© Algebra and Discrete Mathematics Volume **37** (2024). Number 2, pp. 181–190 DOI:10.12958/adm2223

Quasi-idempotents in certain transformation semigroups

Leyla Bugay

Communicated by A. Zhuchok

ABSTRACT. Let P_n and T_n be the partial transformations semigroup and the (full) transformations semigroup on the set $X_n = \{1, \ldots, n\}$, respectively. In this paper, we first state the orbit structure of quasi-idempotents (non-idempotent element whose square is an idempotent) in P_n . Then, for $2 \leq r \leq n-1$, we find the quasi-idempotent ranks of the subsemigroup $PK(n,r) = \{\alpha \in P_n :$ $h(\alpha) \leq r\}$ of P_n , and the subsemigroup $K(n,r) = \{\alpha \in T_n :$ $h(\alpha) \leq r\}$ of T_n , where $h(\alpha)$ denotes the cardinality of the image set of α .

Introduction

Let P_n and T_n be the partial transformations semigroup and the (full) transformations semigroup on the set $X_n = \{1, \ldots, n\}$, respectively. An element $\alpha \in P_n$ is called an *idempotent* if $\alpha^2 = \alpha$, and, it is well-known that, $\alpha \in P_n$ is an idempotent if and only if $x\alpha = x$ for each $x \in \text{im}(\alpha)$. Now we borrow the concept of quasi-idempotent, as mentioned in [6], introduced by Garba and Imam. In like manner, an element $\alpha \in P_n$ is called a *quasi-idempotent* if

$$\alpha \neq \alpha^2 = \alpha^4,$$

The author would like to thank the referees for their helpful comments, which helped to improve the original manuscript.

²⁰²⁰ Mathematics Subject Classification: 20M20.

Key words and phrases: partial (full) transformations semigroup, quasiidempotent, orbit, rank.

that is, α is a non-idempotent element whose square is an idempotent. We denote the set of all idempotents (all quasi-idempotents) in any subset U of any semigroup by E(U) (by Q(U)).

For any $\alpha \in P_n$, the digraph Γ_{α} is defined by

$$V(\Gamma_{\alpha}) = X_n \text{ and}$$

$$\overrightarrow{E}(\Gamma_{\alpha}) = \{(u, v) \in X_n \times X_n : u \in \text{dom}(\alpha), u\alpha = v\}.$$

As emphasized in [4] that the digraph Γ_{α} decomposes into a disjoint union of connected components (connected subdigraphs), and the connected components of Γ_{α} are called *orbits* of α . Clearly, the orbit structure of α provides valuable information about the structure of α . Hence, first we investigate the orbit structure of any quasi-idempotent in P_n , and, as its special case, the orbit structure of any quasi-idempotent in T_n .

Let S be a semigroup. For any $\emptyset \neq A \subseteq S$, the smallest subsemigroup of S containing A is called the subsemigroup generated by A and denoted by $\langle A \rangle$. It is easy to see that $\langle A \rangle$ is the set of all finite products of elements of A. If $S = \langle A \rangle$, then A is called a generating set of S. Moreover, if there exists a finite subset $\emptyset \neq A \subseteq S$ such that $S = \langle A \rangle$, then S is called a finitely generated semigroup. In this case, there exists a unique positive integer defined as

$$\operatorname{rank}(S) = \min\{|A| : \langle A \rangle = S\},\$$

and this integer is called the rank of S. Recently, some important results obtained by examining the similar terms: the quasi-idempotent generating set of a semigroup S, defined as a generating set of S consists entirely of quasi-idempotents, and the quasi-idempotent rank of S, defined as

$$\operatorname{qrank}(S) = \min\{ |A| : \langle A \rangle = S, A \subseteq Q(S) \},\$$

for various transformation semigroups (see, for examples, [2, 3, 8]).

