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Quasi-idempotents in certain transformation
semigroups
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Abstract. Let Pn and Tn be the partial transformations se-
migroup and the (full) transformations semigroup on the set Xn =
{1, . . . , n}, respectively. In this paper, we first state the orbit struc-
ture of quasi-idempotents (non-idempotent element whose square
is an idempotent) in Pn. Then, for 2 ≤ r ≤ n − 1, we find the
quasi-idempotent ranks of the subsemigroup PK(n, r) = {α ∈ Pn :
h (α) ≤ r} of Pn, and the subsemigroup K(n, r) = {α ∈ Tn :
h (α) ≤ r} of Tn, where h (α) denotes the cardinality of the image
set of α.

Introduction

Let Pn and Tn be the partial transformations semigroup and the (full)
transformations semigroup on the set Xn = {1, . . . , n}, respectively. An
element α ∈ Pn is called an idempotent if α2 = α, and, it is well-known
that, α ∈ Pn is an idempotent if and only if xα = x for each x ∈ im (α).
Now we borrow the concept of quasi-idempotent, as mentioned in [6],
introduced by Garba and Imam. In like manner, an element α ∈ Pn is
called a quasi-idempotent if

α ̸= α2 = α4,
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that is, α is a non-idempotent element whose square is an idempotent.
We denote the set of all idempotents (all quasi-idempotents) in any subset
U of any semigroup by E(U) (by Q(U)).

For any α ∈ Pn, the digraph Γα is defined by

V (Γα) = Xn and
−→
E (Γα) = {(u, v) ∈ Xn ×Xn : u ∈ dom (α), uα = v}.

As emphasized in [4] that the digraph Γα decomposes into a disjoint union
of connected components (connected subdigraphs), and the connected
components of Γα are called orbits of α. Clearly, the orbit structure of α
provides valuable information about the structure of α. Hence, first we
investigate the orbit structure of any quasi-idempotent in Pn, and, as its
special case, the orbit structure of any quasi-idempotent in Tn.

Let S be a semigroup. For any ∅ ≠ A ⊆ S, the smallest subsemigroup
of S containing A is called the subsemigroup generated by A and denoted
by ⟨A⟩. It is easy to see that ⟨A⟩ is the set of all finite products of elements
of A. If S = ⟨A⟩, then A is called a generating set of S. Moreover, if
there exists a finite subset ∅ ̸= A ⊆ S such that S = ⟨A⟩, then S is
called a finitely generated semigroup. In this case, there exists a unique
positive integer defined as

rank (S) = min{ |A| : ⟨A⟩ = S},

and this integer is called the rank of S. Recently, some important results
obtained by examining the similar terms: the quasi-idempotent genera-
ting set of a semigroup S, defined as a generating set of S consists entirely
of quasi-idempotents, and the quasi-idempotent rank of S, defined as

qrank (S) = min{ |A| : ⟨A⟩ = S, A ⊆ Q(S)},

for various transformation semigroups (see, for examples, [2, 3, 8]).
Now, for any α ∈ Pn, let im (α) denotes the image set of α, and

let h (α) denotes the cardinality of im (α), called the height of α, say
h (α) = |im (α)|. Also, for 1 ≤ r ≤ n− 1, let

PK(n, r) = {α ∈ Pn : h (α) ≤ r},
K(n, r) = {α ∈ Tn : h (α) ≤ r}.

For 2 ≤ r ≤ n−1, Howie and McFadden proved in [7] that the rank of the
subsemigroup K(n, r) of Tn is S(n, r), and Garba proved in [5] that the
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rank of the subsemigroup PK(n, r) of Pn is S(n+1, r+1) where S(k, t)
denotes the Stirling number of the second kind. Hence, as a second aim
of this article, we examine the quasi-idempotent ranks of PK(n, r) and
K(n, r) for 2 ≤ r ≤ n− 1.

