© Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 37 (2024). Number 2, pp. 171[–180](#page-9-0) DOI[:10.12958/adm2217](https://doi.org/10.12958/adm2217)

Anti-tori in quaternionic lattices over $\mathbb{F}_q(t)$ Ievgen Bondarenko and Nataliia Bondarenko

Communicated by R. Grigorchuk

ABSTRACT. An anti-torus in a $CAT(0)$ group is a subgroup $\langle a, b \rangle$, where a and b do not have commuting powers. We study anti-tori in quaternionic lattices Γ_{τ} over the field $\mathbb{F}_q(t)$ introduced by Stix-Vdovina (2017). We determine when every pair of generators of Γ_{τ} generates an anti-torus, and establish the existence of $a, b \in \Gamma_{\tau}$ such that the subgroup $\langle a^{p^n}, b^{p^n} \rangle$ is not abelian and not free for all $n \geq 0$. Explicit examples of matrices $a, b \in SL_3(\mathbb{F}_q(t))$ with this property are given.

Introduction

The celebrated result of Tits (1972) states that every finitely generated linear group G satisfies the following alternative: every subgroup of G is either virtually solvable or contains a nonabelian free group. Other classes of groups that enjoy the Tits' alternative include: hyperbolic groups, mapping class groups of compact surfaces, CAT(0) cubical groups, and certain classes of Artin groups.

Torsion-free hyperbolic groups satisfy a strong form of this alternative: for $a, b \in G$, either $\langle a, b \rangle$ is abelian or $\langle a^n, b^n \rangle$ is free for sufficiently large *n*. In $\left[1, \text{Question } 2.7\right]$, Wise asked whether the analogous statement holds for CAT(0) groups: does there exist $n \geq 1$ such that $\langle a^n, b^n \rangle$ is either abelian or free? A positive answer is known for Coxeter groups, non-exceptional mapping class groups, and some classes of Artin groups.

2020 Mathematics Subject Classification: 11R52, 20F65, 20F67.

Key words and phrases: anti-torus, quaternionic lattice, free subgroup.

A CAT(0) group that does not satisfy this alternative was recently constructed in $[3]$. Now the question is which $CAT(0)$ groups satisfy the Wise's alternative.

An important open case are the fundamental groups of complete VH-complexes X [\[9\]](#page-9-1), for which the universal cover \overline{X} is the product of two regular trees $T_n \times T_m$. Then $\pi_1(X)$ is a lattice in $\text{Aut}(T_n) \times \text{Aut}(T_m)$ and admits a group factorization $\pi_1(X) = \langle A \rangle \cdot \langle B \rangle$ corresponding to the vertical-horizontal structure of X. An anti-torus in $\pi_1(X)$ is a subgroup $\langle a,b\rangle$ for $a \in \langle A \rangle$, $b \in \langle B \rangle$ such that $\langle a^n, b^m \rangle$ is non-abelian for every $n, m \geq 1$. The notion of an anti-torus appeared to describe an interesting phenomenon: X could contain an isometrically embedded plane with an axis for $a, b \in \pi_1(X)$, while a and b do not have powers that commute. An anti-torus for a certain VH-complex was used by Wise to construct the first example of a non-residually finite $CAT(0)$ group. It is an open question whether there exists a free anti-torus (see [\[9,](#page-9-1) Problem 10.8]).

Quaternionic lattices provide influential examples of lattices in the product of two trees. There are two beautiful constructions: the groups $\Gamma_{p,l}$ introduced by Mozes [\[5\]](#page-9-2) in zero characteristic and the groups Γ_{τ} introduced by Stix-Vdovina [\[7\]](#page-9-3) in prime characteristic. In [\[6\]](#page-9-4), Rattaggi studied the anti-tori in $\Gamma_{p,l}$, and established their relation to non-commuting Hamilton quaternions. In this paper, we study anti-tori in the groups $\Gamma_{\tau} = \langle A, B_{\tau} \rangle$, which are arithmetic lattices over the field $\mathbb{F}_{q}(t)$ of prime characteristic p and $1 \neq \tau \in \mathbb{F}_q^*$.

