P and image set I.
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Proposition 2. For 2 < r < n and A C X,, with cardinality at most
n —r, let Py be a partition of X, \ A to r subsets, and let I be a subset
of X, with cardinality r. Then, we have Q(H}DA) # 0 in P,.

Proof. For 2 <r <n, let A C X, with cardinality at most n —r, P4 =
{A1,... A, } be a partition of X, \ A to r subsets and let I = {ay,...,a,}
be a subsets of X, with cardinality 7.

First, suppose that I N A = (), that is I C X,, \ A. If I is a repre-
sentative set of P4, then, without loss of generality, we can suppose that
a; € A; for each 1 < ¢ < r. Then, clearly

a= (20 ) eour

az ax
for r =2, and

(A Ay A3 - A, A Py
o= < a2 al a3 PPN a"r — > GQ(HI )

for r > 3. If I is not a representative set of P, then there exist distinct
ki,...,k € {1,...,7’} such that Ay, N1 # () for each k; € {k‘l,...,kl}
where 1 <1 < r—1, and A, NI = ( for each t; € {t1,...,t;} =
{1,...,7}\ {k1,...,ki} where 1 < s =r —1[. We choose and fix unique
b, € Ap, NI for each 1 <4 <[, and let I\ {bg,,..., bk, } = {bey,..., b, }.
Then, we define o € P, as follows:

a—(Akl e Ap Ay - Ay A>
b, o bk by e b — )

It is clear that « is not an idempotent since s > 1, and that a # o? = o,

Hence, we have o € Q(H f 4), as required.
Next, suppose that TN A #£ (). If I C A, then clearly

(A Ay - A A P,
a< ai as ay _)EQ(HI )ﬂ

otherwise, with the same notations given above,

[ Ap, o Ay A, - AL A -
a(bkl oo by, by e by, _>€Q(HI ),

as required. O

Now we state a similar result for 7, whose proof is the special case
of the proof of Proposition 2 for A = .



188 QUASI-IDEMPOTENTS IN CERTAIN TRANSFORMATION SEMIGROUPS

Proposition 3. For 2 < r < n, let P be a partition of X, to r subsets
and let I be a subset of X,, with cardinality r. Then, we have Q(HF) # )
m T,.

As a clear consequence of Proposition 2 (Proposition 3) that, each
L-class L and each R-class R on P, (7,) contains at least one quasi-
idempotent.

In [1], Ayik and Bugay first determined the digraph I'x for any () #
X C D, in P, (T,) as follows:

V(Fx) = X and
ETx) = {(f)eXxX:afeD,),

and show that, for any «, 8 € D,, also aff € D, if and only if im («) is
a representative set of kp (). Then, they stated the following two main
results that we will use in the proof of the main two results of this article.

Theorem 1 ([1, Theorem 4]). Let X be a subset of the D-Green class D,
of P, for2 <r <n-—1. Then X is a generating set of PK (n,r) if and on-
ly if, for each idempotent & in D,, there exist a, f € X such that ks (a) =
ks (&) im(8) = im (&), and « is connected to B in the digraph Tx
(or equivalently, X is a generating set of PK(n,r) if and only if, for
each A C X, with cardinality at most n — r, for each partition Py of
Xn \ A tor subsets, and for each representative set R(Pa) of Pa, there
exist a, f € X such that ks (a) = (Pa, A), im (5) = R(Pa) and that o is
connected to [ in the digraph T'x ).

Theorem 2 ([1, Theorem 10]). Let X be a subset of the D-Green class D,
of Ty, for 2 <r <n—1. Then X is a generating set of K(n,r) if and on-
ly if, for each idempotent & in D, there exist a,, B € X such that ker(a) =
ker(¢), im(8) = im(§) and a is connected to (B in the digraph Tx
(or equivalently, X is a generating set of K(n,r) if and only if, for each
partition A of Xy, and for each representative set R(A) of A, there exist
o, € X such that kp (o) = A, im (8) = R(A) and that « is connected
to 8 in the digraph T'x ).

Theorem 3. For 2 < r < n — 1, qrank (PK,,) = rank (PK,,) =
Sn+1,r+1).

Proof. For 2 <r <n-—1,let I,...,I, with (:f) = m be all subsets of
X, of cardinality . Then, as shown in [1, Lemma 6], for each 1 < i < m,
there exists a subset A;,,, of X, and a partition Py, = {Aiy,..., A}

ir+1
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of X, \ A;,., such that I; is a representative set of PAir+1’ and that

Py # Py if1 <4 %# 5 < m. From Proposition 2, there exists

ir41 Jr+1

PAi+1 1 . .
a; € Q(Hll_ ") for each 1 <4 < m. Notice that
(1) im (o) = I; for each 1 < i < m;
(1) ks (o) # ks (o) if 1 <i# 5 <m;and

(#i7) I; is a representative set of kp (a;4+1) for each 1 <i <m — 1, and
I,, is a representative set of kp (a1).

Let Ry,..., Ry be all the R-Green classes in D, where (ﬁ) = m and
S(n+ 1,7+ 1) = t. Without loss of generality, we may suppose that
a; € R; for 1 <i < m. Then we take an arbitrary am,1; € Q(Ry4;) for
each 1 < 7 <t — m, and consider the set

X ={a1, ..., Qm, my1, .-}

It is easy to see that ay — ao — -+ — a,,, — @1 is a cycle on the di-
graph 'y, and that, for each 1 < j <t —m, there exists a directed edge
from a; to at least one element on the cycle a1 — ag — -+ =, — 1.
Therefore, from Theorem 1, X is a quasi-idempotent generating set
of PK(n,r), and so the result follows from the fact rank (PK,,) =
S(n+1,r+1). O

Theorem 4. For 2 <r <n —1, qrank (K,,,) = rank (K, ,) = S(n,r).

Proof. For 2 < r <n-—1, let I1,..., I, with (:f) = m be all subsets
of X, of cardinality . Then, as shown in [1, Lemma 12], there exist m
different partitions P, ..., P, of X,, to r subsets with the property that
I; is a representative set of P; for each 1 < i < m . From Proposition 3,
there exists a; € Q(Hﬁi“) for each 1 < < m. Notice that

(1) im (o) = I; for each 1 <i < m;
(1) kp (ou) # kp () if 1 <i# j < m; and

(7i1) I; is a representative set of kp (a;41) for each 1 <1i < m — 1, and
I, is a representative set of kp (a).

Let Ry,..., Ry be a list of all R-Green classes in D, where (Z) =m
and S(n,r) = t. Without loss of generality, suppose that «; € R; for
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i < m. Then we take an arbitrary am;4; € Q(Rp4;) for each
7 <t —m, and consider the set

X =A{a1,...,0m, g1, ...}

Then similarly, from Theorem 2, X is a quasi-idempotent generating set of
K(n,r), and so the result follows from the fact rank (K, ,) = S(n,r). O
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