Characterization of commuting graphs of finite groups having small genus

Shrabani Das, Deiborlang Nongsiang, and Rajat Kanti Nath*

Communicated by L. Kurdachenko

Abstract

In this paper we first show that among all doubletoroidal and triple-toroidal finite graphs only $K_{8} \sqcup 9 K_{1}, K_{8} \sqcup 5 K_{2}$, $K_{8} \sqcup 3 K_{4}, K_{8} \sqcup 9 K_{3}, K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right), 3 K_{6}$ and $3 K_{6} \sqcup 4 K_{4} \sqcup 6 K_{2}$ can be realized as commuting graphs of finite groups, where \sqcup and \vee stand for disjoint union and join of graphs respectively. As consequences of our results we also show that for any finite nonabelian group G if the commuting graph of G (denoted by $\Gamma_{c}(G)$) is double-toroidal or triple-toroidal then $\Gamma_{c}(G)$ and its complement satisfy Hansen-Vukičević Conjecture and E-LE conjecture. In the process we find a non-complete graph, namely the non-commuting graph of the group $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$, that is hyperenergetic. This gives a new counter example to a conjecture of Gutman regarding hyperenergetic graphs.

Introduction

Finite groups are being characterized through various graphs defined on it for a long time now. A survey on graphs defined on groups can be

[^0]found in [4]. One such graph defined on groups is the commuting graph. The commuting graph of a finite group was originated from the works of Brauer and Fowler in [3]. Let G be a finite non-abelian group with center $Z(G)$. The commuting graph of G is a simple undirected graph whose vertex set is $G \backslash Z(G)$ and two vertices x and y are adjacent if $x y=y x$. It is denoted by $\Gamma_{c}(G)$. The complement of this graph is the non-commuting graph of G, denoted by $\Gamma_{n c}(G)$. The study of noncommuting graph of a finite non-abelian group gets popularity because of a question posed by Erdös in the year 1975 which was answered by Neumann in 1976 [18].

The genus of a graph Γ is the smallest non-negative integer n such that the graph can be embedded on the surface obtained by attaching n handles to a sphere. It is denoted by $\gamma(\Gamma)$. The graphs which have genus zero are called planar graphs, those which have genus one are called toroidal graphs, those which have genus two are called double-toroidal graphs and those which have genus three are called triple-toroidal graphs. Classification of finite non-abelian groups whose commuting graphs are planar or toroidal can be found in [1] and [6] (also see [9, Theorem 3.3]). Recently, finite non-abelian groups such that their commuting graphs are double-toroidal or triple-toroidal are classified in [20]. In this paper, we consider finite non-abelian groups whose commuting graphs are double or triple-toroidal and realize their commuting graphs. As such we show that among all double-toroidal and triple-toroidal finite graphs only $K_{8} \sqcup 9 K_{1}$, $K_{8} \sqcup 5 K_{2}, K_{8} \sqcup 3 K_{4}, K_{8} \sqcup 9 K_{3}, K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right), 3 K_{6}$ and $3 K_{6} \sqcup$ $4 K_{4} \sqcup 6 K_{2}$ can be realized as commuting graphs of finite groups, where \sqcup and \vee stand for disjoint union and join of graphs respectively. We also compute first and second Zagreb indices of $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ and show that they satisfy Hansen-Vukičević conjecture if $\Gamma_{c}(G)$ is double-toroidal or triple-toroidal. Further, we show that these graphs also satisfy E-LE conjecture.

Let Γ be a simple undirected graph with vertex set $v(\Gamma)$ and edge set $e(\Gamma)$. The first and second Zagreb indices of Γ, denoted by $M_{1}(\Gamma)$ and $M_{2}(\Gamma)$ respectively, are defined as

$$
M_{1}(\Gamma)=\sum_{v \in v(\Gamma)} \operatorname{deg}(v)^{2} \text { and } M_{2}(\Gamma)=\sum_{u v \in e(\Gamma)} \operatorname{deg}(u) \operatorname{deg}(v)
$$

where $\operatorname{deg}(v)$ is the number of edges incident on v (called degree of v). Zagreb indices of graphs were introduced by Gutman and Trinajstić [13] in 1972 to examine the dependence of total π-electron energy on molecu-
lar structure. As noted in [19], Zagreb indices are also used in studying molecular complexity, chirality, ZE-isomerism and heterosystems etc. Later on, general mathematical properties of these indices are also studied by many mathematicians. A survey on mathematical properties of Zagreb indices can be found in [14]. Comparing first and second Zagreb indices, Hansen and Vukičević [15] posed the following conjecture in 2007.

Conjecture 1 (Hansen-Vukičević Conjecture). For any simple finite graph Γ,

$$
\begin{equation*}
\frac{M_{2}(\Gamma)}{|e(\Gamma)|} \geq \frac{M_{1}(\Gamma)}{|v(\Gamma)|} \tag{1}
\end{equation*}
$$

It was shown in [15] that the conjecture is not true if $\Gamma=K_{1,5} \sqcup K_{3}$. However, Hansen and Vukičević [15] showed that Conjecture 1 holds for chemical graphs. In [22], it was shown that the conjecture holds for trees with equality in (1) when Γ is a star graph. In [16], it was shown that the conjecture holds for connected unicyclic graphs with equality when the graph is a cycle. However, the search of graphs validating or invalidating Conjecture 1 is not completed yet. Recently, Das et al. [7] have obtained various finite non-abelian groups such that their commuting graphs satisfy Hansen-Vukičević Conjecture. It was also shown that $\Gamma_{c}(G)$ satisfies Hansen-Vukičević Conjecture if $\Gamma_{c}(G)$ is planar or toroidal.

Let $A(\Gamma)$ and $D(\Gamma)$ denote the adjacency matrix and degree matrix of Γ respectively. The set of eigenvalues of $A(\Gamma)$ along with their multiplicities is called the spectrum of Γ. The Laplacian matrix and signless Laplacian matrix of Γ are given by $L(\Gamma):=D(\Gamma)-A(\Gamma)$ and $Q(\Gamma):=$ $D(\Gamma)+A(\Gamma)$ respectively. The Laplacian spectrum and signless Laplacian spectrum are the set of eigenvalues of $L(\Gamma)$ and $Q(\Gamma)$ along with their multiplicities respectively. Let $v(\Gamma):=\left\{v_{i}: i=1,2, \ldots, n\right\}$. The common neighbourhood of two distinct vertices v_{i} and v_{j}, denoted by $C\left(v_{i}, v_{j}\right)$, is the set of all vertices other than v_{i} and v_{j} which are adjacent to both v_{i} and v_{j}. The common neighbourhood matrix of Γ, denoted by $C N(\Gamma)$, is defined as

$$
(C N(\Gamma))_{i, j}= \begin{cases}\left|C\left(v_{i}, v_{j}\right)\right|, & \text { if } i \neq j \\ 0, & \text { if } i=j\end{cases}
$$

The common neighbourhood spectrum of Γ is the set of all eigenvalues of $C N(\Gamma)$ along with their multiplicities. We write $\operatorname{Spec}(\Gamma), \mathrm{L}-\operatorname{spec}(\Gamma)$, Q-spec (Γ) and $\mathrm{CN}-\operatorname{spec}(\Gamma)$ to denote the spectrum, Laplacian spectrum,
signless Laplacian spectrum and common neighbourhood spectrum of Γ respectively.

The energy, $E(\Gamma)$ and common neighbourhood energy, $E_{C N}(\Gamma)$ of Γ are the sum of the absolute values of the elements of $\operatorname{Spec}(\Gamma)$ and CN-spec (Γ) respectively. The Laplacian energy, $L E(\Gamma)$ and signless Laplacian energy, $L E^{+}(\Gamma)$ of Γ are defined as

$$
L E(\Gamma)=\sum_{\lambda \in \operatorname{L-spec}(\Gamma)}\left|\lambda-\frac{2 m}{n}\right| \quad \text { and } \quad L E^{+}(\Gamma)=\sum_{\mu \in \mathrm{Q}-\operatorname{spec}(\Gamma)}\left|\mu-\frac{2 m}{n}\right|,
$$

where $m=|e(\Gamma)|$. It is well-known that $E\left(K_{n}\right)=L E\left(K_{n}\right)=L E^{+}\left(K_{n}\right)=$ $2(n-1)$ and $E_{C N}\left(K_{n}\right)=2(n-1)(n-2)$. A graph Γ with $|v(\Gamma)|=n$ is called hyperenergetic if $E(\Gamma)>E\left(K_{n}\right)$. It is called hypoenergetic if $E(\Gamma)<$ n. Similarly, Γ is called L-hyperenergetic if $L E(\Gamma)>L E\left(K_{n}\right)$, Q-hyperenergetic if $L E^{+}(\Gamma)>L E^{+}\left(K_{n}\right)$ and CN-hyperenergetic if $E_{C N}(\Gamma)>$ $E_{C N}\left(K_{n}\right)$.