Theorem 1. A subgroup $\langle a, b \rangle$ is an anti-torus in Γ_{τ} for every $a \in A$ and $b \in B_{\tau}$ if and only if $\frac{\tau-1}{\tau}$ is a non-square in \mathbb{F}_q .

Theorem 2. Let $\frac{1-\tau}{\tau}$ be a non-square in \mathbb{F}_q . There exist $a \in A$ and $b \in B_{\tau}$ such that the group $\langle a^{p^n}, b^{p^n} \rangle$ is not abelian and not free for all $n \geq 0$.

In the last section, we compute explicit examples of free and non-free subgroups of the form $\langle a^{p^n}, b^{p^n} \rangle$ in quaternion algebras over $\mathbb{F}_p(t)$ and in the group $SL_3(\mathbb{F}_p(t))$.

1. Quaternion algebras and groups Γ_{τ}

Let us define quaternionic lattices introduced in [\[7\]](#page-9-3) (we preserve the original notations, except for the notation of algebra basis).

Let q be a power of an odd prime p. Let \mathbb{F}_q be a finite field of order q, and $\mathbb{F}_q(t)$ the function field over \mathbb{F}_q . Fix a non-square $c \in \mathbb{F}_q^*$ and a parameter $1 \neq \tau \in \mathbb{F}_q^*$.

Let $D = (c, t(t-1)|K)$ be the quaternion algebra over the field $K :=$ $\mathbb{F}_q(t)$ with basis 1, i, j, k and multiplication

$$
i^2 = c
$$
, $j^2 = t(t-1)$, $k^2 = -ct(t-1)$, and $k = ij = -ji$.

The algebra D does not depend on the non-square c up to isomorphism.

For $a = a_0 + a_1i + a_2j + a_3k \in D$, the $Re(a) = a_0$ is the real part of a and $Im(a) = a - Re(a)$ its imaginary part. The conjugate of a is $\overline{a} = Re(a) - Im(a)$. The reduced norm on D is the map Nrd : $D \to K$, $Nrd(a) = a\overline{a}$. The group D^* of invertible elements consists of elements $a \in D$ with $Nrd(a) \neq 0$.

The subset $\mathbb{F}_q[i] \subset D$ is a field of order q^2 , a quadratic extension of \mathbb{F}_q . The norm map of the extension $\mathbb{F}_q \subset \mathbb{F}_q[i]$ is

$$
N: \mathbb{F}_q[\mathbf{i}]^* \to \mathbb{F}_q^*, \quad N(\xi) = \xi \cdot \overline{\xi} = a^2 - cb^2, \text{ where } \xi = a + bi \in \mathbb{F}_q[\mathbf{i}].
$$

We denote $x_{\xi} := ct - \xi \mathsf{k} = ct - cb\mathsf{j} - a\mathsf{k} \in D^*$. For $\delta \in \mathbb{F}_q^*$, define the subsets of the groups $\mathbb{F}_q[i]^*$ and D^* :

$$
N_{\delta} = \{ \xi \in \mathbb{F}_q[\mathbf{i}]^* : N(\xi) = \delta \} \text{ and } X_{\delta} = \{ x_{\xi} \in D^* : \xi \in N_{\delta} \}.
$$

Note that $|N_{\delta}| = |X_{\delta}| = q + 1$ and $x_{\xi}^{-1} = x_{-\xi} \in X_{\delta}, -\xi \in N_{\delta}$ for $\xi \in N_{\delta}$. We put $M_{\tau} := N_{\frac{c\tau}{1-\tau}}, Y_{\tau} := X_{\frac{c\tau}{1-\tau}},$ and use notation $y_{\eta} := x_{\eta}$ for $\eta \in M_{\tau}$.