1. The orbit structure of quasi-idempotents in Pn and Tn

A digraph (in other words, a directed graph) Π consists of a non-empty fi-

nite set V (Π) of elements called vertices, and a finite list
−→
E (Π) ⊆ V (Π)×

V (Π) of ordered pairs of elements of V (Π) called directed edges (arcs). A

directed edge (u, v) ∈
−→
E (Π) is represented by u → v. Here, V (Π) is called

the vertex set and
−→
E (Π) is called the directed edge list of Π. For k-many

(k ≥ 2) vertices u1, . . . , uk ∈ V (Π), if (u1, u2), (u2, u3), . . . , (uk−1, uk) ∈−→
E (Π), then u1 → · · · → uk is called a directed path from u1 to uk of

size k, if also (uk, u1) ∈
−→
E (Π), then the closed directed path u1 → · · · →

uk → u1 is called a (directed) cycle of size k (k-cycle) and denoted by
(u1 . . . uk). Moreover, for two vertices u, v ∈ V (Π), we say u is connected

to v in Π if either (u, v) ∈
−→
E (Π) or there exists a directed path from

u to v. The directed path u1 → · · · → uk is called a chain of size k

(k-chain) if there is no directed edge in
−→
E (Π) \ {(u1, u2), . . . , (uk−1, uk)}

which contains any of ui’s for 1 ≤ i ≤ k, and denoted by [u1 . . . uk]. In

particular, for any u ∈ V (Π), if (u, u) ∈
−→
E (Π) then the cycle u → u is

called a 1-cycle (a fixed point or a loop) and denoted by (u); and if there

is no vertex v ∈ V (Π) such that (u, v) ∈
−→
E (Π) or (v, u) ∈

−→
E (Π), then

the single point u is called 1-chain and denoted by [u].

Recall that two digraphs are said to be disjoint if their vertex sets are
disjoint, and that, a digraph is called connected if its underlying graph
is a connected graph. Also, recall that an arbitrary connected digraph
whose underlying graph contains no cycle is called a (directed) tree. For
any finite tree Υ, there exists at least one u ∈ V (Υ) such that there is

no vertex v ∈ V (Υ) such that (u, v) ∈
−→
E (Υ), and in this case u is called

a root. We define the size of a tree as the maximum size of all directed
paths in the tree if there exist some directed paths, otherwise the tree
consists of a root and we define the size of a root as 1. (For unexplained
terms for graphs and digraphs we refer [9], for example.)

Recall that the orbits of α ∈ Pn are of three types: cycles, cycles
with some trees attached, and trees with one root; and that the orbits
of α ∈ Tn are of two types: cycles and cycles with some trees attached.
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For any α ∈ Pn, let

C(α) = {x ∈ dom (α) : xαk = x for some integer k ≥ 1},

and it is clear that C(α) is the union of all vertex sets of all cycles in the
digraph Γα.

Proposition 1. A non-idempotent map α ∈ Pn is a quasi-idempotent
if and only if xα2 = x for each x ∈ C(α), and either xα /∈ dom (α) or
xα2 ∈ C(α) for each x ∈ dom (α) \ C(α).

Proof. (⇒) Let a non-idempotent map α ∈ Pn be a quasi-idempotent,
and let x ∈ C(α). If xα = x then the result is clear. Now let xα ̸= x.
Then, we have

x = xα3 = xα5 = xα7 = · · ·

or

x = xα2 = xα4 = xα6 = · · ·

since α2 = α4. However, when xα3 = x, we have xα2 = xα5 = xα3 = x,
and so xα = xα3 = x which is a contradiction. Thus, we have xα2 = x.

Now, consider any element x ∈ dom (α) \ C(α) such that xα ∈
dom (α). Then, also xα2 ∈ dom (α), otherwise α2 ̸= α4 which is a con-
tradiction. Moreover, since (xα2)α2 = xα4 = xα2, we have xα2 ∈ C(α),
as required.

(⇐) Let a non-idempotent map α ∈ Pn has the properties given in the
expression of the proposition. Then, for any x ∈ C(α) clearly xα4 = xα2,
and, for any x ∈ dom (α) \ C(α), we have xα /∈ dom (α) or xα2 ∈ C(α),
and also xα4 = (xα2)α2 = xα2. Thus, α2 = α4, as required.

As a consequence of Proposition 1, we can immetiately have the fol-
lowing corollary.