Gutman et al. [12] conjectured that $E(\Gamma) \leq L E(\Gamma)$ which is known as E-LE conjecture. Gutman [11] also conjectured that " \mathcal{G} is not hyperenergetic if $\mathcal{G} \nexists K_{|v(\mathcal{G})|}$ ". Note that both the conjectures were disproved. However, it is still unknown whether the commuting or non-commuting graphs of finite groups satisfy E-LE conjecture. In this paper, we show that $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ satisfy E-LE conjecture if $\Gamma_{c}(G)$ is double-toroidal or triple-toroidal. Further, we find a non-complete graph, namely the non-commuting graph of the group $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$, that is hyperenergetic. This gives a new counter example to the above mentioned conjecture of Gutman. We shall also determine whether $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ are hypoenergetic, hyperenergetic, L-hyperenergetic, Q-hyperenergetic and CN -hyperenergetic if $\Gamma_{c}(G)$ is double-toroidal or triple-toroidal. It is worth mentioning that the universal adjacency eigenvalues/eigenpairs of the commuting and non-commuting graphs for most of the groups considered in this paper can be obtained from [2].

1. Realization of commuting graph

In this section, we determine all finite planar, toroidal, double-toroidal and triple-toroidal graphs that can be realized as commuting graphs of finite groups. Using [1, Theorem 2.2], [9, Theorem 3.3] and commuting graphs of various finite non-abelian groups considered in [9] we have the following theorem.

Theorem 1. (a) Among all the planar finite graphs only $K_{2} \sqcup 3 K_{1}$, $3 K_{2}, K_{4} \sqcup 5 K_{1}, K_{4} \sqcup 3 K_{2}, 3 K_{4}, K_{3} \sqcup 4 K_{2}, 5 K_{3} \sqcup 10 K_{2} \sqcup 6 K_{4}$, $3 K_{2} \sqcup 4 K_{4}, K_{4} \sqcup 5 K_{3}$ and $7 K_{2} \sqcup D$ can be realized as commuting graphs of finite groups, where D is the graph obtained from $4 K_{3}$ after three vertex contractions as shown in Figure 1.
(b) Among all the toroidal finite graphs only $K_{6} \sqcup 7 K_{1}, K_{6} \sqcup 4 K_{2}$, $K_{6} \sqcup 3 K_{3}, K_{6} \sqcup 4 K_{4}$ and $K_{6} \sqcup 7 K_{2}$ can be realized as commuting graphs of finite groups.

Figure 1: Graph after three vertex contractions in $4 K_{3}$

Figure 2: $K_{1} \vee 3 K_{2}$

The following two results from [20] are useful in determining all finite double-toroidal and triple-toroidal graphs that can be realized as commuting graphs of finite groups.

Theorem 2 ([20, Theorem 3.6]). Let G be a finite non-abelian group. Then the commuting graph of G is double-toroidal if and only if G is isomorphic to one of the following groups:
(a) $D_{18}, D_{20}, Q_{20}, S_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, S_{3} \times \mathbb{Z}_{4}$,
(b) $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2} \cong\left\langle x, y, z: x^{3}=y^{3}=z^{2}=[x, y]=1\right.$,

$$
\left.x^{z}=x^{-1}, y^{z}=y^{-1}\right\rangle,
$$

(c) $\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8} \cong\left\langle x, y: x^{8}=y^{3}=1, y^{x}=y^{-1}\right\rangle$,
(d) $\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}\right) \times \mathbb{Z}_{2} \cong\left\langle x, y, z: x^{4}=y^{3}=z^{2}=1\right.$,

$$
\left.x y x^{-1}=y^{-1}, x z=z x, y z=z y\right\rangle
$$

(e) $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4} \cong\left\langle x, y: x^{4}=y^{3}=\left(y x^{2}\right)^{2}=\left[x^{-1} y x, y\right]=1\right\rangle$,
(f) $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8} \cong\left\langle x, y, z: x^{4}=y^{4}=z^{3}=1, y^{x}=y^{-1}\right.$,

$$
\left.z^{y^{2}}=z^{-1}, z^{x^{2}}=z^{-1}, x^{-1} z x^{-1}=(z y)^{2}\right\rangle
$$

Theorem 3 ([20, Theorem 3.7]). Let G be a finite non-abelian group. Then the commuting graph of G is triple-toroidal if and only if G is isomorphic to either
(a) $G L(2,3), D_{8} \times \mathbb{Z}_{3}, Q_{8} \times \mathbb{Z}_{3}$,
(b) $S L(2,3) \circ \mathbb{Z}_{2} \cong\left\langle x, y, z: y^{3}=z^{4}=1, x^{2}=z^{2}, y^{x}=y^{-1}\right.$,

$$
\left.y^{-1} z y^{-1} z^{-1} y^{-1} z=x z^{-1} x y^{-1} z y=1\right\rangle
$$

Now we realize the structures of $\Gamma_{c}(G)$ if $\Gamma_{c}(G)$ is double-toroidal or triple-toroidal.

Theorem 4. Let G be a finite non-abelian group. If $\Gamma_{c}(G)$ is doubletoroidal then $\Gamma_{c}(G)$ is isomorphic to $K_{8} \sqcup 9 K_{1}, K_{8} \sqcup 5 K_{2}, K_{8} \sqcup 3 K_{4}$, $K_{8} \sqcup 9 K_{3}$ or $K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$.

Proof. From Theorem 2, we have $\Gamma_{c}(G)$ is double-toroidal if and only if G is isomorphic to either $D_{18}, D_{20}, Q_{20}, S_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, S_{3} \times \mathbb{Z}_{4},\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$, $\mathbb{Z}_{3} \rtimes \mathbb{Z}_{8},\left(\mathbb{Z}_{3} \rtimes \mathbb{Z}_{4}\right) \times \mathbb{Z}_{2},\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}$ or $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$.

Let G be any of the groups D_{18} and $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$. Then G is an AC-group. The centralizers of the non-central elements of G are of size 9 and 2 . There is exactly one centralizer of size 9 and nine distinct centralizers of size 2 . Thus $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{1}$.

Let G be any of the groups D_{20} and Q_{20}. Then G is an AC-group, $|Z(G)|=2$ and it has one centralizer of size 10 and 5 distinct centralizers of size 4 . Thus $\Gamma_{c}(G) \cong K_{8} \sqcup 5 K_{2}$.

Let G be any of the groups $S_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, S_{3} \times \mathbb{Z}_{4}, \mathbb{Z}_{3} \rtimes \mathbb{Z}_{8}$ and $\left(\mathbb{Z}_{3} \rtimes\right.$ $\left.\mathbb{Z}_{4}\right) \times \mathbb{Z}_{2}$. Then G is an AC-group, $|Z(G)|=4$ and it has three centralizer of size 8 and one centralizer of size 12 . Thus $\Gamma_{c}(G) \cong K_{8} \sqcup 3 K_{4}$.

If $G=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}$, then G is an AC-group, $|Z(G)|=1$ and it has one centralizer of size 9 and 9 centralizers of size 4. Thus $\Gamma_{c}(G)$ $\cong K_{8} \sqcup 9 K_{3}$.

Let $G=\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$. The group G consist of one sylow 3 -subgroup of order 9 and 9 sylow 2 -subgroups of order 8 . The sylow 2 -subgroups of G are isomorphic to Q_{8} and the sylow 3-subgroup is isomorphic to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. The intersection of any two of these subgroups is trivial. Thus G is exactly the union of these subgroups. Let L be any of these subgroups and $x \in L, x \neq 1$. Then $C_{G}(x) \subseteq L$. Thus the commuting graph of G consist of 10 components. One of the component is $\Gamma_{c}(G)[H]$, where $H \cup\{1\}$ is the sylow 3 -subgroup of G. The other 9 components are $\Gamma_{c}(G)\left[K_{i}\right]$, where $K_{i} \cup\{1\}, i=1,2, \ldots, 9$, are the sylow 2 -subgroups of G. It can be seen that $\Gamma_{c}(G)[H] \cong K_{8}$ and $\Gamma_{c}(G)\left[K_{i}\right] \cong K_{1} \vee 3 K_{2}$ for $i=1,2, \ldots, 9$. Thus $\Gamma_{c}(G) \cong K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$.

Theorem 5. Let G be a finite non-abelian group. If $\Gamma_{c}(G)$ is tripletoroidal, then $\Gamma_{c}(G)$ is isomorphic to $3 K_{6}$ or $3 K_{6} \sqcup 4 K_{4} \sqcup 6 K_{2}$.

Proof. From Theorem 3, we have $\Gamma_{c}(G)$ is triple-toroidal if and only if G is isomorphic to $G L(2,3), D_{8} \times \mathbb{Z}_{3}, Q_{8} \times \mathbb{Z}_{3}$ or $C_{2} \circ S_{4}$.

If $G=D_{8} \times \mathbb{Z}_{3}$ or $Q_{8} \times \mathbb{Z}_{3}$, then G is an AC-group, $|Z(G)|=6$ and has three distinct centralizers of size 12. Therefore, $\Gamma_{c}(G)=3 K_{6}$.

If $G=G L(2,3)$ or $C_{2} \circ S_{4}$, then G is an AC-group, $|Z(G)|=2$ and it has three centralizers of size 8 , four centralizers of size 6 and six centralizers of size 4 . Thus, $\Gamma_{c}(G)=3 K_{6} \sqcup 4 K_{4} \sqcup 6 K_{2}$.