Now, for any $\alpha \in P_n$, let $\operatorname{im}(\alpha)$ denotes the image set of α , and let $h(\alpha)$ denotes the cardinality of $\operatorname{im}(\alpha)$, called the height of α , say $h(\alpha) = |\operatorname{im}(\alpha)|$. Also, for $1 \leq r \leq n-1$, let

$$PK(n,r) = \{ \alpha \in P_n : h(\alpha) \le r \},\$$

$$K(n,r) = \{ \alpha \in T_n : h(\alpha) \le r \}.$$

For $2 \le r \le n-1$, Howie and McFadden proved in [7] that the rank of the subsemigroup K(n,r) of T_n is S(n,r), and Garba proved in [5] that the

rank of the subsemigroup PK(n,r) of P_n is S(n+1,r+1) where S(k,t) denotes the Stirling number of the second kind. Hence, as a second aim of this article, we examine the quasi-idempotent ranks of PK(n,r) and K(n,r) for $2 \le r \le n-1$.

1. The orbit structure of quasi-idempotents in P_n and T_n

A digraph (in other words, a directed graph) Π consists of a non-empty finite set $V(\Pi)$ of elements called *vertices*, and a finite list $\vec{E}(\Pi) \subseteq V(\Pi) \times$ $V(\Pi)$ of ordered pairs of elements of $V(\Pi)$ called *directed edges (arcs)*. A directed edge $(u, v) \in \vec{E}(\Pi)$ is represented by $u \to v$. Here, $V(\Pi)$ is called the vertex set and $\vec{E}(\Pi)$ is called the directed edge list of Π . For k-many $(k \ge 2)$ vertices $u_1, \ldots, u_k \in V(\Pi)$, if $(u_1, u_2), (u_2, u_3), \ldots, (u_{k-1}, u_k) \in U(\Pi)$ $\vec{E}(\Pi)$, then $u_1 \to \cdots \to u_k$ is called a directed path from u_1 to u_k of size k, if also $(u_k, u_1) \in \vec{E}(\Pi)$, then the closed directed path $u_1 \to \cdots \to$ $u_k \rightarrow u_1$ is called a *(directed) cycle of size k (k-cycle)* and denoted by $(u_1 \dots u_k)$. Moreover, for two vertices $u, v \in V(\Pi)$, we say u is connected to v in Π if either $(u, v) \in \vec{E}(\Pi)$ or there exists a directed path from u to v. The directed path $u_1 \rightarrow \cdots \rightarrow u_k$ is called a *chain* of size k(k-chain) if there is no directed edge in $\overrightarrow{E}(\Pi) \setminus \{(u_1, u_2), \dots, (u_{k-1}, u_k)\}$ which contains any of u_i 's for $1 \le i \le k$, and denoted by $[u_1 \ldots u_k]$. In particular, for any $u \in V(\Pi)$, if $(u, u) \in \vec{E}(\Pi)$ then the cycle $u \to u$ is called a 1-cycle (a fixed point or a loop) and denoted by (u); and if there is no vertex $v \in V(\Pi)$ such that $(u, v) \in \vec{E}(\Pi)$ or $(v, u) \in \vec{E}(\Pi)$, then the single point u is called 1-chain and denoted by [u].

Recall that two digraphs are said to be *disjoint* if their vertex sets are disjoint, and that, a digraph is called *connected* if its underlying graph is a connected graph. Also, recall that an arbitrary connected digraph whose underlying graph contains no cycle is called a *(directed) tree*. For any finite tree Υ , there exists at least one $u \in V(\Upsilon)$ such that there is no vertex $v \in V(\Upsilon)$ such that $(u, v) \in \vec{E}(\Upsilon)$, and in this case u is called *a root*. We define the size of a tree as the maximum size of all directed paths in the tree if there exist some directed paths, otherwise the tree consists of a root and we define the size of a root as 1. (For unexplained terms for graphs and digraphs we refer [9], for example.)

Recall that the orbits of $\alpha \in P_n$ are of three types: cycles, cycles with some trees attached, and trees with one root; and that the orbits of $\alpha \in T_n$ are of two types: cycles and cycles with some trees attached.

For any $\alpha \in P_n$, let

 $C(\alpha) = \{ x \in \operatorname{dom}(\alpha) : x\alpha^k = x \text{ for some integer } k \ge 1 \},\$

and it is clear that $C(\alpha)$ is the union of all vertex sets of all cycles in the digraph Γ_{α} .