Let $\phi : D^* \to D^*/K^*$ be the quotient map. For better readability, we denote separately $a_{\xi} = \phi(x_{\xi})$ for $\xi \in N_{-c}$ and $b_n = \phi(y_n)$ for $\eta \in M_{\tau}$. The group $\Gamma_{\tau} = \langle A, B_{\tau} \rangle$ is a subgroup of the group D^*/K^* generated by

$$
A = \{a_{\xi} : \xi \in N_{-c}\}\
$$
 and $B_{\tau} = \{b_{\eta} : \eta \in M_{\tau}\}.$

It is proved in [\[7\]](#page-9-3) that for every $(\xi, \eta) \in N_{-c} \times M_{\tau}$ there exists a unique $(\mu, \lambda) \in N_{-c} \times M_{\tau}$ such that $a_{\xi}b_{\eta} = b_{\lambda}a_{\mu}$, where (μ, λ) is a unique solution of the system

$$
\xi \overline{\eta} = \lambda \overline{\mu} \quad \text{and} \quad \xi + \eta = \lambda + \mu. \tag{1}
$$

Theorem 3 ([\[7\]](#page-9-3)). The group Γ_{τ} is a torsion-free arithmetic lattice with finite presentation

$$
\Gamma_{\tau} = \langle A, B_{\tau} | a_{\xi} a_{-\xi}, b_{\eta} b_{-\eta}, \text{ and } a_{\xi} b_{\eta} = b_{\lambda} a_{\mu} \text{ iff } (1) \text{ holds } \rangle,
$$

= $\langle A \rangle \cdot \langle B_{\tau} \rangle, \quad \langle A \rangle \cap \langle B_{\tau} \rangle = E \text{ and } \langle A \rangle \cong \langle B_{\tau} \rangle \cong F_{\frac{q+1}{2}},$

where F_n denotes the free group of rank n.

In particular, the group Γ_{τ} admits the following ab-normal forms:

$$
\forall g \in \Gamma_{\tau} \quad \exists ! \ a, d \in \langle A \rangle \exists ! b, c \in \langle B_{\tau} \rangle : \quad g = ab = cd. \tag{2}
$$

We need the following properties of anti-/commuting quaternions in D^* and their images in D^*/K^* . (They are analogs of the properties of Hamilton quaternions proved in [\[6\]](#page-9-4)).

- **Lemma 1.** 1. The relation $ab = -ba$ does not hold for $a, b \in D^*$ with $Re(a), Re(b) \neq 0.$
	- 2. Two quaternions $a, b \in D^* \setminus K^*$ commute if and only if $Im(a)$ and $Im(b)$ are K-proportional.

Proof. Let $a = a_0 + a_1i + a_2j + a_3k$ and $b = b_0 + b_1i + b_2j + b_3k$. Since $char(K) \neq 2$, the relation $ab = -ba$ is equivalent to the system

$$
a_0b_0 + a_1b_1i^2 + a_2b_2j^2 + a_3b_3k^2 = 0,
$$

$$
a_0b_1 + a_1b_0 = 0, \quad a_0b_2 + a_2b_0 = 0, \quad a_0b_3 + a_3b_0 = 0.
$$

By solving the latter equations for b_1, b_2, b_3 and plugging in the first one, we get

$$
a_0b_0 - \frac{a_1^2b_0}{a_0}i^2 - \frac{a_2^2b_0}{a_0}j^2 - \frac{a_3^2b_0}{a_0}k^2 = \frac{b_0}{a_0}(a_0^2 - a_1^2i^2 - a_2^2j^2 - a_3^2k^2) = \frac{b_0}{a_0}N(a) = 0.
$$

Since $N(a) \neq 0$ for $a \in D^*$, we get $b_0 = 0$.

The relation $ab = ba$ is equivalent to

$$
a_2b_3 = a_3b_2, a_3b_1 = a_1b_3, a_1b_2 = a_2b_1 \Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}.
$$

Lemma 2. Let $\phi: D^* \to D^*/K^*$ be the quotient map.

- 1. The quaternions $a, b \in D^*$ with $Re(a), Re(b) \neq 0$ commute if and only if $\phi(a), \phi(b)$ commute.
- 2. The quaternions $a_1, \ldots, a_n \in D^*$ generate a free subgroup of rank n for $n \geq 2$ if and only if $\phi(a_1), \ldots, \phi(a_n) \in D^* / K^*$ generate a free subgroup of rank n.

Proof. If a, b commute, then $\phi(a), \phi(b)$ commute. Conversely, assume $\phi(a)\phi(b) = \phi(b)\phi(a)$. Then $ab = kba$ for $k \in K^*$. By taking the reduced norm, we get $Nrd(a)Nrd(b) = k^2Nrd(b)Nrd(a)$. Hence $k^2 = 1$ and $k = \pm 1$. The case $k = -1$ is impossible by Lemma [1.](#page-3-0) Hence $k = 1$ and $ab = ba$.