We conclude this section with the following corollary.
Corollary 1. (a) Among all the double-toroidal finite graphs only $K_{8} \sqcup 9 K_{1}, K_{8} \sqcup 5 K_{2}, K_{8} \sqcup 3 K_{4}, K_{8} \sqcup 9 K_{3}$ or $K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$ can be realized as commuting graphs of finite groups.
(b) Among all the triple-toroidal finite graphs only $3 K_{6}$ and $3 K_{6} \sqcup 4 K_{4}$ $\sqcup 6 K_{2}$ can be realized as commuting graphs of finite groups.

2. Some consequences

In this section we show that for any finite non-abelian group G if $\Gamma_{c}(G)$ is double-toroidal or $\Gamma_{c}(G)$ is triple-toroidal then $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ satisfy Hansen-Vukičević Conjecture and E-LE conjecture. The following result is useful in our study.

Theorem 6 ([8, page 575] and [5, Lemma 3]). For any graph Γ and its complement $\bar{\Gamma}$,

$$
M_{1}(\bar{\Gamma})=|v(\Gamma)|(|v(\Gamma)|-1)^{2}-4|e(\Gamma)|(|v(\Gamma)|-1)+M_{1}(\Gamma) \quad \text { and }
$$

$$
\begin{aligned}
M_{2}(\bar{\Gamma})=\frac{|v(\Gamma)|(|v(\Gamma)|-1)^{3}}{2}+2|e(\Gamma)|^{2} & -3|e(\Gamma)|(|v(\Gamma)|-1)^{2} \\
& +\left(|v(\Gamma)|-\frac{3}{2}\right) M_{1}(\Gamma)-M_{2}(\Gamma)
\end{aligned}
$$

In [7], it was shown that $\Gamma_{c}(G)$ satisfies Hansen-Vukičević Conjecture if $\Gamma_{c}(G)$ is planar or toroidal. The following theorem shows that if $\Gamma_{c}(G)$ is double-toroidal then $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ satisfy Hansen-Vukičević Conjecture.

Theorem 7. Let G be a finite non-abelian group. If $\Gamma_{c}(G)$ is doubletoroidal then $\frac{M_{2}(\Gamma(G))}{|e(\Gamma(G))|} \geq \frac{M_{1}(\Gamma(G))}{|v(\Gamma(G))|}$, where $\Gamma(G)=\Gamma_{c}(G)$ or $\Gamma_{n c}(G)$.
Proof. From Theorem 4, we have that $\Gamma_{c}(G)$ is isomorphic to $K_{8} \sqcup 3 K_{4}$, $K_{8} \sqcup 9 K_{1}, K_{8} \sqcup 5 K_{2}, K_{8} \sqcup 9 K_{3}$ or $K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$. If $\Gamma_{c}(G) \cong K_{8} \sqcup$ $3 K_{4}$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=20,\left|e\left(\Gamma_{c}(G)\right)\right|=46,\left|e\left(\Gamma_{n c}(G)\right)\right|=\binom{20}{2}-46=$ 144. Using Theorem 2.1 of [7] and Theorem 6, we have $M_{1}\left(\Gamma_{c}(G)\right)=$ $500, M_{2}\left(\Gamma_{c}(G)\right)=1534, M_{1}\left(\Gamma_{n c}(G)\right)=4224$ and $M_{2}\left(\Gamma_{n c}(G)\right)=30720$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=\frac{767}{23}>25=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=\frac{640}{3}>\frac{1056}{5}=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{1}$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=17,\left|e\left(\Gamma_{c}(G)\right)\right|=28,\left|e\left(\Gamma_{n c}(G)\right)\right|$ $=\binom{17}{2}-28=108$. Using Theorem 2.1 of [7] and Theorem 6, we have $M_{1}\left(\Gamma_{c}(G)\right)=392, M_{2}\left(\Gamma_{c}(G)\right)=1372, M_{1}\left(\Gamma_{n c}(G)\right)=2952$ and $M_{2}\left(\Gamma_{n c}(G)\right)=19584$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=49>\frac{392}{17}=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=\frac{1632}{9}>\frac{2952}{17}=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 5 K_{2}$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=18,\left|e\left(\Gamma_{c}(G)\right)\right|=33,\left|e\left(\Gamma_{n c}(G)\right)\right|$ $=\binom{18}{2}-33=120$. Using Theorem 2.1 of [7] and Theorem 6, we have $M_{1}\left(\Gamma_{c}(G)\right)=402, M_{2}\left(\Gamma_{c}(G)\right)=1377, M_{1}\left(\Gamma_{n c}(G)\right)=3360$ and $M_{2}\left(\Gamma_{n c}(G)\right)=23040$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=\frac{67}{3}>\frac{459}{11}=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=192>\frac{560}{3}=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{3}$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=35,\left|e\left(\Gamma_{c}(G)\right)\right|=55,\left|e\left(\Gamma_{n c}(G)\right)\right|$ $=\binom{35}{2}-55=540$. Using Theorem 2.1 of [7] and Theorem 6, we have $M_{1}\left(\Gamma_{c}(G)\right)=500, M_{2}\left(\Gamma_{c}(G)\right)=1480, M_{1}\left(\Gamma_{n c}(G)\right)=33480$ and $M_{2}\left(\Gamma_{n c}(G)\right)=518400$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=\frac{1480}{55}>\frac{500}{35}=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=960>\frac{33480}{35}=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=71,\left|e\left(\Gamma_{c}(G)\right)\right|=109$, $\left|e\left(\Gamma_{n c}(G)\right)\right|=\binom{71}{2}-109=2376, M_{1}\left(\Gamma_{c}(G)\right)=932$ and $M_{2}\left(\Gamma_{c}(G)\right)=$ 2128. Using Theorem 6 we have $M_{1}\left(\Gamma_{n c}(G)\right)=318312$ and $M_{2}\left(\Gamma_{n c}(G)\right)$ $=10660608$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=\frac{2128}{109}>\frac{932}{71}=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=\frac{10660608}{2376}>\frac{318312}{71}=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|} .
$$

Hence, the result follows.
The following theorem shows that if $\Gamma_{c}(G)$ is triple-toroidal then $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ satisfy Hansen-Vukičević Conjecture.

Theorem 8. Let G be a finite non-abelian group. If $\Gamma_{c}(G)$ is tripletoroidal, then $\frac{M_{2}(\Gamma(G))}{|e(\Gamma(G))|} \geq \frac{M_{1}(\Gamma(G))}{|v(\Gamma(G))|}$, where $\Gamma(G)=\Gamma_{c}(G)$ or $\Gamma_{n c}(G)$.

Proof. From Theorem 5, we have that $\Gamma_{c}(G)$ is isomorphic to $6 K_{2} \sqcup$ $3 K_{6} \sqcup 4 K_{4}$ or $3 K_{6}$. If $\Gamma_{c}(G) \cong 6 K_{2} \sqcup 3 K_{6} \sqcup 4 K_{4}$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=46$, $\left|e\left(\Gamma_{c}(G)\right)\right|=75,\left|e\left(\Gamma_{n c}(G)\right)\right|=\binom{46}{2}-75=960$. Using Theorem 2.1 of [7] and Theorem 6, we have $M_{1}\left(\Gamma_{c}(G)\right)=606, M_{2}\left(\Gamma_{c}(G)\right)=1347$, $M_{1}\left(\Gamma_{n c}(G)\right)=80256$ and $M_{2}\left(\Gamma_{n c}(G)\right)=1677120$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=\frac{449}{25}>\frac{303}{23}=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=1747>\frac{40128}{23}=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|}
$$

If $\Gamma_{c}(G) \cong 3 K_{6}$, then $\left|v\left(\Gamma_{c}(G)\right)\right|=18,\left|e\left(\Gamma_{c}(G)\right)\right|=45,\left|e\left(\Gamma_{n c}(G)\right)\right|=$ $\binom{18}{2}-45=108$. Using Theorem 2.1 of [7] and Theorem 6, we have $M_{1}\left(\Gamma_{c}(G)\right)=450, \quad M_{2}\left(\Gamma_{c}(G)\right)=1125, \quad M_{1}\left(\Gamma_{n c}(G)\right)=2592$ and $M_{2}\left(\Gamma_{n c}(G)\right)=15552$. Therefore

$$
\frac{M_{2}\left(\Gamma_{c}(G)\right)}{\left|e\left(\Gamma_{c}(G)\right)\right|}=25=\frac{M_{1}\left(\Gamma_{c}(G)\right)}{\left|v\left(\Gamma_{c}(G)\right)\right|}
$$

and

$$
\frac{M_{2}\left(\Gamma_{n c}(G)\right)}{\left|e\left(\Gamma_{n c}(G)\right)\right|}=144=\frac{M_{1}\left(\Gamma_{n c}(G)\right)}{\left|v\left(\Gamma_{n c}(G)\right)\right|} .
$$

Hence, the result follows.
Using results from $[10,17,21]$, we have the following characterizations of $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ if $\Gamma_{c}(G)$ is planar or toroidal.