Proposition 1. A non-idempotent map $\alpha \in P_n$ is a quasi-idempotent if and only if $x\alpha^2 = x$ for each $x \in C(\alpha)$, and either $x\alpha \notin dom(\alpha)$ or $x\alpha^2 \in C(\alpha)$ for each $x \in dom(\alpha) \setminus C(\alpha)$.

Proof. (\Rightarrow) Let a non-idempotent map $\alpha \in P_n$ be a quasi-idempotent, and let $x \in C(\alpha)$. If $x\alpha = x$ then the result is clear. Now let $x\alpha \neq x$. Then, we have

$$x = x\alpha^3 = x\alpha^5 = x\alpha^7 = \cdots$$

or

$$x = x\alpha^2 = x\alpha^4 = x\alpha^6 = \cdots$$

since $\alpha^2 = \alpha^4$. However, when $x\alpha^3 = x$, we have $x\alpha^2 = x\alpha^5 = x\alpha^3 = x$, and so $x\alpha = x\alpha^3 = x$ which is a contradiction. Thus, we have $x\alpha^2 = x$.

Now, consider any element $x \in \text{dom}(\alpha) \setminus C(\alpha)$ such that $x\alpha \in \text{dom}(\alpha)$. Then, also $x\alpha^2 \in \text{dom}(\alpha)$, otherwise $\alpha^2 \neq \alpha^4$ which is a contradiction. Moreover, since $(x\alpha^2)\alpha^2 = x\alpha^4 = x\alpha^2$, we have $x\alpha^2 \in C(\alpha)$, as required.

 (\Leftarrow) Let a non-idempotent map $\alpha \in P_n$ has the properties given in the expression of the proposition. Then, for any $x \in C(\alpha)$ clearly $x\alpha^4 = x\alpha^2$, and, for any $x \in \text{dom}(\alpha) \setminus C(\alpha)$, we have $x\alpha \notin \text{dom}(\alpha)$ or $x\alpha^2 \in C(\alpha)$, and also $x\alpha^4 = (x\alpha^2)\alpha^2 = x\alpha^2$. Thus, $\alpha^2 = \alpha^4$, as required.

As a consequence of Proposition 1, we can immetiately have the following corollary.

Corollary 1. A non-idempotent map $\alpha \in P_n$ is a quasi-idempotent if and only if each one of orbits of α must be one of the following forms:

- (i) 1-cycle or 2-cycle (without any tree attached);
- (ii) 1-cycle or 2-cycle with some trees attached of size 2 or 3;

(iii) tree of size 1 or 2 with one root.

For any $\alpha \in P_n$, for ease of notations, we write $x\alpha = -$ for each $x \in X_n \setminus \text{dom}(\alpha)$, and then α can be written as in the following tabular form:

$$\alpha = \left(\begin{array}{ccc} 1 & 2 & \cdots & n \\ 1\alpha & 2\alpha & \cdots & n\alpha \end{array}\right) \in P_n$$

With these notations, let

Then the orbit structure of α is as follows:

Corollary 2. A non-idempotent map $\alpha \in T_n$ is a quasi-idempotent if and only if $x\alpha^2 = x$ for each $x \in C(\alpha)$, and $x\alpha^2 \in C(\alpha)$ for each $x \in X_n \setminus C(\alpha)$.

Corollary 3. A non-idempotent map $\alpha \in T_n$ is a quasi-idempotent if and only if each one of orbits of α must be one of the following forms:

- (i) 1-cycle or 2-cycle (without any tree attached);
- (ii) 1-cycle or 2-cycle with some trees attached of size 2 or 3.

