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Abstract. In this paper we study a connection between vari-
ants of semigroups and Brandt semigroups. We find necessary con-
ditions under which a variant of a semigroup is a Brandt semigroup.
For variants of Rees matrix semigroups we studied a structure of
a sandwich matrix. We proved that if semigroup does not contain
a bicyclic subsemigroup, then any variant of this semigroup is not
a Brandt semigroup. Thus a variant of a finite semigroup is not a
Brandt semigroup.

Introduction and preliminaries

For an arbitrary but fixed element a ∈ S of a semigroup (S, ·) we can
define a new operation ∗a, by the next equality

x ∗a y = x · a · y, for any elements x, y ∈ S.

The operation ∗a is called a sandwich-multiplication, and the semi-
group (S, ∗a) is called a variant or a sandwich-semigroup with the sand-
wich element a.

The concept of the variant of a semigroup first was introduced in
1960 by Ljapin [1] for semigroups of transformations. Further variants of
other classes of semigroups were studied by various authors. For exam-
ple, Hickey in [2] studied a general properties of variants, and Chase in [3]
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studied variants of binary relations semigroup. Research of regular semi-
groups was provided in [4] by Khan and Lawson. Study of subsemigroups
of variants was made by Mazorchuk and Tsyaputa in [5]. In [6] Dolinka
and East considered variants of finite full transformation semigroup.

Gutik and Maksymyk studied variants of a bicyclic monoid in [7]
and variants of a bicyclic extendes semigroup in [8]. Variants of a poli-
cyclic monoid were studied by Givens, Rosin and Linton in [10] and by
Khylynskyi in [9]. In [11] we studied variants of Rees matrix semigroup.

In the paper [12] necessary and sufficiency conditions for variants of
a commutative lattices with zero to be isomorphic is obtained. Variants
of a lattice of partitions of countable set were studied in [13]. In [14]
the automorphism group of a variant of the lattice of partitions of finite
set was described. Automorphism groups for variants of some other
semigroup classes were studied in [15].

One of the naturally arising questions in research of variants is to
define which semigroups are variants. It is not trivial only for semigroups
without a unit, since a semigroup with unite e is a self-variant with a
sandwich element e.

In this paper we study the question is there exist a variant of a
semigroup which is a Brandt semigroup.

Let G be a group and let G0 = G ∪ {0} be the group with zero
obtained from G by the adjunction of a zero element 0. Let I and J be
arbitrary sets. By Rees I×J matrix over G0 we mean I×J matrix over
G0 having at most one non-zero element. If g ∈ G and in the matrix A
it placed at kl position we denote such Rees matrix as Akl(g) or [g]kl

Let P = (pji)i∈I, j∈J be an arbitrary but fixed J × I matrix over G0.

On the set of all Rees I × J matrices over G0 we define a binary
operation ◦ as follows:

A ◦B = A · P ·B.

The operation ◦ is associative. Thus the set of all Rees I×J matrices
over the group G0 is a semigroup with respect to the binary operation ◦.
We call it Rees I ×J matrix semigroup over the group G0 with sandwich
matrix P and denote it M0(G; I, J ;P ).

A semigroup is called regular if for each element a ∈ S there exists
an element x ∈ S such that axa = a.

A semigroup without zero is called simple if it has no proper ideals.
A semigroup S with zero is called 0-simple if {0} and S are its only
ideals, and S2 ̸= {0}.

Let E be a set of idempotents of a semigroup S. For idempotents
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e, f ∈ E we set e ≤ f if ef = fe = e. Such defined ≤ is a partial
ordering of E. If S contains a zero element 0, then 0 ≤ e for every e ∈ E.
An idempotent element f of S is called primitive if f ̸= 0 and if e ≤ f
implies e = 0 or e = f .

A semigroup is called completely simple [completely 0-simple] if it is
simple [0-simple] and has a primitive idempotent.

The bicyclic semigroup is the semigroup C (p, q) with identity element
generated by two symbols p and q subject to the single generating relation
pq = 1, thus C (p, q) = ⟨p, q | pq = 1⟩.

A semigroup S with zero is called a Brandt semigroup if eSf ̸= 0 for
any non-zero idempotents e, f , and for any a ̸= 0 there exists unique
element e, such that ea = a, unique element f , such that af = a, and
unique element a′, such that a′a = f .

Theorem 1 ([16]). The following three conditions on a semigroup S with
zero are equivalent.

(i) S is a Brandt semigroup.
(ii) S is a completely 0-simple semigroup.
(iii) S is isomorphic with a regular Rees I × I matrix semigroup

M0(G; I, I;E) over a group with zero G0 and with the I×I identity
matrix E as sandwich matrix.

By the equivalence of (i) and (ii) in Theorem 1 it is obvious that
to study the Brandt semigroup we are interested in study of completely
0-simple semigroups. Thus we collected already known results which we
would use further.