Theorem 9. Let G be a finite non-abelian group such that $\Gamma_{c}(G)$ is planar. Then
(a) $\Gamma_{c}(G)$ is neither hyperenergetic, L-hyperenergetic nor $C N$-hyperenergetic.
(b) $\Gamma_{c}(G)$ is hypoenergetic only when $G \cong D_{6}$ or D_{10}.
(c) $\Gamma_{c}(G)$ is Q-hyperenergetic only when $G \cong A_{4}$.
(d) $E\left(\Gamma_{c}(G)\right)<L E\left(\Gamma_{c}(G)\right)<L E^{+}\left(\Gamma_{c}(G)\right)$ when $G \cong A_{4}$ or S_{4}; $L E^{+}\left(\Gamma_{c}(G)\right)<E\left(\Gamma_{c}(G)\right)<L E\left(\Gamma_{c}(G)\right)$ when $G \cong A_{5}, S L(2,3)$ or $S_{z}(2)$ and $E\left(\Gamma_{c}(G)\right) \leq L E^{+}\left(\Gamma_{c}(G)\right) \leq L E\left(\Gamma_{c}(G)\right)$ otherwise.
(e) $\Gamma_{n c}(G)$ is neither hypoenergetic nor $C N$-hyperenergetic.
(f) $\Gamma_{n c}(G)$ is hyperenergetic only when $G \cong S_{4}$.
(g) $\Gamma_{n c}(G)$ is L-hyperenergetic when $G \cong D_{6}, D_{10}, D_{12}, Q_{12}, A_{4}, A_{5}, S_{4}$, $S L(2,3)$ or $S z(2)$.
(h) $\Gamma_{n c}(G)$ is Q-hyperenergetic when $G \cong D_{10}, D_{12}, Q_{12}, A_{4}, A_{5}, S_{4}$ or $S L(2,3)$.
(i) $E\left(\Gamma_{n c}(G)\right) \leq L E^{+}\left(\Gamma_{n c}(G)\right) \leq L E\left(\Gamma_{n c}(G)\right)$ but

$$
E\left(\Gamma_{n c}\left(S_{4}\right)\right)<L E\left(\Gamma_{n c}\left(S_{4}\right)\right)<L E^{+}\left(\Gamma_{n c}\left(S_{4}\right)\right)
$$

Theorem 10. Let G be a finite non-abelian group such that $\Gamma_{c}(G)$ is toroidal. Then
(a) $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic.
(b) $\Gamma_{c}(G)$ is L-hyperenergetic and Q-hyperenergetic when $G \cong D_{14}$, $D_{16}, Q_{16}, Q D_{16}$ or $D_{6} \times \mathbb{Z}_{3}$.
(c) $E\left(\Gamma_{c}(G)\right)<L E\left(\Gamma_{c}(G)\right)<L E^{+}\left(\Gamma_{c}(G)\right)$ when $G \cong D_{6} \times \mathbb{Z}_{3}$ or $A_{4} \times \mathbb{Z}_{2}$ and $E\left(\Gamma_{c}(G)\right)<L E^{+}\left(\Gamma_{c}(G)\right)<L E\left(\Gamma_{c}(G)\right)$ otherwise.
(d) $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic but is L-hyperenergetic as well as Q-hyperenergetic.
(e) $E\left(\Gamma_{n c}(G)\right) \leq L E^{+}\left(\Gamma_{n c}(G)\right) \leq L E\left(\Gamma_{n c}(G)\right)$ but

$$
E\left(\Gamma_{n c}\left(A_{4} \times \mathbb{Z}_{2}\right)\right)<L E\left(\Gamma_{n c}\left(A_{4} \times \mathbb{Z}_{2}\right)\right)<L E^{+}\left(\Gamma_{n c}\left(A_{4} \times \mathbb{Z}_{2}\right)\right)
$$

From Theorems 9-10, it follows that $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ satisfy E-LE conjecture if $\Gamma_{c}(G)$ is planar or toroidal. In the following theorems we show that $\Gamma_{c}(G)$ and $\Gamma_{n c}(G)$ satisfy E-LE conjecture if $\Gamma_{c}(G)$ is doubletoroidal or triple-toroidal.

Theorem 11. Let G be a finite non-abelian group such that $\Gamma_{c}(G)$ is double-toroidal. Then
(a) $\Gamma_{c}(G)$ is neither hyperenergetic nor $C N$-hyperenergetic.
(b) $\Gamma_{c}(G)$ is not L-hyperenergetic only when $G \cong\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}$ or $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$.
(c) $\Gamma_{c}(G)$ is Q-hyperenergetic.
(d) $\Gamma_{c}(G)$ is hypoenergetic only when $G \cong D_{18}$ or $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$.
(e) $E\left(\Gamma_{c}(G)\right)<L E\left(\Gamma_{c}(G)\right)<L E^{+}\left(\Gamma_{c}(G)\right)$ only when $G \cong\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes$ \mathbb{Z}_{4} or $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$ and $E\left(\Gamma_{c}(G)\right)<L E^{+}\left(\Gamma_{c}(G)\right)<L E\left(\Gamma_{c}(G)\right)$ otherwise.

Proof. From Theorem 4, we have that $\Gamma_{c}(G)$ is isomorphic to $K_{8} \sqcup 3 K_{4}$, $K_{8} \sqcup 9 K_{1}, K_{8} \sqcup 5 K_{2}, K_{8} \sqcup 9 K_{3}$ or $K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$.

If $\Gamma_{c}(G) \cong K_{8} \sqcup 3 K_{4}$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{16},(7)^{1},(3)^{3}\right\}$ and so $E\left(\Gamma_{c}(G)\right)=16+7+9=32$. We also have $\mathrm{L}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(0)^{4},(8)^{7}\right.$, $\left.(4)^{9}\right\}$ and Q-spec $\left(\Gamma_{c}(G)\right)=\left\{(14)^{1},(6)^{10},(2)^{9}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=\frac{23}{5}$ and $\left|0-\frac{23}{5}\right|=\frac{23}{5},\left|8-\frac{23}{5}\right|=\frac{17}{5},\left|4-\frac{23}{5}\right|=\frac{3}{5}$. Therefore

$$
L E\left(\Gamma_{c}(G)\right)=4 \cdot \frac{23}{5}+7 \cdot \frac{17}{5}+9 \cdot \frac{3}{5}=\frac{238}{5}
$$

Similarly, $\left|14-\frac{23}{5}\right|=\frac{47}{5},\left|6-\frac{23}{5}\right|=\frac{7}{5},\left|2-\frac{23}{5}\right|=\frac{13}{5}$ and hence

$$
L E^{+}\left(\Gamma_{c}(G)\right)=\frac{47}{5}+10 \cdot \frac{7}{5}+9 \cdot \frac{13}{5}=\frac{234}{5} .
$$

Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(-6)^{7},(42)^{1},(-2)^{9},(6)^{3}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)$ $=120$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=20<32=E\left(\Gamma_{c}(G)\right) \\
E\left(K_{20}\right)=2(20-1)=38>32=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{20}\right)=2(20-1)(20-2)=684>120=E_{C N}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also,

$$
\begin{aligned}
& L E\left(K_{20}\right)=2(20-1)=38<\frac{238}{5}=L E\left(\Gamma_{c}(G)\right) \text { and } \\
& L E^{+}\left(K_{20}\right)=2(20-1)=38<\frac{234}{5}=L E^{+}\left(\Gamma_{c}(G)\right)
\end{aligned}
$$

Therefore, $\Gamma_{c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further

$$
E\left(\Gamma_{c}(G)\right)=32<\frac{234}{5}=L E^{+}\left(\Gamma_{c}(G)\right)<\frac{238}{5}=L E\left(\Gamma_{c}(G)\right)
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{1}$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{7},(7)^{1},(0)^{9}\right\}$ and so $E\left(\Gamma_{c}(G)\right)=7+7=14$. We also have L-spec $\left(\Gamma_{c}(G)\right)=\left\{(0)^{10},(8)^{7}\right\}$ and Q-spec $\left(\Gamma_{c}(G)\right)=\left\{(14)^{1},(6)^{7},(0)^{9}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=\frac{56}{17}$ and $\left|0-\frac{56}{17}\right|$ $=\frac{56}{17},\left|8-\frac{56}{17}\right|=\frac{80}{17}$. Therefore

$$
L E\left(\Gamma_{c}(G)\right)=10 \cdot \frac{56}{17}+7 \cdot \frac{80}{17}=\frac{1120}{17}
$$

Similarly, $\left|14-\frac{56}{17}\right|=\frac{182}{17},\left|6-\frac{56}{17}\right|=\frac{46}{17},\left|0-\frac{56}{17}\right|=\frac{56}{17}$ and hence

$$
L E^{+}\left(\Gamma_{c}(G)\right)=\frac{182}{17}+7 \cdot \frac{46}{17}+9 \cdot \frac{56}{17}=\frac{1008}{17}
$$