2. Quasi-idempotent ranks of PK(n,r) and K(n,r)

The *kernel* of $\alpha \in P_n$ is defined by

$$\ker(\alpha) = \{(x, y) \in X_n \times X_n : (x, y \in \operatorname{dom}(\alpha) \text{ and } x\alpha = y\alpha) \text{ or } (x, y \notin \operatorname{dom}(\alpha))\}.$$

It is well known that, for any $\alpha, \beta \in P_n$ (also in T_n), ker $(\alpha) \subseteq \text{ker}(\alpha\beta)$ and that ker (α) is an equivalence relation on X_n where the equivalence classes

of ker(α) are all different pre-image sets of elements in im (α) with $X_n \setminus \text{dom}(\alpha)$. As in [1], we denote the set of all equivalence classes of ker(α) except $X_n \setminus \text{dom}(\alpha)$ by kp(α), that is kp(α) = { $y\alpha^{-1} : y \in \text{im}(\alpha)$ }, and call the kernel partition of α . Notice that kp(α) is a partition of dom (α). Moreover, we denote the ordered pair (kp(α), $X_n \setminus \text{dom}(\alpha)$) by ks(α), and call the kernel structure of α . For any $\alpha, \beta \in P_n$, notice that

$$\begin{aligned} & \operatorname{ks}\left(\alpha\right) = \operatorname{ks}\left(\beta\right) & \Leftrightarrow \quad \operatorname{kp}\left(\alpha\right) = \operatorname{kp}\left(\beta\right) \\ & \Leftrightarrow \quad \operatorname{ker}(\alpha) = \operatorname{ker}(\beta) \text{ and } \operatorname{dom}\left(\alpha\right) = \operatorname{dom}\left(\beta\right). \end{aligned}$$

For any $\alpha \in P_n$ with heigh k $(1 \le k \le n)$, it is easy to see that there exists a unique kernel partition $\{A_1, \ldots, A_k\}$ of α such that $\ker(\alpha) = \bigcup_{i=1}^{k+1} (A_i \times A_i)$ where $A_{k+1} = X_n \setminus \operatorname{dom}(\alpha)$ and a subset $\{a_1, \ldots, a_k\}$ of X_n such that $\operatorname{im}(\alpha) = \{a_1, \ldots, a_k\}$. Without loss of generality, let $A_i \alpha = a_i$ for each $1 \le i \le k$. Then α also can be written as in the following tabular form:

$$\alpha = \left(\begin{array}{ccc} A_1 & \cdots & A_k & A_{k+1} \\ a_1 & \cdots & a_k & - \end{array}\right).$$

Now, recall from [4, Theorem 4.5.1] that the characterization of the Green's equivalences on P_n (T_n) can be stated as follows:

- (i) $\alpha \mathcal{R}\beta \Leftrightarrow \operatorname{ks}(\alpha) = \operatorname{ks}(\beta);$
- (*ii*) $\alpha \mathcal{L}\beta \Leftrightarrow \operatorname{im}(\alpha) = \operatorname{im}(\beta);$

(*iii*)
$$\alpha \mathcal{D}\beta \Leftrightarrow h(\alpha) = h(\beta)$$
; and

(*iv*)
$$\alpha \mathcal{H}\beta \Leftrightarrow \operatorname{ks}(\alpha) = \operatorname{ks}(\beta)$$
 and $\operatorname{im}(\alpha) = \operatorname{im}(\beta)$

for any $\alpha, \beta \in P_n$ (T_n) . We denote the \mathcal{D} -Green class of all elements in P_n (also in T_n) of height k by D_k for $0 \le k \le n$ (for $1 \le k \le n$).

Let U be a non-empty set and let $P = \{U_1, \ldots, U_k\}$ be a partition of U to k non-empty subset for $1 \le k \le |U|$. A representative set of a partition P, denoted by R(P), is a set with the property that |R(P)| = kand $|R(P) \cap U_i| = 1$ for each $1 \le i \le k$.

For any $1 \leq k \leq n$ and $A \subset X_n$ with cardinality at most n - k, let P_A be a partition of $X_n \setminus A$ to k subsets, and let I be a subset of X_n with cardinality k. Then we denote the \mathcal{H} -Green class of the partial transformations in P_n with kernel structure (P_A, A) and image set I by $H_I^{P_A}$. In particular, when we investigate T_n , since the kernel structure of any element in T_n has the form $(P_{\emptyset}, \emptyset)$, we can use the simplier notation P instead of P_{\emptyset} , and the notation H_I^P for the \mathcal{H} -Green class of the transformations in T_n with kernel partition P and image set I. **Proposition 2.** For $2 \leq r \leq n$ and $A \subset X_n$ with cardinality at most n-r, let P_A be a partition of $X_n \setminus A$ to r subsets, and let I be a subset of X_n with cardinality r. Then, we have $Q(H_I^{P_A}) \neq \emptyset$ in P_n .