If $\langle \phi(a_1), \ldots, \phi(a_n) \rangle \cong F_n$, then clearly $\langle a_1, \ldots, a_n \rangle \cong F_n$. Conversely, let $\langle a_1, \ldots, a_n \rangle \cong F_n$. Since the center of F_n is trivial for $n \geq 2$, $\langle a_1, \ldots, a_n \rangle \cap K^* = E$. Then ϕ restricted to $\langle a_1, \ldots, a_n \rangle$ is injective, and $\langle \phi(a_1), \ldots, \phi(a_n) \rangle \cong F_n$. \Box

Corollary 1. The subgroups $\langle X_{\tau} \rangle$ of D^* are free groups of rank $\frac{q+1}{2}$.

2. Anti-tori and non-free subgroups in the groups Γ_{τ}

An anti-torus in the group Γ_{τ} is a subgroup $\langle a, b \rangle$ for $a \in \langle A \rangle$, $b \in \langle B_{\tau} \rangle$ that do not have commuting non-trivial powers, i.e., $a^n b^m \neq b^m a^n$ for all $n, m \in \mathbb{Z}\backslash\{0\}$. Similar to [\[6\]](#page-9-4), we relate anti-tori in Γ_{τ} and non-commuting quaternions in D^* .

Lemma 3. Let $a \in \langle A \rangle$ and $b \in \langle B_{\tau} \rangle$. If $a^n b^m = b^m a^n$ for some $n, m \in \mathbb{Z} \setminus \{0\},\$ then $ab = ba$.

Proof. Let $a = \phi(u)$ and $b = \phi(v)$ for $u, v \in D^*$, note that $Re(u), Re(v) \neq$ 0. Then $a^n b^m = b^m a^n$ implies $u^n v^m = u^m v^n$ by Lemma [2.](#page-3-1) Then u^n, v^m, u, v have K-proportional imaginary parts by Lemma [1.](#page-3-0) Hence $uv = uv$ and $ab = ba$. \Box

Lemma 4. There exist $\xi \in N_{-c}$ and $\eta \in M_{\tau}$ such that $a_{\xi}b_{\eta} = b_{\eta}a_{\xi}$ if and only if $\frac{\tau-1}{\tau}$ is a square in \mathbb{F}_q .

Proof. The relation $a_{\xi}b_{\eta} = b_{\eta}a_{\xi}$ is equivalent to $\xi \overline{\eta} = \eta \overline{\xi}$ by Equation [\(1\)](#page-2-0). Put $\xi = u\eta$ for $u \in \mathbb{F}_q[i]$. Then $u = \overline{u}$. Therefore, $u \in \mathbb{F}_q$ and

$$
N(u) = \frac{N(\xi)}{N(\eta)} = \frac{\tau - 1}{\tau} = u^2.
$$

Hence, the equation admits a solution if and only if $\frac{\tau-1}{\tau}$ is a square. \Box

Theorem [1](#page-1-0) is a consequence of the following statement.

Proposition 1. Assume $\frac{\tau-1}{\tau}$ is a non-square in \mathbb{F}_q . Then for every nontrivial $a \in \langle A \rangle$ and every $b \in B_{\tau}$ (or $a \in A$ and $b \in \langle B_{\tau} \rangle$) the subgroup $\langle a, b \rangle$ is an anti-torus in Γ_{τ} .

Proof. If $a = a_1 a_2 ... a_n \in \langle A \rangle$ and $b \in B_\tau$ have commuting powers, then they commute by Lemma [3.](#page-4-0) Then

$$
ab = a_1 a_2 \dots a_n \cdot b = b \cdot a_1 a_2 \dots a_n = a'_1 b_1 \cdot a_2 \dots a_n = a'_1 a'_2 b_2 \dots a_n = \dots = a'_1 a'_2 \dots a'_n \cdot b_n.
$$

The uniqueness of the ab-normal forms [\(2\)](#page-3-2) implies: $a_i = a'_i$, $b_i = b$, and b commutes with each a_i . Contradiction with Lemma [4.](#page-4-1) \Box

Remark 1. There always exist nontrivial elements $a \in \langle A \rangle$ and $b \in \langle B_{\tau} \rangle$ that commute. Indeed, take any cycle in the defining relations of the form:

$$
a_1b_1 = b_2a_2, \ a_2b_2 = a_3b_3, \ \ldots, \ a_nb_n = a_1b_1.
$$

Then $a_n \dots a_2 a_1 \cdot b_1 b_2 \dots b_n = b_1 b_2 \dots b_n \cdot a_n \dots a_2 a_1$.