Further, CN-spec $\left(\Gamma_{c}(G)\right)=\left\{(-6)^{7},(42)^{1},(0)^{9}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)=$ 84. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=17>14=E\left(\Gamma_{c}(G)\right), \\
E\left(K_{17}\right)=2(17-1)=32>14=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{17}\right)=2(17-1)(17-2)=480>84=E_{C N}\left(\Gamma_{c}(G)\right) .
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is hypoenergetic but neither hyperenergetic nor $C N$-hyperenergetic. Also

$$
\begin{gathered}
L E\left(K_{17}\right)=2(17-1)=32<\frac{1120}{17}=L E\left(\Gamma_{c}(G)\right) \text { and } \\
L E^{+}\left(K_{17}\right)=2(17-1)=32<\frac{1008}{17}=L E^{+}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Therefore, $\Gamma_{c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
E\left(\Gamma_{c}(G)\right)=14<\frac{1008}{17}=L E^{+}\left(\Gamma_{c}(G)\right)<\frac{1120}{17}=L E\left(\Gamma_{c}(G)\right)
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 5 K_{2}$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{12},(7)^{1},(1)^{5}\right\}$ and so $E\left(\Gamma_{c}(G)\right)=12+7+5=24$. We also have L-spec $\left(\Gamma_{c}(G)\right)=\left\{(0)^{6},(8)^{7}\right.$, $\left.(2)^{5}\right\}$ and Q-spec $\left(\Gamma_{c}(G)\right)=\left\{(14)^{1},(6)^{7},(2)^{5},(0)^{5}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=\frac{11}{3}$ and $\left|0-\frac{11}{3}\right|=\frac{11}{3},\left|8-\frac{11}{3}\right|=\frac{13}{3},\left|2-\frac{11}{3}\right|=\frac{5}{3}$. Therefore

$$
L E\left(\Gamma_{c}(G)\right)=6 \cdot \frac{11}{3}+7 \cdot \frac{13}{3}+5 \cdot \frac{5}{3}=\frac{182}{3}
$$

Similarly, $\left|14-\frac{11}{3}\right|=\frac{31}{3},\left|6-\frac{11}{3}\right|=\frac{7}{3},\left|2-\frac{11}{3}\right|=\frac{5}{3},\left|0-\frac{11}{3}\right|=\frac{11}{3}$ and hence

$$
L E^{+}\left(\Gamma_{c}(G)\right)=\frac{31}{3}+7 \cdot \frac{7}{3}+5 \cdot \frac{5}{3}+5 \cdot \frac{11}{3}=\frac{160}{3} .
$$

Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(-6)^{7},(42)^{1},(0)^{10}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)=$ 84. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=18<24=E\left(\Gamma_{c}(G)\right), \\
E\left(K_{18}\right)=2(18-1)=34>24=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{18}\right)=2(18-1)(18-2)=544>84=E_{C N}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also

$$
\begin{aligned}
& L E\left(K_{18}\right)=2(18-1)=34<\frac{182}{3}=L E\left(\Gamma_{c}(G)\right) \text { and } \\
& L E^{+}\left(K_{18}\right)=2(18-1)=34<\frac{160}{3}=L E^{+}\left(\Gamma_{c}(G)\right) .
\end{aligned}
$$

Therefore, $\Gamma_{c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further

$$
E\left(\Gamma_{c}(G)\right)=24<\frac{160}{3}=L E^{+}\left(\Gamma_{c}(G)\right)<\frac{182}{3}=L E\left(\Gamma_{c}(G)\right)
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{3}$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{25},(7)^{1},(2)^{9}\right\}$ and so $E\left(\Gamma_{c}(G)\right)=25+7+18=50$. We also have $\mathrm{L}-\mathrm{spec}\left(\Gamma_{c}(G)\right)=$ $\left\{(0)^{10},(8)^{7},(3)^{18}\right\}$ and Q-spec $\left(\Gamma_{c}(G)\right)=\left\{(14)^{1},(6)^{7},(4)^{9},(1)^{18}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=\frac{22}{7}$ and $\left|0-\frac{22}{7}\right|=\frac{22}{7},\left|8-\frac{22}{7}\right|=\frac{34}{7},\left|3-\frac{22}{7}\right|=\frac{1}{7}$. Therefore,

$$
L E\left(\Gamma_{c}(G)\right)=10 \cdot \frac{22}{7}+7 \cdot \frac{34}{7}+18 \cdot \frac{1}{7}=68
$$

Similarly, $\left|14-\frac{22}{7}\right|=\frac{76}{7},\left|6-\frac{22}{7}\right|=\frac{20}{7},\left|4-\frac{22}{7}\right|=\frac{6}{7},\left|1-\frac{22}{7}\right|=\frac{15}{7}$ and hence

$$
L E^{+}\left(\Gamma_{c}(G)\right)=\frac{76}{7}+7 \cdot \frac{20}{7}+9 \cdot \frac{6}{7}+18 \cdot \frac{15}{7}=\frac{540}{7} .
$$

Further, $\operatorname{CN}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(-6)^{7},(42)^{1},(-1)^{18},(2)^{9}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)=$ 120. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=35<50=E\left(\Gamma_{c}(G)\right) \\
E\left(K_{35}\right)=2(35-1)=68>50=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{35}\right)=2(35-1)(35-2)=2244>120=E_{C N}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor CN-hyperenergetic. Also, $L E\left(K_{35}\right)=2(35-1)=68=L E\left(\Gamma_{c}(G)\right)$ and $L E^{+}\left(K_{35}\right)=$ $2(35-1)=68<\frac{540}{7}=L E^{+}\left(\Gamma_{c}(G)\right)$. Therefore, $\Gamma_{c}(G)$ is not L-hyperenergetic but Q-hyperenergetic. Further,

$$
E\left(\Gamma_{c}(G)\right)=50<68=L E\left(\Gamma_{c}(G)\right)<\frac{540}{7}=L E^{+}\left(\Gamma_{c}(G)\right)
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{34},(7)^{1},(-2)^{9}\right.$, $\left.(1)^{18},(3)^{9}\right\}$ and so $E\left(\Gamma_{c}(G)\right)=34+34+18+18=104$. We also have L-spec $\left(\Gamma_{c}(G)\right)=\left\{(0)^{10},(8)^{7},(3)^{27},(1)^{18},(7)^{9}\right\}$ and Q-spec $\left(\Gamma_{c}(G)\right)$ $=\left\{(14)^{1},(6)^{7},(3)^{18},(1)^{27},\left(\frac{9+\sqrt{33}}{2}\right)^{9},\left(\frac{9-\sqrt{33}}{2}\right)^{9}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=$ $\frac{218}{71}$ and $\left|0-\frac{218}{71}\right|=\frac{218}{71},\left|8-\frac{218}{71}\right|=\frac{350}{71},\left|3-\frac{218}{71}\right|=\frac{5}{71},\left|1-\frac{218}{71}\right|=\frac{147}{71}$, $\left|7-\frac{218}{71}\right|=\frac{279}{71}$. Therefore,

$$
L E\left(\Gamma_{c}(G)\right)=10 \cdot \frac{218}{71}+7 \cdot \frac{350}{71}+18 \cdot \frac{147}{71}+27 \cdot \frac{5}{71}+9 \cdot \frac{279}{71}=\frac{9922}{71} .
$$

Similarly, $\left|14-\frac{218}{71}\right|=\frac{776}{71},\left|6-\frac{218}{71}\right|=\frac{208}{71},\left|\frac{9+\sqrt{33}}{2}-\frac{218}{71}\right| \approx \frac{610.86}{71}$, $\left|\frac{9-\sqrt{33}}{2}-\frac{218}{71}\right| \approx \frac{204.86}{71}$ and hence
$L E^{+}\left(\Gamma_{c}(G)\right) \approx \frac{776}{71}+7 \cdot \frac{208}{71}+27 \cdot \frac{147}{71}+18 \cdot \frac{5}{71}+9 \cdot \frac{610.86}{71}+9 \cdot \frac{204.86}{71} \approx \frac{13632.48}{71}$.
Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(-6)^{7},(42)^{1},(-1)^{54},(6)^{9}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)=$ 192. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=71<104=E\left(\Gamma_{c}(G)\right) \\
E\left(K_{71}\right)=2(71-1)=140>104=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{71}\right)=2(71-1)(71-2)=9660>192=E_{C N}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor CN-hyperenergetic. Also, $L E\left(K_{71}\right)=2(71-1)=140>\frac{9922}{71}=L E\left(\Gamma_{c}(G)\right)$ and $L E^{+}\left(K_{71}\right)=2(71-1)=140<\frac{13632.48}{71} \approx L E^{+}\left(\Gamma_{c}(G)\right)$. Therefore, $\Gamma_{c}(G)$ is not L-hyperenergetic but Q-hyperenergetic. Further,

$$
E\left(\Gamma_{c}(G)\right)=104<\frac{9922}{71}=L E\left(\Gamma_{c}(G)\right)<\frac{13632.48}{71}=L E^{+}\left(\Gamma_{c}(G)\right)
$$

Hence, the result follows.
Theorem 12. Let G be a finite non-abelian group such that $\Gamma_{c}(G)$ is triple-toroidal. Then
(a) $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic, $C N$-hyperenergetic nor Q-hyperenergetic.
(b) $\Gamma_{c}(G)$ is L-hyperenergetic only when $G \cong G L(2,3)$.
(c) $E\left(\Gamma_{c}(G)\right) \leq L E^{+}\left(\Gamma_{c}(G)\right) \leq L E\left(\Gamma_{c}(G)\right)$.