Corollary 1. A non-idempotent map α ∈ Pn is a quasi-idempotent if
and only if each one of orbits of α must be one of the following forms:

(i) 1-cycle or 2-cycle (without any tree attached);

(ii) 1-cycle or 2-cycle with some trees attached of size 2 or 3;

(iii) tree of size 1 or 2 with one root.
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For any α ∈ Pn, for ease of notations, we write xα = − for each
x ∈ Xn \ dom (α), and then α can be written as in the following tabular
form:

α =

(
1 2 · · · n
1α 2α · · · nα

)
∈ Pn.

With these notations, let

α =

(
1 2 3 4 5 6 7 8 9
2 2 1 1 7 − 5 − 6

)
∈ Q(P9).

Then the orbit structure of α is as follows:r
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Corollary 2. A non-idempotent map α ∈ Tn is a quasi-idempotent if
and only if xα2 = x for each x ∈ C(α), and xα2 ∈ C(α) for each
x ∈ Xn \ C(α).

Corollary 3. A non-idempotent map α ∈ Tn is a quasi-idempotent if
and only if each one of orbits of α must be one of the following forms:

(i) 1-cycle or 2-cycle (without any tree attached);

(ii) 1-cycle or 2-cycle with some trees attached of size 2 or 3.

2. Quasi-idempotent ranks of PK(n,r) and K(n,r)

The kernel of α ∈ Pn is defined by

ker(α) = {(x, y) ∈ Xn ×Xn : (x, y ∈ dom (α) and xα = yα) or

(x, y /∈ dom (α))}.

It is well known that, for any α, β ∈ Pn (also in Tn), ker(α) ⊆ ker(αβ) and
that ker(α) is an equivalence relation onXn where the equivalence classes
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of ker(α) are all different pre-image sets of elements in im (α) with Xn \
dom (α). As in [1], we denote the set of all equivalence classes of ker(α)
except Xn \ dom (α) by kp (α), that is kp (α) = {yα−1 : y ∈ im (α)},
and call the kernel partition of α. Notice that kp (α) is a partition of
dom (α). Moreover, we denote the ordered pair

(
kp (α), Xn\dom (α)

)
by

ks (α), and call the kernel structure of α. For any α, β ∈ Pn, notice that

ks (α) = ks (β) ⇔ kp (α) = kp (β)

⇔ ker(α) = ker(β) and dom (α) = dom (β).

For any α ∈ Pn with heigh k (1 ≤ k ≤ n), it is easy to see that there
exists a unique kernel partition {A1, . . . , Ak} of α such that ker(α) =
k+1⋃
i=1

(Ai ×Ai) where Ak+1 = Xn\dom (α) and a subset {a1, . . . , ak} of Xn

such that im (α) = {a1, . . . , ak}. Without loss of generality, let Aiα = ai
for each 1 ≤ i ≤ k. Then α also can be written as in the following tabular
form:

α =

(
A1 · · · Ak Ak+1

a1 · · · ak −

)
.

Now, recall from [4, Theorem 4.5.1] that the characterization of the
Green’s equivalences on Pn (Tn) can be stated as follows:

(i) αRβ ⇔ ks (α) = ks (β);

(ii) αLβ ⇔ im (α) = im (β);

(iii) αDβ ⇔ h (α) = h (β); and

(iv) αHβ ⇔ ks (α) = ks (β) and im (α) = im (β)

for any α, β ∈ Pn (Tn). We denote the D-Green class of all elements in
Pn (also in Tn) of height k by Dk for 0 ≤ k ≤ n (for 1 ≤ k ≤ n).

Let U be a non-empty set and let P = {U1, . . . , Uk} be a partition
of U to k non-empty subset for 1 ≤ k ≤ |U |. A representative set of a
partition P , denoted by R(P ), is a set with the property that |R(P )| = k
and |R(P ) ∩ Ui| = 1 for each 1 ≤ i ≤ k.

For any 1 ≤ k ≤ n and A ⊂ Xn with cardinality at most n − k,
let PA be a partition of Xn \ A to k subsets, and let I be a subset of
Xn with cardinality k. Then we denote the H-Green class of the par-
tial transformations in Pn with kernel structure (PA, A) and image set I
by HPA

I . In particular, when we investigate Tn, since the kernel struc-
ture of any element in Tn has the form (P∅, ∅), we can use the simplier
notation P instead of P∅, and the notation HP

I for the H-Green class of
the transformations in Tn with kernel partition P and image set I.
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Proposition 2. For 2 ≤ r ≤ n and A ⊂ Xn with cardinality at most
n− r, let PA be a partition of Xn \A to r subsets, and let I be a subset
of Xn with cardinality r. Then, we have Q(HPA

I ) ̸= ∅ in Pn.