Proof. For $2 \le r \le n$, let $A \subset X_n$ with cardinality at most n - r, $P_A = \{A_1, \ldots, A_r\}$ be a partition of $X_n \setminus A$ to r subsets and let $I = \{a_1, \ldots, a_r\}$ be a subsets of X_n with cardinality r.

First, suppose that $I \cap A = \emptyset$, that is $I \subseteq X_n \setminus A$. If I is a representative set of P_A , then, without loss of generality, we can suppose that $a_i \in A_i$ for each $1 \leq i \leq r$. Then, clearly

$$\alpha = \begin{pmatrix} A_1 & A_2 & A \\ a_2 & a_1 & - \end{pmatrix} \in Q(H_I^{P_A})$$

for r = 2, and

$$\alpha = \begin{pmatrix} A_1 & A_2 & A_3 & \cdots & A_r & A \\ a_2 & a_1 & a_3 & \cdots & a_r & - \end{pmatrix} \in Q(H_I^{P_A})$$

for $r \geq 3$. If I is not a representative set of P, then there exist distinct $k_1, \ldots, k_l \in \{1, \ldots, r\}$ such that $A_{k_i} \cap I \neq \emptyset$ for each $k_i \in \{k_1, \ldots, k_l\}$ where $1 \leq l \leq r-1$, and $A_{t_j} \cap I = \emptyset$ for each $t_j \in \{t_1, \ldots, t_s\} = \{1, \ldots, r\} \setminus \{k_1, \ldots, k_l\}$ where $1 \leq s = r-l$. We choose and fix unique $b_{k_i} \in A_{k_i} \cap I$ for each $1 \leq i \leq l$, and let $I \setminus \{b_{k_1}, \ldots, b_{k_l}\} = \{b_{t_1}, \ldots, b_{t_s}\}$. Then, we define $\alpha \in P_n$ as follows:

$$\alpha = \left(\begin{array}{cccc} A_{k_1} & \cdots & A_{k_l} & A_{t_1} & \cdots & A_{t_s} & A \\ b_{k_1} & \cdots & b_{k_l} & b_{t_1} & \cdots & b_{t_s} & - \end{array}\right).$$

It is clear that α is not an idempotent since $s \ge 1$, and that $\alpha \ne \alpha^2 = \alpha^4$. Hence, we have $\alpha \in Q(H_I^{P_A})$, as required.

Next, suppose that $I \cap A \neq \emptyset$. If $I \subseteq A$, then clearly

$$\alpha = \begin{pmatrix} A_1 & A_2 & \cdots & A_r & A \\ a_1 & a_2 & \cdots & a_r & - \end{pmatrix} \in Q(H_I^{P_A}),$$

otherwise, with the same notations given above,

$$\alpha = \begin{pmatrix} A_{k_1} & \cdots & A_{k_l} & A_{t_1} & \cdots & A_{t_s} & A \\ b_{k_1} & \cdots & b_{k_l} & b_{t_1} & \cdots & b_{t_s} & - \end{pmatrix} \in Q(H_I^{P_A}),$$

as required.

Now we state a similar result for T_n whose proof is the special case of the proof of Proposition 2 for $A = \emptyset$.

Proposition 3. For $2 \le r \le n$, let P be a partition of X_n to r subsets and let I be a subset of X_n with cardinality r. Then, we have $Q(H_I^P) \ne \emptyset$ in T_n .

As a clear consequence of Proposition 2 (Proposition 3) that, each \mathcal{L} -class L and each \mathcal{R} -class R on P_n (T_n) contains at least one quasiidempotent.

In [1], Ayık and Bugay first determined the digraph Γ_X for any $\emptyset \neq X \subseteq D_r$ in $P_n(T_n)$ as follows:

$$V(\Gamma_X) = X \text{ and}$$

$$\overrightarrow{E}(\Gamma_X) = \{(\alpha, \beta) \in X \times X : \alpha\beta \in D_r\},\$$

and show that, for any $\alpha, \beta \in D_r$, also $\alpha\beta \in D_r$ if and only if im (α) is a representative set of kp (β) . Then, they stated the following two main results that we will use in the proof of the main two results of this article.