We use the next lemma to indicate non-free subgroups in D^* .

- **Lemma 5.** 1. If τ is a non-square in \mathbb{F}_q , then for every $\eta \in M_{\tau}$ there exist $\xi, \mu \in N_{-c}$ such that $a_{\xi}b_{\eta} = b_{-\eta}a_{\mu}$.
	- 2. If 1τ is a non-square in \mathbb{F}_q , then for every $\xi \in N_{-c}$ there exist $\eta, \lambda \in M_{\tau}$ such that $a_{\xi}b_{\eta} = b_{\lambda}a_{-\xi}$.

Proof. The relation $a_{\xi}b_{\eta} = b_{-\eta}a_{\mu}$ is equivalent to the system

$$
\begin{cases} \xi + \eta = -\eta + \mu \\ \xi \overline{\eta} = -\eta \overline{\mu} \end{cases} \Rightarrow \begin{cases} \mu = \xi + 2\eta \\ \xi \overline{\eta} = -\eta \overline{\mu} = -\eta (\overline{\xi} + 2\overline{\eta}) \end{cases}
$$

Put $\xi = u\eta$ for $u \in \mathbb{F}_q[i]$. Then the last equation gives $u + \overline{u} = -2$. Hence $u = -1 + \beta i$ for $\beta \in \mathbb{F}_q$, and we compute its norm:

$$
N(u) = \frac{N(\xi)}{N(\eta)} = \frac{\tau - 1}{\tau} = 1 - c\beta^2 \quad \Rightarrow \quad c\tau\beta^2 = 1.
$$

Since c is a non-square, the last equation has a solution if and only if τ is a non-square. It remains to check the norm of $\xi = u\eta$ and $\mu = -\overline{\xi}\eta/\overline{\eta}$: for every $\eta \in M_{\tau}$,

$$
N(\xi) = N(u)N(\eta) = -c \quad \text{and} \quad N(\mu) = N(-\overline{\xi}\eta/\overline{\eta}) = N(\xi).
$$

The item 2) is obtained similarly.

 \Box

.

Corollary 2. Let $\frac{1-\tau}{\tau}$ be a non-square in \mathbb{F}_q . Then either $a_{\xi}b_{\eta} = b_{-\eta}a_{\mu}$ or $a_{\xi}b_{\eta} = b_{\lambda}a_{-\xi}$ holds for some $\xi, \mu \in N_{-c}$ and $\eta, \lambda \in M_{\tau}$.

Remark [2](#page-6-0). The conditions on τ in Proposition [1](#page-4-2) and Corollary 2 hold simultaneously when -1 is a square in \mathbb{F}_q , that is, when either $p \equiv$ $1 \text{ (mod 4)} \text{ or } q = p^{2n}.$

Lemma 6. Let $\eta, \lambda \in M_\tau$ be such that $\lambda \neq \pm \eta, \pm \overline{\eta}$. Then the relation $a_{\xi}b_{\eta} = b_{\lambda}a_{\mu}$ holds for at most one pair $\xi, \mu \in N_{-c}$.

Proof. From Equation [\(1\)](#page-2-0) we get $\xi \overline{\eta} - \overline{\xi} \lambda = \lambda (\overline{\eta} - \overline{\lambda})$. Write $\xi = x + yi$, $\eta = a_1 + b_1$ i, $\lambda = a_2 + b_2$ i, and $\lambda(\overline{\eta} - \overline{\lambda}) = a_3 + b_3$ i for $x, y, a_i, b_i \in \mathbb{F}_q$, and plug in the last equation:

$$
\xi \overline{\eta} - \overline{\xi} \lambda = ((a_1 - a_2)x + c(b_1 + b_2)y) + ((b_1 - b_2)x + c(a_1 + a_2)y)i = a_3 + b_3 i.
$$

We get a linear system over the field \mathbb{F}_q :

$$
\begin{cases}\n(a_1 - a_2)x + c(b_1 + b_2)y = a_3 \\
(b_1 - b_2)x + c(a_1 + a_2)y = b_3\n\end{cases}
$$

.