Proof. For 2 ≤ r ≤ n, let A ⊂ Xn with cardinality at most n− r, PA =
{A1, . . . Ar} be a partition of Xn \A to r subsets and let I = {a1, . . . , ar}
be a subsets of Xn with cardinality r.

First, suppose that I ∩ A = ∅, that is I ⊆ Xn \ A. If I is a repre-
sentative set of PA, then, without loss of generality, we can suppose that
ai ∈ Ai for each 1 ≤ i ≤ r. Then, clearly

α =

(
A1 A2 A
a2 a1 −

)
∈ Q(HPA

I )

for r = 2, and

α =

(
A1 A2 A3 · · · Ar A
a2 a1 a3 · · · ar −

)
∈ Q(HPA

I )

for r ≥ 3. If I is not a representative set of P , then there exist distinct
k1, . . . , kl ∈ {1, . . . , r} such that Aki ∩ I ̸= ∅ for each ki ∈ {k1, . . . , kl}
where 1 ≤ l ≤ r − 1, and Atj ∩ I = ∅ for each tj ∈ {t1, . . . , ts} =
{1, . . . , r} \ {k1, . . . , kl} where 1 ≤ s = r − l. We choose and fix unique
bki ∈ Aki ∩ I for each 1 ≤ i ≤ l, and let I \ {bk1 , . . . , bkl} = {bt1 , . . . , bts}.
Then, we define α ∈ Pn as follows:

α =

(
Ak1

· · · Akl
At1 · · · Ats A

bk1
· · · bkl

bt1 · · · bts −

)
.

It is clear that α is not an idempotent since s ≥ 1, and that α ̸= α2 = α4.
Hence, we have α ∈ Q(HPA

I ), as required.
Next, suppose that I ∩A ̸= ∅. If I ⊆ A, then clearly

α =

(
A1 A2 · · · Ar A
a1 a2 · · · ar −

)
∈ Q(HPA

I ),

otherwise, with the same notations given above,

α =

(
Ak1

· · · Akl
At1 · · · Ats A

bk1
· · · bkl

bt1 · · · bts −

)
∈ Q(HPA

I ),

as required.

Now we state a similar result for Tn whose proof is the special case
of the proof of Proposition 2 for A = ∅.
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Proposition 3. For 2 ≤ r ≤ n, let P be a partition of Xn to r subsets
and let I be a subset of Xn with cardinality r. Then, we have Q(HP

I ) ̸= ∅
in Tn.

As a clear consequence of Proposition 2 (Proposition 3) that, each
L-class L and each R-class R on Pn (Tn) contains at least one quasi-
idempotent.

In [1], Ayık and Bugay first determined the digraph ΓX for any ∅ ≠
X ⊆ Dr in Pn (Tn) as follows:

V (ΓX) = X and
−→
E (ΓX) = {(α, β) ∈ X ×X : αβ ∈ Dr},

and show that, for any α, β ∈ Dr, also αβ ∈ Dr if and only if im (α) is
a representative set of kp (β). Then, they stated the following two main
results that we will use in the proof of the main two results of this article.

Theorem 1 ([1, Theorem 4]). Let X be a subset of the D-Green class Dr

of Pn for 2 ≤ r ≤ n−1. Then X is a generating set of PK(n, r) if and on-
ly if, for each idempotent ξ in Dr, there exist α, β ∈ X such that ks (α) =
ks (ξ) im (β) = im (ξ), and α is connected to β in the digraph ΓX

(or equivalently, X is a generating set of PK(n, r) if and only if, for
each A ⊂ Xn with cardinality at most n − r, for each partition PA of
Xn \ A to r subsets, and for each representative set R(PA) of PA, there
exist α, β ∈ X such that ks (α) = (PA, A), im (β) = R(PA) and that α is
connected to β in the digraph ΓX).