Theorem 1 ([1, Theorem 4]). Let X be a subset of the \mathcal{D} -Green class D_r of P_n for $2 \leq r \leq n-1$. Then X is a generating set of PK(n,r) if and only if, for each idempotent ξ in D_r , there exist $\alpha, \beta \in X$ such that ks (α) = ks (ξ) im (β) = im (ξ), and α is connected to β in the digraph Γ_X (or equivalently, X is a generating set of PK(n,r) if and only if, for each $A \subset X_n$ with cardinality at most n - r, for each partition P_A of $X_n \setminus A$ to r subsets, and for each representative set $R(P_A)$ of P_A , there exist $\alpha, \beta \in X$ such that ks (α) = (P_A, A), im (β) = $R(P_A)$ and that α is connected to β in the digraph Γ_X).

Theorem 2 ([1, Theorem 10]). Let X be a subset of the \mathcal{D} -Green class D_r of T_n for $2 \leq r \leq n-1$. Then X is a generating set of K(n,r) if and only if, for each idempotent ξ in D_r there exist $\alpha, \beta \in X$ such that $\ker(\alpha) = \ker(\xi)$, $\operatorname{im}(\beta) = \operatorname{im}(\xi)$ and α is connected to β in the digraph Γ_X (or equivalently, X is a generating set of K(n,r) if and only if, for each partition \mathcal{A} of X_n , and for each representative set $R(\mathcal{A})$ of \mathcal{A} , there exist $\alpha, \beta \in X$ such that kp $(\alpha) = \mathcal{A}$, $\operatorname{im}(\beta) = R(\mathcal{A})$ and that α is connected to β in the digraph Γ_X).

Theorem 3. For $2 \le r \le n-1$, qrank $(PK_{n,r}) = \operatorname{rank}(PK_{n,r}) = S(n+1,r+1)$.

Proof. For $2 \leq r \leq n-1$, let I_1, \ldots, I_m with $\binom{n}{r} = m$ be all subsets of X_n of cardinality r. Then, as shown in [1, Lemma 6], for each $1 \leq i \leq m$, there exists a subset $A_{i_{r+1}}$ of X_n and a partition $P_{A_{i_{r+1}}} = \{A_{i_1}, \ldots, A_{i_r}\}$

of $X_n \setminus A_{i_{r+1}}$ such that I_i is a representative set of $P_{A_{i_{r+1}}}$, and that $P_{A_{i_{r+1}}} \neq P_{A_{j_{r+1}}}$ if $1 \leq i \neq j \leq m$. From Proposition 2, there exists $\alpha_i \in Q(H_{I_i}^{P_{A_{i+1_{r+1}}}})$ for each $1 \leq i \leq m$. Notice that

(i) $\operatorname{im}(\alpha_i) = I_i$ for each $1 \le i \le m$;

- (*ii*) $\operatorname{ks}(\alpha_i) \neq \operatorname{ks}(\alpha_j)$ if $1 \leq i \neq j \leq m$; and
- (*iii*) I_i is a representative set of kp (α_{i+1}) for each $1 \le i \le m-1$, and I_m is a representative set of kp (α_1) .

Let R_1, \ldots, R_t be all the \mathcal{R} -Green classes in D_r where $\binom{n}{r} = m$ and S(n+1,r+1) = t. Without loss of generality, we may suppose that $\alpha_i \in R_i$ for $1 \leq i \leq m$. Then we take an arbitrary $\alpha_{m+j} \in Q(R_{m+j})$ for each $1 \leq j \leq t - m$, and consider the set

$$X = \{\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots \alpha_t\}.$$

It is easy to see that $\alpha_1 \to \alpha_2 \to \cdots \to \alpha_m \to \alpha_1$ is a cycle on the digraph Γ_X , and that, for each $1 \leq j \leq t-m$, there exists a directed edge from α_j to at least one element on the cycle $\alpha_1 \to \alpha_2 \to \cdots \to \alpha_m \to \alpha_1$. Therefore, from Theorem 1, X is a quasi-idempotent generating set of PK(n,r), and so the result follows from the fact rank $(PK_{n,r}) =$ S(n+1,r+1).