Its determinant is equal to $\Delta = (a_1^2 - a_2^2) - c(b_1^2 - b_2^2)$. Since $N(\eta) = N(\lambda)$, we have $a_1^2 - a_2^2 = b_1^2 - b_2^2$. Then $\Delta = 0$ only when $a_1 = \pm a_2$ and $b_1 = \pm b_2$, what is equivalent to the condition $\lambda = \pm \eta, \pm \overline{\eta}$.

Theorem 4. Let $\frac{1-\tau}{\tau}$ be a non-square in \mathbb{F}_q . There exist $a \in A$ and **Theorem 4.** Let \overline{ab} be a non-square in \mathbb{F}_q . There exist $a \in A$
 $b \in B_\tau$ such that $\langle a^{p^{\overline{h}}}, b^{p^n} \rangle$ is not abelian and not free for all $n \ge 0$.

Proof. By Lemma [5,](#page-5-0) there exists a relation of the form $ab = b^{-1}c$ for some $a, c \in A$ and $b \in B_{\tau}$. Then the uniqueness of the *ab*-normal form implies that a and b do not commute. Hence $\langle a^n, b^n \rangle$ is non-abelian for every $n \in \mathbb{N}$ by Lemma [3.](#page-4-0)

It is proved in [\[2\]](#page-8-2) that the map $x \mapsto x^{q^2}$ on the generators $x \in A \cup B_7$ extends to an injective endomorphism of Γ_{τ} . Therefore, $a^n b^n = b^{-n} c^n$ for $n = q^2$. By plugging $c = bab$, we get a relation $b^n a^n b^n = (bab)^n$, and the group $\langle a, b \rangle$ is not free. Then $\langle a^n, b^n \rangle$ is not free for all n of the form $n = q^{2k}, k \ge 0$. Since $\langle a^{p^k}, b^{p^k} \rangle$ contains a subgroup $\langle a^n, b^n \rangle$ for $n = q^{2k}$, and subgroups of free groups are free, $\langle a^{p^k}, b^{p^k} \rangle$ is not free for every $k \geq 0$. \Box

Corollary 3. Let $\frac{1-\tau}{\tau}$ be a non-square in \mathbb{F}_q . There are quaternions $x \in X_{-c}$ and $y \in Y_{\tau}$ such that $\langle x^{p^n}, y^{p^n} \rangle$ is not abelian and not free for all $n \geq 0$.

We do not know if the statement of Theorem [4](#page-6-1) holds for any powers of a, b .

Question 1. Is $\langle a^n, b^n \rangle$ a free group for some $a \in A$, $b \in B_{\tau}$ and $n \geq 1$?

If $a \in A$ and $b \in B_{\tau}$ commute, then $\langle a, b \rangle$ has infinite index in Γ_{τ} . In all examples below, we have checked that $\langle a, b \rangle$ has finite index in Γ_{τ} for all $a \in A$ and $b \in B_{\tau}$ that do not commute. It follows that $\langle a^{p^n}, b^{p^n} \rangle$ is not abelian and not free for all $n \geq 0$. We do not know if this holds for all groups Γ_{τ} .

Question 2. Is the index of $\langle a, b \rangle$ finite in Γ_{τ} for all $a \in A$ and $b \in B_{\tau}$ that do not commute?