Proof. From Theorem 5, we have that $\Gamma_{c}(G)$ is isomorphic to $6 K_{2} \sqcup 3 K_{6}$ $\sqcup 4 K_{4}$ or $3 K_{6}$.

If $\Gamma_{c}(G) \cong 6 K_{2} \sqcup 3 K_{6} \sqcup 4 K_{4}$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{33},(1)^{6},(5)^{3}\right.$, $\left.(3)^{4}\right\}$ and so $E\left(\Gamma_{c}(G)\right)=33+6+15+12=66$. We also have L-spec $\left(\Gamma_{c}(G)\right)$ $=\left\{(0)^{13},(2)^{6},(6)^{15},(4)^{12}\right\}$ and $\mathrm{Q}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(0)^{6},(10)^{3},(4)^{15},(6)^{4}\right.$,
$\left.(2)^{18}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=\frac{75}{23}$ and $\left|0-\frac{75}{23}\right|=\frac{75}{23},\left|2-\frac{75}{23}\right|=\frac{29}{23},\left|6-\frac{75}{23}\right|=\frac{63}{23}$, $\left|4-\frac{75}{23}\right|=\frac{17}{23}$. Therefore,

$$
L E\left(\Gamma_{c}(G)\right)=13 \cdot \frac{75}{23}+6 \cdot \frac{29}{23}+15 \cdot \frac{63}{23}+12 \cdot \frac{17}{23}=\frac{2298}{23}
$$

Similarly, $\left|0-\frac{75}{23}\right|=\frac{75}{23},\left|10-\frac{75}{23}\right|=\frac{155}{23},\left|4-\frac{75}{23}\right|=\frac{17}{23},\left|6-\frac{75}{23}\right|=\frac{63}{23}$, $\left|2-\frac{75}{23}\right|=\frac{29}{23}$ and hence

$$
L E^{+}\left(\Gamma_{c}(G)\right)=6 \cdot \frac{75}{23}+3 \cdot \frac{155}{23}+15 \cdot \frac{17}{23}+4 \cdot \frac{63}{23}+18 \cdot \frac{29}{23}=\frac{1944}{23}
$$

Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(0)^{12},(-4)^{15},(20)^{3},(-2)^{12},(6)^{4}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)=168$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=46<66=E\left(\Gamma_{c}(G)\right) \\
E\left(K_{46}\right)=2(46-1)=90>66=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{46}\right)=2(46-1)(46-2)=3960>168=E_{C N}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also, $L E\left(K_{46}\right)=2(46-1)=90<\frac{2298}{23}=L E\left(\Gamma_{c}(G)\right)$ and $L E^{+}\left(K_{46}\right)=2(46-1)=90>\frac{1944}{23}=L E^{+}\left(\Gamma_{c}(G)\right)$. Therefore, $\Gamma_{c}(G)$ is L-hyperenergetic but not Q-hyperenergetic. Further,

$$
E\left(\Gamma_{c}(G)\right)=66<\frac{1944}{23}=L E^{+}\left(\Gamma_{c}(G)\right)<\frac{2298}{23}=L E\left(\Gamma_{c}(G)\right)
$$

If $\Gamma_{c}(G) \cong 3 K_{6}$, then $\operatorname{Spec}\left(\Gamma_{c}(G)\right)=\left\{(-1)^{15},(5)^{3}\right\}$ and so $E\left(\Gamma_{c}(G)\right)$ $=15+15=30$. We also have L-spec $\left(\Gamma_{c}(G)\right)=\left\{(0)^{3},(6)^{15}\right\}$ and $\mathrm{Q}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(10)^{3},(4)^{15}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{c}(G)\right)\right|}{\left|v\left(\Gamma_{c}(G)\right)\right|}=5$ and $|0-5|=5$, $|6-5|=1$. Therefore, $L E\left(\Gamma_{c}(G)\right)=3 \cdot 5+15 \cdot 1=30$. Similarly, $|10-5|=5,|4-5|=1$ and hence $L E^{+}\left(\Gamma_{c}(G)\right)=3 \cdot 5+15 \cdot 1=30$. Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{c}(G)\right)=\left\{(-4)^{15},(20)^{3}\right\}$ and so $E_{C N}\left(\Gamma_{c}(G)\right)=120$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{c}(G)\right)\right|=18<30=E\left(\Gamma_{c}(G)\right) \\
E\left(K_{18}\right)=2(18-1)=34>30=E\left(\Gamma_{c}(G)\right) \text { and } \\
E_{C N}\left(K_{18}\right)=2(18-1)(18-2)=544>120=E_{C N}\left(\Gamma_{c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also, $L E\left(K_{18}\right)=2(18-1)=34>30=L E\left(\Gamma_{c}(G)\right)$ and $L E^{+}\left(K_{18}\right)=2(18-1)=34>30=L E^{+}\left(\Gamma_{c}(G)\right)$. Therefore, $\Gamma_{c}(G)$ is neither L-hyperenergetic nor Q-hyperenergetic. Further,

$$
E\left(\Gamma_{c}(G)\right)=30=L E^{+}\left(\Gamma_{c}(G)\right)=L E\left(\Gamma_{c}(G)\right)
$$

Hence, the result follows.
Theorem 13. Let G be a finite non-abelian group such that $\Gamma_{c}(G)$ is double-toroidal. Then
(a) $\Gamma_{n c}(G)$ is neither hypoenergetic nor $C N$-hyperenergetic.
(b) $\Gamma_{n c}(G)$ is hyperenergetic only when $G \cong\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right) \rtimes Q_{8}$.
(c) $\Gamma_{n c}(G)$ is L-hyperenergetic and Q-hyperenergetic.
(d) $E\left(\Gamma_{n c}(G)\right)<L E\left(\Gamma_{n c}(G)\right)<L E^{+}\left(\Gamma_{n c}(G)\right)$ only when $G \cong\left(\mathbb{Z}_{3} \times\right.$ $\left.\mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{4}$ and $E\left(\Gamma_{n c}(G)\right)<L E^{+}\left(\Gamma_{n c}(G)\right)<L E\left(\Gamma_{n c}(G)\right)$ otherwise.

Proof. From Theorem 4, we have that $\Gamma_{c}(G)$ is isomorphic to $K_{8} \sqcup 3 K_{4}$, $K_{8} \sqcup 9 K_{1}, K_{8} \sqcup 5 K_{2}, K_{8} \sqcup 9 K_{3}$ or $K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$.

If $\Gamma_{c}(G) \cong K_{8} \sqcup 3 K_{4}$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{16},(-4)^{2},(4+\sqrt{112})^{1}\right.$, $\left.(4-\sqrt{112})^{1}\right\}$ and so $E\left(\Gamma_{n c}(G)\right)=8+2 \sqrt{112}$. We also have L-spec $\left(\Gamma_{n c}(G)\right)=$ $\left\{(0)^{1},(16)^{9},(12)^{7},(20)^{3}\right\}$ and Q-spec $\left(\Gamma_{n c}(G)\right)=\left\{(12)^{9},(16)^{9},(18+\sqrt{132})^{1}\right.$,
$\left.(18-\sqrt{132})^{1}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=\frac{72}{5}$ and $\left|0-\frac{72}{5}\right|=\frac{72}{5},\left|16-\frac{72}{5}\right|=\frac{8}{5}$, $\left|12-\frac{72}{5}\right|=\frac{12}{5},\left|20-\frac{72}{5}\right|=\frac{28}{5}$. Therefore,

$$
L E\left(\Gamma_{n c}(G)\right)=\frac{72}{5}+9 \cdot \frac{8}{5}+7 \cdot \frac{12}{5}+3 \cdot \frac{28}{5}=\frac{312}{5} .
$$

Similarly, $\left|12-\frac{72}{5}\right|=\frac{12}{5},\left|16-\frac{72}{5}\right|=\frac{7}{5},\left|18+\sqrt{132}-\frac{72}{5}\right|=\frac{18+5 \sqrt{132}}{5}$, $\left|18-\sqrt{132}-\frac{72}{5}\right|=\frac{5 \sqrt{132}-18}{5}$ and hence

$$
L E^{+}\left(\Gamma_{n c}(G)\right)=9 \cdot \frac{12}{5}+9 \cdot \frac{8}{5}+\frac{18+5 \sqrt{132}}{5}+\frac{5 \sqrt{132}-18}{5}=36+2 \sqrt{132} .
$$