Theorem 4. For $2 \le r \le n - 1$, qrank $(K_{n,r}) = \text{rank}(K_{n,r}) = S(n,r)$.

Proof. For $2 \leq r \leq n-1$, let I_1, \ldots, I_m with $\binom{n}{r} = m$ be all subsets of X_n of cardinality r. Then, as shown in [1, Lemma 12], there exist mdifferent partitions P_1, \ldots, P_m of X_n to r subsets with the property that I_i is a representative set of P_i for each $1 \leq i \leq m$. From Proposition 3, there exists $\alpha_i \in Q(H_{I_i}^{P_i+1})$ for each $1 \leq i \leq m$. Notice that

- (i) $\operatorname{im}(\alpha_i) = I_i$ for each $1 \le i \le m$;
- (*ii*) $\operatorname{kp}(\alpha_i) \neq \operatorname{kp}(\alpha_j)$ if $1 \leq i \neq j \leq m$; and
- (*iii*) I_i is a representative set of kp (α_{i+1}) for each $1 \le i \le m-1$, and I_m is a representative set of kp (α_1) .

Let R_1, \ldots, R_t be a list of all \mathcal{R} -Green classes in D_r where $\binom{n}{r} = m$ and S(n,r) = t. Without loss of generality, suppose that $\alpha_i \in R_i$ for $1 \leq i \leq m$. Then we take an arbitrary $\alpha_{m+j} \in Q(R_{m+j})$ for each $1 \leq j \leq t-m$, and consider the set

$$X = \{\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots \alpha_t\}.$$

Then similarly, from Theorem 2, X is a quasi-idempotent generating set of K(n,r), and so the result follows from the fact rank $(K_{n,r}) = S(n,r)$. \Box

References

- Ayık, H., Bugay, L.: Generating sets of finite transformation semigroups PK(n,r) and K(n,r). Comm. Algebra. 43(2), 412–422 (2015). https://doi.org/10.1080/ 00927872.2013.847947
- Bugay, L.: Quasi-idempotent ranks of some permutation groups and transformation semigroups. Turkish J. Math. 43(5), 2390–2395 (2019). https://doi.org/10. 3906/mat-1901-52
- Bugay, L.: Quasi-idempotent ranks of the proper ideals in finite symmetric inverse semigroups. Turkish J. Math. 45(1), 281–287 (2021). https://doi.org/10.3906/mat-2001-3
- Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups. Springer-Verlag, London (2009). https://doi.org/10.1007/978-1-84800-281-4
- Garba, G.U.: Idempotents in partial transformation semigroups. Proc. Royal Soc. Edinburgh. 116(A), 359–366 (1990). https://doi.org/10.1017/S0308210500031553
- [6] Garba, G.U., Imam, A.T.: Products of quasi-idempotents in finite symmetric inverse semigroups. Semigroup Forum. 92, 645–658 (2016). https://doi.org/ 10.1007/s00233-015-9733-1
- Howie, J.M., McFadden, R.B.: Idempotent rank in finite full transformation semigroups. Proc. Royal Soc. Edinburgh. 114(A), 161–167 (1990). https://doi.org/ 10.1017/S0308210500024355
- [8] Imam, A.T., Ibrahim, S., Garba, G.U., Usman, L., Idris, A.: Quasi-idempotents in finite semigroup of full order-preserving transformations. Algebra and Discr. Math. 35(1), 62-72 (2023). https://doi.org/10.1007/s35127-023-1712-3
- [9] Wilson, R.J., Watkins, J.J.: Graphs. An Introductory Approach. A First Course in Discrete Mathematics, Jon Wiley & Sons Inc., Singapore (1990).

CONTACT INFORMATION

L. Bugay Department of Mathematics, Çukurova University, Adana, 01330, Turkey *E-Mail:* ltanguler@cu.edu.tr

Received by the editors: 21.02.2024 and in final form 19.04.2024.