3. Examples

We compute a few explicit examples of free and non-free subgroups in D^* and D^*/K^* . Also, for the quaternion algebra $D = (a, b|K)$, there is an embedding $\psi : D^*/K^* \to SL_3(K)$ given by mapping $x = x_0 + x_1i +$ x_2 j + x_3 k to the 3×3 -matrix

$$
\frac{1}{\mathrm{Nrd}(x)}\left(\begin{array}{ccc} x_0^2 - ax_1^2 + bx_2^2 - abx_3^2 & 2b(x_0x_3 - x_1x_2) & 2b(ax_1x_3 - x_0x_2) \\ -2a(x_0x_3 + x_1x_2) & x_0^2 + ax_1^2 - bx_2^2 - abx_3^2 & 2a(x_0x_1 + bx_2x_3) \\ -2(x_0x_2 + ax_1x_3) & 2(x_0x_1 - bx_2x_3) & x_0^2 + ax_1^2 + bx_2^2 + abx_3^2 \end{array}\right).
$$

(See Prop. 4.5.10 in [\[8\]](#page-9-5)). This allows us to produce explicit free and non-free subgroups in $SL_3(\mathbb{F}_q(t))$.

Example 1. Let $q = 3$ and $\tau = c = 2 \in \mathbb{F}_3$. Then

$$
N_{-c} = \{\pm 1, \pm i\}, \qquad M_{\tau} = \{\pm 1 \pm i\}, A = \{2t \pm j, 2t \pm k\}, \qquad B_{\tau} = \{2t \pm j \pm k\}.
$$

We get free subgroups in D^* and D^*/K^* :

$$
\langle t+j, t+k \rangle \cong \langle t+j+k, t+j-k \rangle \cong F_2.
$$

Here $\frac{\tau-1}{\tau} = 2$ is a non-square in \mathbb{F}_3 . Then $\langle a, b \rangle$ is an anti-torus in Γ_τ for all $a \in A$, $b \in B_{\tau}$ by Proposition [1.](#page-4-2) Moreover, we have directly checked that $\langle a^i, b^j \rangle$ has finite index in Γ_τ for all $a \in A, b \in B_\tau$ and $i, j = 1, 2$. Therefore, the following subgroups are not free:

$$
\langle (t \pm \mathbf{k})^n, (t \pm \mathbf{j} \pm \mathbf{k})^n \rangle, \langle (t \pm \mathbf{j})^n, (t \pm \mathbf{j} \pm \mathbf{k})^n \rangle \ncong F_2, \ n = 3^k, 2 \cdot 3^k, \ k \in \mathbb{N}.
$$

By applying the embedding ψ , we get explicit free and non-free subgroups in $SL_3(\mathbb{F}_3(t))$ for $\psi(t + j)$, $\psi(t + k)$, $\psi(t + j + k)$:

$$
\langle \begin{pmatrix} -1-t & 0 & t^2-t \\ 0 & 1 & 0 \\ 1 & 0 & -1-t \end{pmatrix}, \begin{pmatrix} -1-t & t-t^2 & 0 \\ -1 & -1-t & 0 \\ 0 & 0 & 1 \end{pmatrix} \rangle \cong F_2,
$$

$$
\langle \begin{pmatrix} -1-t & 0 & t^2-t \\ 0 & 1 & 0 \\ 1 & 0 & -1-t \end{pmatrix}, \frac{1}{t+1} \begin{pmatrix} -1 & t^2-t & t-t^2 \\ 1 & -t & 1-t \\ -1 & 1-t & -t \end{pmatrix} \rangle \ncong F_2.
$$

Example 2. Let $q = 5$ and $c = 2$, $\tau = 3 \in \mathbb{F}_5$. Then

$$
N_{-c} = \{\pm i, \pm 1 \pm 2i\}, \qquad M_{\tau} = \{\pm 2i, \pm 2 \pm i\},
$$

$$
A = \{2t \pm 2j, 2t \pm j \pm k\}, \qquad B_{\tau} = \{2t \pm j, 2t \pm 2j \pm 2k\}.
$$

We get free subgroups in D^* and D^*/K^* :

$$
\langle t+j, t+2j\pm 2k\rangle \cong \langle t+2j, t+j\pm k\rangle \cong F_2.
$$