Proposition 1 ([2]). Let a variant (S, ∗a) be a 0-simple semigroup. Then
S is a 0-simple semigroup.

Proposition 2 ([17]). Every finite 0-simple semigroup is a complete
0-simple.

Proposition 3 ([18]). A 0-simple semigroup with a non-zero idempo-
tent is completely 0-simple if and only if it does not contain a bicyclic
subsemigroup.

Further we need the famous Rees Theorem 2 to state a connection of
completely 0-simple semigroups and Rees matrix semigroups.

Theorem 2 (Rees). A semigroup is completely 0-simple if and only if
it is isomorphic with a regular Rees matrix semigroup over a group with
zero.
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1. Sandwich semigroups which are Brandt semigroups

In this section we determine which properties a variant needs to have to
be isomorphic to a Brand semigroup.

Proposition 4. Let a variant (S, ∗a) be isomorphic to a Brandt semi-
group. Then the semigroup S is 0-simple.

Proof. Let the variant (S, ∗a) be a Brandt semigroup, then by Theorem 1
it is an inverse completely 0-simple semigroup. Thus by Proposition 1
the semigroup S is a 0-simple semigroup.

Proposition 5. Let a variant (S, ∗a) be a finite Brandt semigroup. Then
S is a finite completely 0-simple semigroup.

Proof. Since the variant (S, ∗a) is isomorphic to the Brandt semigroup
then by Proposition 4 semigroup S is 0-simple. Considering that the
semigroup S is now finite 0-simple then Proposition 2 proves that S is
completely 0-simple.

Next we state a useful corollary which follows from Proposition 1 and
Proposition 2.

Corollary 1. Let a variant (S, ∗a) be a finite 0-simple semigroup. Then
a semigroup S is finite completely 0-simple.

Proof. Let (S, ∗a) be a 0-simple semigroup, then S is a 0-simple by Propo-
sition 1. Further from the finiteness of S by Proposition 2, it follows that
the semigroup S is complete 0-simple.

2. Variants of Rees matrix semigroup

Our goal is to define properties of a semigroup which variants can be
isomorphic to Brandt semigroups. Thus from Section 1 it is evident that
we should study variants of 0-simple semigroups. In this section we study
properties of variants of completely 0-simple semigroups.

Proposition 6. The variant of the Rees semigroup M0(G0; I, J ;P ) ge-
nerated by arbitrary non-zero Rees matrix Aij is a Rees matrix semigroup
with the sandwich matrix Q = PAijP .
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Proof. We consider the variant (M0(G; I, J ;P ), ∗Aij ). A multiplication
in this variant is defined as follows. For any Rees matrices Xkl and Yuv
we have that

Xkl ∗Aij Yuv = Xkl ◦Aij ◦ Yuv,

here ◦ is a multiplication in the semigroup M0(G0; I, J ;P ). Then

Xkl ∗Aij Yuv = XklPAijPYuv = Xkl(PAijP )Yuv.

Hence the variant (M0(G0; I, J ;P ), ∗Aij ) coincides with a Rees mat-
rix semigroup with the sandwich matrix Q = PAijP .

Further we study which structure can have the sandwich matrix Q.

Lemma 1 ([16, Lem. 3.1]). The Rees I × J matrix semigroup
M0(G; I, J ;P ) over a group with zero G0, and with sandwich matrix P ,
is regular if and only if each row and each column of P contains a non-
zero entry.

Proposition 7. Let the matrix Q have a zero at the position lk. Then
or all column k or all row l or at the same time column k and row l have
only zero entries.

Proof. Let eij be a non-zero entry of the matrix Aij . Let the element
qlk of the matrix Q be a zero entry. Thus by Proposition 6 we have
that qlk = plieijpjk = 0. Last equality holds only in three next cases. If
pjk = 0 then in the matrix Q all entries of the column k are zeros. If
pli = 0 then in the matrix Q all entries of row l are zeros. If pjk = 0 and
pli = 0 then both column k and row l contains only zeros.

Recall that I × I ′ matrix U over a group with zero G0 is called
invertible if each row and each column of U contains exactly one non-
zero element of G0. This clearly implies that |I| = |I ′|.

Also if ω is a homomorphism of G0 into a group with zero (G′)0, and
P = (pkl) is any J × I matrix over G0, then by ω(P ) we mean the J × I
matrix (ω(pkl))k∈J,l∈I .

Proposition 8 ([16, Cor. 3.12]). Two regular Rees matrix semigroups
M(G; I, J ;P ) and M((G′); I ′, J ′;P ′) are isomorphic if and only if there
exists an isomorphism ω of G0 onto (G′)0, an invertible I× I ′ matrix U ,
and an invertible J × J ′ matrix V , such that ω(P ) = V P ′U .