Further, $\operatorname{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{2(57+\sqrt{1761})^{1}, 2(57-\sqrt{1761})^{1},(-16)^{9}\right.$, $\left.(-12)^{7},(0)^{2}\right\}$ and so $E_{C N}\left(\Gamma_{n c}(G)\right)=456$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=20<8+2 \sqrt{112}=E\left(\Gamma_{n c}(G)\right) \\
E\left(K_{20}\right)=2(20-1)=38>8+2 \sqrt{112}=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{20}\right)=2(20-1)(20-2)=684>456=E_{C N}\left(\Gamma_{n c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also, $L E\left(K_{20}\right)=2(20-1)=38<\frac{312}{5}=L E\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{20}\right)=2(20-1)=38<36+2 \sqrt{132}=L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore, $\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
\begin{aligned}
E\left(\Gamma_{n c}(G)\right)=8+2 \sqrt{112}<36 & +2 \sqrt{132} \\
& =L E^{+}\left(\Gamma_{n c}(G)\right)<\frac{312}{5}=L E\left(\Gamma_{n c}(G)\right)
\end{aligned}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{1}$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{7},(-1)^{8},(4+\sqrt{88})^{1}\right.$, $\left.(4-\sqrt{88})^{1}\right\}$ and so $E\left(\Gamma_{n c}(G)\right)=8+2 \sqrt{88}$. We also have L-spec $\left(\Gamma_{n c}(G)\right)$ $=\left\{(0)^{1},(9)^{7},(17)^{9}\right\}$ and $\mathrm{Q}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(9)^{7},(15)^{8},\left(\frac{33+\sqrt{513}}{2}\right)^{1}\right.$, $\left.\left(\frac{33-\sqrt{513}}{2}\right)^{1}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=\frac{216}{17}$ and $\left|0-\frac{216}{17}\right|=\frac{216}{17},\left|9-\frac{216}{17}\right|=\frac{63}{17}$, $\left|17-\frac{216}{17}\right|=\frac{73}{17}$. Therefore,

$$
L E\left(\Gamma_{n c}(G)\right)=\frac{216}{17}+7 \cdot \frac{63}{17}+9 \cdot \frac{73}{17}=\frac{1314}{17}
$$

Similarly, $\left|9-\frac{216}{17}\right|=\frac{63}{17}, \quad\left|15-\frac{216}{17}\right|=\frac{39}{17}, \quad\left|\frac{33+\sqrt{513}}{2}-\frac{216}{17}\right|=\frac{129+17 \sqrt{513}}{34}$, $\left|\frac{33-\sqrt{513}}{2}-\frac{216}{17}\right|=\frac{17 \sqrt{513}-129}{34}$ and hence

$$
L E^{+}\left(\Gamma_{n c}(G)\right)=7 \cdot \frac{63}{17}+8 \cdot \frac{39}{17}+\frac{129+17 \sqrt{513}}{34}+\frac{17 \sqrt{513}-129}{34}=\frac{753+17 \sqrt{513}}{17} .
$$

Further,
$\operatorname{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{\frac{3}{2}(61+\sqrt{2049})^{1}, \quad \frac{3}{2}(61-\sqrt{2049})^{1},(-15)^{8},(-9)^{7}\right\}$
and so $E_{C N}\left(\Gamma_{n c}(G)\right)=366$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=17<8+2 \sqrt{88}=E\left(\Gamma_{n c}(G)\right) \\
E\left(K_{17}\right)=2(17-1)=32>8+2 \sqrt{88}=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{17}\right)=2(17-1)(17-2)=480>366=E_{C N}\left(\Gamma_{n c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also, $L E\left(K_{17}\right)=2(17-1)=32<\frac{1314}{17}=L E\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{17}\right)=2(17-1)=32<\frac{753+17 \sqrt{513}}{17}=L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore, $\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
\begin{aligned}
& E\left(\Gamma_{n c}(G)\right)=8+2 \sqrt{88}<\frac{753}{}+17 \sqrt{513} \\
& 17 \\
&=L E^{+}\left(\Gamma_{n c}(G)\right)<\frac{1314}{17}=L E\left(\Gamma_{n c}(G)\right)
\end{aligned}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 5 K_{2}$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{12},(-2)^{6},(4+\sqrt{96})^{1}\right.$, $\left.(4-\sqrt{96})^{1}\right\}$ and so $E\left(\Gamma_{n c}(G)\right)=12+2 \sqrt{96}$. We also have L-spec $\left(\Gamma_{n c}(G)\right)$ $=\left\{(0)^{1},(16)^{5},(10)^{7},(18)^{5}\right\}$ and $\mathrm{Q}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(10)^{7},(16)^{5},(14)^{4}\right.$, $\left.(17+\sqrt{129})^{1},(17-\sqrt{129})^{1}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=\frac{40}{3}$ and $\left|0-\frac{40}{3}\right|=\frac{40}{3}$, $\left|16-\frac{40}{3}\right|=\frac{8}{3},\left|10-\frac{40}{3}\right|=\frac{10}{3},\left|18-\frac{40}{3}\right|=\frac{14}{3}$. Therefore,

$$
L E\left(\Gamma_{n c}(G)\right)=\frac{40}{3}+5 \cdot \frac{8}{3}+7 \cdot \frac{10}{3}+5 \cdot \frac{14}{3}=\frac{220}{3} .
$$

Similarly, $\left|10-\frac{40}{3}\right|=\frac{10}{3},\left|16-\frac{40}{3}\right|=\frac{8}{3},\left|14-\frac{40}{3}\right|=\frac{2}{3},\left|17+\sqrt{129}-\frac{40}{3}\right|$ $=\frac{11+3 \sqrt{129}}{3},\left|17-\sqrt{129}-\frac{40}{3}\right|=\frac{3 \sqrt{129}-11}{3}$ and hence
$L E^{+}\left(\Gamma_{n c}(G)\right)=7 \cdot \frac{10}{3}+5 \cdot \frac{8}{3}+4 \cdot \frac{2}{3}+\frac{11+3 \sqrt{129}}{3}+\frac{3 \sqrt{129}-11}{3}=\frac{118+6 \sqrt{129}}{3}$.
Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(99+\sqrt{5961})^{1},(99-\sqrt{5961})^{1},(-16)^{5}\right.$, $\left.(-2)^{4},(-10)^{7}\right\}$ and so $E_{C N}\left(\Gamma_{n c}(G)\right)=356$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=18<12+2 \sqrt{96}=E\left(\Gamma_{n c}(G)\right) \\
E\left(K_{18}\right)=2(18-1)=34>12+2 \sqrt{96}=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{18}\right)=2(18-1)(18-2)=544>356=E_{C N}\left(\Gamma_{n c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also, $L E\left(K_{18}\right)=2(18-1)=34<\frac{220}{3}=L E\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{18}\right)=2(18-1)=34<\frac{118+6 \sqrt{129}}{3}=L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore,
$\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
\begin{aligned}
& E\left(\Gamma_{n c}(G)\right)=12+2 \sqrt{96}<\frac{118}{}+6 \sqrt{129} \\
& 3 \\
&=L E^{+}\left(\Gamma_{n c}(G)\right)<\frac{220}{3}=L E\left(\Gamma_{n c}(G)\right)
\end{aligned}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9 K_{3}$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{25},(-3)^{8},(12+6 \sqrt{10})^{1}\right.$, $\left.(12-6 \sqrt{10})^{1}\right\}$ and so $E\left(\Gamma_{n c}(G)\right)=24+12 \sqrt{10}$. We also have

$$
\mathrm{L}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{1},(27)^{7},(32)^{18},(35)^{9}\right\} \text { and }
$$

Q-spec $\left(\Gamma_{n c}(G)\right)=\left\{(27)^{7},(29)^{8},(32)^{18},\left(\frac{83+\sqrt{12073}}{2}\right)^{1},\left(\frac{83-\sqrt{12073}}{2}\right)^{1}\right\}$.
Here, $\frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=\frac{216}{7}$ and $\left|0-\frac{216}{7}\right|=\frac{216}{7},\left|32-\frac{216}{7}\right|=\frac{8}{7},\left|27-\frac{216}{7}\right|$ $=\frac{27}{7},\left|35-\frac{216}{7}\right|=\frac{29}{7}$. Therefore,

$$
L E\left(\Gamma_{n c}(G)\right)=\frac{216}{7}+18 \cdot \frac{8}{7}+7 \cdot \frac{27}{7}+9 \cdot \frac{29}{7}=\frac{810}{7}
$$

Similarly, $\left|29-\frac{216}{7}\right|=\frac{13}{7},\left|\frac{83+\sqrt{12073}}{2}-\frac{216}{7}\right| \approx \frac{918.14}{14},\left|\frac{83-\sqrt{12073}}{2}-\frac{216}{7}\right|$ $\approx \frac{620.14}{14}$ and hence

$$
L E^{+}\left(\Gamma_{n c}(G)\right)=7 \cdot \frac{27}{7}+18 \cdot \frac{8}{7}+8 \cdot \frac{13}{7}+\frac{918.14}{14}+\frac{620.14}{14} \approx \frac{2412.28}{14} .
$$

Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{\left(\frac{949+\sqrt{823705}}{2}\right)^{1},\left(\frac{949-\sqrt{823705}}{2}\right)^{1},(-32)^{18}\right.$, $\left.(-27)^{7},(-23)^{8}\right\}$ and so $E_{C N}\left(\Gamma_{n c}(G)\right)=1898$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=35<24+12 \sqrt{10}=E\left(\Gamma_{n c}(G)\right) \\
E\left(K_{35}\right)=2(35-1)=68>24+12 \sqrt{10}=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{35}\right)=2(35-1)(35-2)=2244>1898=E_{C N}\left(\Gamma_{n c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic. Also, $L E\left(K_{35}\right)=2(35-1)=68<\frac{810}{7}=L E\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{35}\right)=2(35-1)=68<\frac{2412.28}{14}=L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore, $\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
\begin{aligned}
E\left(\Gamma_{n c}(G)\right)=24+12 \sqrt{10}< & \frac{810}{7} \\
& =L E\left(\Gamma_{n c}(G)\right)<\frac{2412.28}{14}=L E^{+}\left(\Gamma_{n c}(G)\right) .
\end{aligned}
$$