Here $\frac{\tau-1}{\tau} = 4$ is a square in \mathbb{F}_5 , and indeed we have commuting pairs of quaternions $2t \pm 2j$, $2t \pm 4j$ and $2t \pm (j+k)$, $2t \pm 2(j+k)$. We have directly checked that $\langle a, b \rangle$ has finite index in Γ_{τ} for all $a \in A, b \in B_{\tau}$ that do not commute. Therefore, the following subgroups are not free:

$$
\langle (t \pm j)^n, (t \pm 2j)^n \rangle, \langle (t \pm j)^n, (t \pm j \pm k)^n \rangle \ncong F_2, \text{ for } n = 5^k, k \in \mathbb{N},
$$

$$
\langle (t \pm 2j \pm 2k)^n, (t \pm 2j)^n \rangle, \langle (t \pm 2j \pm 2k)^n, (t \pm j \pm k)^n \rangle \ncong F_2,
$$

and some subgroups in $SL_3(\mathbb{F}_5(t))$ for $\psi(t+2i)$, $\psi(t+i+k)$, $\psi(t+i)$:

$$
\langle \frac{1}{2t-1} \begin{pmatrix} 1 & 0 & t^2 - t \\ 0 & 2t - 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \frac{1}{2t-1} \begin{pmatrix} 1 & 2t^2 + 3t & 3t^2 + 2t \\ 1 & 3t + 3 & 1 - t \\ 3 & 3t + 2 & 2 - t \end{pmatrix} \rangle \cong F_2,
$$

$$
\langle \begin{pmatrix} 2t - 1 & 0 & 3t^2 + 2t \\ 0 & 1 & 0 \\ 3 & 0 & 2t - 1 \end{pmatrix}, \frac{1}{2t - 1} \begin{pmatrix} 1 & 2t^2 + 3t & 3t^2 + 2t \\ 1 & 3t + 3 & 1 - t \\ 3 & 3t + 2 & 2 - t \end{pmatrix} \rangle \ncong F_2.
$$

References

- [1] Bestvina, M.: Questions in Geometric Group Theory (2004). [https://www.math.](https://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf) [utah.edu/ bestvina/eprints/questions-updated.pdf](https://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf) .
- [2] Bondarenko, I.: Quaternionic lattices and poly-context-free word problem. Preprint at <https://arxiv.org/abs/2402.07494> (2024).
- [3] Leary, I., Minasyan, A.: Commensurating HNN extensions: nonpositive curvature and biautomaticity. Geom. Topol. 25, 1819–1860 (2021). [https://doi.org/](https://doi.org/10.2140/gt.2021.25.1819) [10.2140/gt.2021.25.1819](https://doi.org/10.2140/gt.2021.25.1819)
- [4] Martin, A.: The Tits alternative for two-dimensional Artin groups and Wise's power alternative. Journal of Algebra. 656, 294–323 (2024). [https://doi.org/](https://doi.org/10.1016/j.jalgebra.2023.08.012) [10.1016/j.jalgebra.2023.08.012](https://doi.org/10.1016/j.jalgebra.2023.08.012)
- [5] Mozes, S.: A zero entropy, mixing of all orders tiling system. in Symbolic Dynamics And Its Applications (New Haven, CT, 1991). 135, 319–325 (1992). <https://doi.org/10.1090/conm/135/1185097>
- [6] Rattaggi, D.: Anti-tori in square complex groups. Geom. Dedicata. 114, 189–207 (2005). <https://doi.org/10.1007/s10711-005-5538-9>
- [7] Stix, J., Vdovina, A.: Simply transitive quaternionic lattices of rank 2 over $\mathbb{F}_q(t)$ and a non-classical fake quadric. Math. Proc. Cambridge Philos. Soc. 163, 453–498 (2017). <https://doi.org/10.1017/S0305004117000056>
- [8] Voight, J.: Quaternion algebras. Springer Nature (2021). [https://doi.org/10.](https://doi.org/10.1007/978-3-030-56694-4) [1007/978-3-030-56694-4](https://doi.org/10.1007/978-3-030-56694-4)
- [9] Wise, D.: Complete square complexes. Comment. Math. Helv. 82(4), 683–724 (2007). <https://doi.org/10.4171/cmh/107>

CONTACT INFORMATION

N. Bondarenko Kyiv National University of Construction and Architecture, Povitroflotskiy av. 31, 03037, Kyiv, Ukraine E-Mail: natvbond@gmail.com

Received by the editors: 16.02.2024 and in final form 06.05.2024.