Immediately Proposition 7 and Lemma 1 imply the following corol-
lary.
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Corollary 2. The variant
(
M0(G; I, J ;P ), ∗Aij

)
generated by an ar-

bitrary non-zero Rees matrix Aij is regular if and only if the matrix
Q = PAijP does not have zero entries.

Proposition 9. There is no such variant (M0(G; I, J ;P ), ∗Aij ) of the
Rees matrix semigroup that is isomorphic to the Rees matrix semigroup
M0(H;K,K;E) with the unite sandwich matrix E.

Proof. Taking into account Propositions 6 and 8 we check if semigroups
M0(G; I, J ;PAijP ) and M0(H;K,K;E) are isomorphic. We denote
Q = PAijP .

If M0(G; I, J ;PAijP ) ∼= M0(H;K,K;E) then there exists such iso-
morphism ω : G0 → H0 and such invertible I ×K matrix U and J ×K
matrix V , such that ω(E) = V QU . Since V and U are invertible, then
each row and each column of these matrices contain precisely one non
zero element. Hence the matrix V QU contains the same number of non-
zero elements as the matrix Q. Since for each non-zero element qij ∈ Q
there exists exactly one element vki ∈ V in i-th column of the matrix V
and there exists exactly one element ujt ∈ U in j-row of the matrix U .

Zero entries are mapped to zero entries, mean ω(0ij) = 0ij and non-
zero entries are mapped to non-zeros. Since E is diagonal, we see that
the matrix V QU is diagonal and diagonal entries are non-zeros. Since
the matrix V QU have zero entries out of the diagonal, it follows that
the matrix Q = PAijP have to contain zero entries too. But then by
Proposition 7 the matrix Q have to contain zero rows or columns.

From the other hand a multiplication of an arbitrary matrix M by
an invertible matrix by the left [right] side corresponds to a multiplica-
tion of rows [columns] of the matrix M by non-zero elements and their
permutation. Hence there are zero rows or columns in the matrix V QU .
This is a contradiction because the matrix V QU is diagonal with non-
zero diagonal entries. The obtained contradiction proves that semigroups
M0(G; I, J ;PAijP ) and M0(H;K,K;E) are not isomorphic.

Theorem 3. Let S be a semigroup which does not contain a bicyclic
subsemigroup. Then for any a ∈ S the variant (S, ∗a) is not a Brandt
semigroup.

Proof. Let S be a semogroup which does not contain a bicyclic subsemi-
group. Let the variant (S, ∗a) be isomorphic to a Brandt semigroup.
Then by Theorem 1 (ii) the variant (S, ∗a) is a completely 0-simple in-
verse semigroup. Thus it contains some primitive idempotent f ∈ (S, ∗a).
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Thus f ∗a f = f = faf ̸= 0. Then it is obvious that af ̸= 0 and
fa ̸= 0. By multiplying equality f ∗a f = f by the element a ∈ S
from the right and from the left side, we get fafa = fa and afaf = af
respectively. Hence elements af and fa are non-zero idempotents in the
semigroup S.

By the other hand since (S, ∗a) is completely 0-simple, then by Propo-
sition 1 the semigroup S is 0-simple.

Thus we proved that the semigroup S is a 0-simple and contains
a non-zero idempotent. Since S does not contain a bicyclic semigroup
by the theorem statement, then by the Proposition 3 we have that S
is completely 0-simple. Hence by Rees Theorem 2 the semigroup S is
isomorphic to the regular Rees matrix semigroup M0(G; I, J ;P ).

By the Proposition 9 the variant (M0(G; I, J ;P ), ∗Aij ) is not iso-
morphic to the Rees matrix semigroup M0(G; I, I;E) with an identity
sandwich matrix E. But from the Theorem 1 (iii) by Rees matrix semi-
group with identity matrix over a group with zero all Brand semigroups
are described.

Hence the variant (S, ∗a) is not isomorphic to a Brandt semigroup.
This completes the proof.

Since a finite semigroup could not contain a bicyclic subsemigroup,
then by Theorem 3 we obtain the next corollary.

Theorem 4. A finite Brandt semigroup is not a variant of a finite semi-
group.

Proposition 10. A variant (C (p, q), ∗qmpk) of a bicyclic semigroup
C (p, q) = ⟨p, q | pq = 1⟩ is not a Brandt semigroup.

Proof. By proposition from [19] the set of idempotents in the variant
(C (p, q), ∗qmpk) have the form {qk+ipm+i | i ≥ 0} and these idempotents
form an infinite decreasing chain with respect to natural partial order on
the set of idempotents. Thus the variant (C (p, q), ∗qmpk) do not contain
any primitive idempotent. Hence the variant is not a completely 0-simple
semigroup. Then by Theorem 1 this variant is not a Brandt semigroup.

A question, could a semigroup which contains a bicyclic subsemigroup
be Brand semigroup, remains opened.
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