Theorem 2 ([1, Theorem 10]). Let X be a subset of the D-Green class Dr

of Tn for 2 ≤ r ≤ n−1. Then X is a generating set of K(n, r) if and on-
ly if, for each idempotent ξ in Dr there exist α, β ∈ X such that ker(α) =
ker(ξ), im (β) = im (ξ) and α is connected to β in the digraph ΓX

(or equivalently, X is a generating set of K(n, r) if and only if, for each
partition A of Xn, and for each representative set R(A) of A, there exist
α, β ∈ X such that kp (α) = A, im (β) = R(A) and that α is connected
to β in the digraph ΓX).

Theorem 3. For 2 ≤ r ≤ n − 1, qrank (PKn,r) = rank (PKn,r) =
S(n+ 1, r + 1).

Proof. For 2 ≤ r ≤ n − 1, let I1, . . . , Im with
(
n
r

)
= m be all subsets of

Xn of cardinality r. Then, as shown in [1, Lemma 6], for each 1 ≤ i ≤ m,
there exists a subset Air+1 of Xn and a partition PAir+1

= {Ai1 , . . . , Air}



L. Bugay 189

of Xn \ Air+1 such that Ii is a representative set of PAir+1
, and that

PAir+1
̸= PAjr+1

if 1 ≤ i ̸= j ≤ m. From Proposition 2, there exists

αi ∈ Q(H
PAi+1r+1

Ii
) for each 1 ≤ i ≤ m. Notice that

(i) im (αi) = Ii for each 1 ≤ i ≤ m;

(ii) ks (αi) ̸= ks (αj) if 1 ≤ i ̸= j ≤ m; and

(iii) Ii is a representative set of kp (αi+1) for each 1 ≤ i ≤ m − 1, and
Im is a representative set of kp (α1).

Let R1, . . . , Rt be all the R-Green classes in Dr where
(
n
r

)
= m and

S(n + 1, r + 1) = t. Without loss of generality, we may suppose that
αi ∈ Ri for 1 ≤ i ≤ m. Then we take an arbitrary αm+j ∈ Q(Rm+j) for
each 1 ≤ j ≤ t−m, and consider the set

X = {α1, . . . , αm, αm+1, . . . αt}.

It is easy to see that α1 → α2 → · · · → αm → α1 is a cycle on the di-
graph ΓX , and that, for each 1 ≤ j ≤ t−m, there exists a directed edge
from αj to at least one element on the cycle α1 → α2 → · · · → αm → α1.
Therefore, from Theorem 1, X is a quasi-idempotent generating set
of PK(n, r), and so the result follows from the fact rank (PKn,r) =
S(n+ 1, r + 1).

Theorem 4. For 2 ≤ r ≤ n− 1, qrank (Kn,r) = rank (Kn,r) = S(n, r).

Proof. For 2 ≤ r ≤ n − 1, let I1, . . . , Im with
(
n
r

)
= m be all subsets

of Xn of cardinality r. Then, as shown in [1, Lemma 12], there exist m
different partitions P1, . . . , Pm of Xn to r subsets with the property that
Ii is a representative set of Pi for each 1 ≤ i ≤ m . From Proposition 3,
there exists αi ∈ Q(H

Pi+1

Ii
) for each 1 ≤ i ≤ m. Notice that

(i) im (αi) = Ii for each 1 ≤ i ≤ m;

(ii) kp (αi) ̸= kp (αj) if 1 ≤ i ̸= j ≤ m; and

(iii) Ii is a representative set of kp (αi+1) for each 1 ≤ i ≤ m − 1, and
Im is a representative set of kp (α1).

Let R1, . . . , Rt be a list of all R-Green classes in Dr where
(
n
r

)
= m

and S(n, r) = t. Without loss of generality, suppose that αi ∈ Ri for
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1 ≤ i ≤ m. Then we take an arbitrary αm+j ∈ Q(Rm+j) for each
1 ≤ j ≤ t−m, and consider the set

X = {α1, . . . , αm, αm+1, . . . αt}.

Then similarly, from Theorem 2,X is a quasi-idempotent generating set of
K(n, r), and so the result follows from the fact rank (Kn,r) = S(n, r).
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