If $\Gamma_{c}(G) \cong K_{8} \sqcup 9\left(K_{1} \vee 3 K_{2}\right)$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{34},(-2)^{18},(-4)^{8}\right.$, $\left.(1)^{8},\left(x_{1}\right)^{1},\left(x_{2}\right)^{1},\left(x_{3}\right)^{1}\right\}$, where x_{1}, x_{2} and x_{3} are roots of the equation
$x^{3}-60 x^{2}-472 x+288=0$. Since $x_{1} \approx 66.98, x_{2} \approx-7.55, x_{3} \approx 0.569$, we have

$$
E\left(\Gamma_{n c}(G)\right)=8+36+32+66.98+7.55+0.569 \approx 151.09
$$

We also have L-spec $\left(\Gamma_{n c}(G)\right)=\left\{(71)^{7},(70)^{16},(68)^{27},(64)^{7},(63)^{7},\left(y_{1}\right)^{1}\right.$, $\left.\left(y_{2}\right)^{1},\left(y_{3}\right)^{1},\left(z_{1}\right)^{1},\left(z_{2}\right)^{1},\left(z_{3}\right)^{1},\left(z_{4}\right)^{1}\right\}$, where y_{1}, y_{2} and y_{3} are roots of the equation $x^{3}-205 x^{2}+13994 x-318088=0$ and z_{1}, z_{2}, z_{3} and z_{4} are roots of the equation $x^{4}-205 x^{3}+14010 x^{2}-320232 x+71680=0$ and Q-spec $\left(\Gamma_{n c}(G)\right)=\left\{(68)^{27},(66)^{18},(63)^{7},\left(\frac{129+\sqrt{33}}{2}\right)^{8},\left(\frac{129-\sqrt{33}}{2}\right)^{8},\left(l_{1}\right)^{1}\right.$, $\left.\left(l_{2}\right)^{1},\left(l_{3}\right)^{1}\right\}$, where l_{1}, l_{2} and l_{3} are roots of the equation $x^{3}-255 x^{2}+$ $19848 x-487296=0$. Here, $\frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=\frac{4752}{71}$ and $\left|71-\frac{4752}{71}\right|=\frac{289}{71}$, $\left|70-\frac{4752}{71}\right|=\frac{218}{71},\left|68-\frac{4752}{71}\right|=\frac{76}{71},\left|64-\frac{4752}{71}\right|=\frac{208}{71},\left|63-\frac{4752}{71}\right|=\frac{279}{71}$. Since $y_{1} \approx 71.63, y_{2} \approx 69.07, y_{3} \approx 64.20, z_{1} \approx 71.49, z_{2} \approx 69.15, z_{3} \approx 64.21$ and $z_{4} \approx 0.226$, we have $\left|y_{1}-\frac{4752}{71}\right| \approx \frac{333.73}{71},\left|y_{2}-\frac{4752}{71}\right| \approx \frac{151.97}{71},\left|y_{3}-\frac{4752}{71}\right|$ $\approx \frac{193.8}{71},\left|z_{1}-\frac{4752}{71}\right| \approx \frac{323.79}{71},\left|z_{2}-\frac{4752}{71}\right| \approx \frac{157.65}{71},\left|z_{3}-\frac{4752}{71}\right| \approx \frac{193.09}{71}$ and $\left|z_{4}-\frac{4752}{71}\right| \approx \frac{4736.38}{71}$. Therefore,

$$
\begin{aligned}
L E\left(\Gamma_{n c}(G)\right) & \approx 7 \cdot \frac{289}{71}+16 \cdot \frac{218}{71}+27 \cdot \frac{76}{71}+7 \cdot \frac{208}{71}+7 \cdot \frac{279}{71}+\frac{333.73}{71} \\
& +\frac{151.97}{71}+\frac{193.8}{71}+\frac{323.79}{71}+\frac{157.65}{71}+\frac{193.09}{71}+\frac{4736.38}{71} \\
& \approx \frac{17062.41}{71} .
\end{aligned}
$$

Similarly, $\left|66-\frac{4752}{71}\right|=\frac{66}{71},\left|\frac{129+\sqrt{33}}{2}-\frac{4752}{71}\right| \approx \frac{62.86}{142},\left|\frac{129-\sqrt{33}}{2}-\frac{4752}{71}\right|$ $\approx \frac{752.86}{142}$. Since $l_{1} \approx 134.06, l_{2} \approx 65.11$ and $l_{3} \approx 55.82$, we have $\left|y_{1}-\frac{4752}{71}\right|$ $\approx \frac{4766.26}{71},\left|y_{2}-\frac{4752}{71}\right| \approx \frac{129.19}{71},\left|y_{3}-\frac{4752}{71}\right| \approx \frac{788.78}{71}$ and hence

$$
\begin{aligned}
L E^{+}\left(\Gamma_{n c}(G)\right) \approx & 27 \cdot \frac{76}{71}+18 \cdot \frac{66}{71}+7 \cdot \frac{279}{71}+8 \cdot \frac{62.86}{142}+8 \cdot \frac{752.86}{142} \\
& +\frac{4766.26}{71}+\frac{129.19}{71}+\frac{788.78}{71} \approx \frac{28280.22}{142}
\end{aligned}
$$

Further, $\operatorname{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(-68)^{27},(-64)^{18},(-63)^{7},\left(\frac{-115-\sqrt{217}}{2}\right)^{8}\right.$, $\left.\left(\frac{-115+\sqrt{217}}{2}\right)^{8},\left(m_{1}\right)^{1},\left(m_{2}\right)^{1},\left(m_{3}\right)^{1}\right\}$, where m_{1}, m_{2} and m_{3} are roots of the equation $x^{3}-4349 x^{2}-311676 x-1809504=0$. Since $m_{1} \approx 4419.69$, $m_{2} \approx-64.86$ and $m_{3} \approx-6.37$ we have $E_{C N}\left(\Gamma_{n c}(G)\right) \approx 8839.83$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=71<151.09=E\left(\Gamma_{n c}(G)\right) \\
E\left(K_{71}\right)=2(71-1)=140<151.09=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{71}\right)=2(71-1)(71-2)=9660>8839.83=E_{C N}\left(\Gamma_{n c}(G)\right)
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is hyperenergetic but neither hypoenergetic nor $C N$-hyperenergetic. Also, $\operatorname{LE}\left(K_{71}\right)=2(71-1)=140<\frac{17062.41}{71} \approx \operatorname{LE}\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{71}\right)=2(71-1)=140<\frac{28280.22}{142} \approx L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore, $\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
\begin{aligned}
E\left(\Gamma_{n c}(G)\right) \approx 151.09< & \frac{28280.22}{142} \\
& =L E^{+}\left(\Gamma_{n c}(G)\right)<\frac{17062.41}{71} \approx L E\left(\Gamma_{n c}(G)\right)
\end{aligned}
$$

Hence, the result follows.
Theorem 14. Let G be a finite non-abelian group such that $\Gamma_{c}(G)$ is triple-toroidal. Then
(a) $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor $C N$-hyperenergetic.
(b) $\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic only when $G \cong G L(2,3)$.
(c) $E\left(\Gamma_{n c}(G)\right) \leq L E\left(\Gamma_{n c}(G)\right) \leq L E^{+}\left(\Gamma_{n c}(G)\right)$.

Proof. From Theorem 5, we have that $\Gamma_{c}(G)$ is isomorphic to $6 K_{2} \sqcup 3 K_{6}$ $\sqcup 4 K_{4}$ or $3 K_{6}$.

If $\Gamma_{c}(G) \cong 6 K_{2} \sqcup 3 K_{6} \sqcup 4 K_{4}$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{33},(-2)^{5},(-6)^{2}\right.$, $\left.(-4)^{3},\left(x_{1}\right)^{1},\left(x_{2}\right)^{1},\left(x_{3}\right)^{1}\right\}$, where x_{1}, x_{2} and x_{3} are roots of the equation $x^{3}-34 x^{2}-312 x-576=0$. Since $x_{1} \approx-5.08401, x_{2} \approx-2.71078$, $x_{3} \approx 41.7948$, we have

$$
E\left(\Gamma_{n c}(G)\right) \approx 10+12+12+5.08401+2.71078+41.7948=83.58959
$$

We also have

$$
\begin{gathered}
\operatorname{L-spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{1},(42)^{12},(40)^{15},(44)^{6},(46)^{12}\right\} \text { and } \\
\text { Q-spec }\left(\Gamma_{n c}(G)\right)=\left\{(44)^{6},(40)^{15},(42)^{17},(34)^{2},(38)^{3},\left(y_{1}\right)^{1},\left(y_{2}\right)^{1},\left(y_{3}\right)^{1}\right\}
\end{gathered}
$$

$$
\text { where } y_{1}, y_{2} \text { and } y_{3} \text { are roots of the equation } x^{3}-160 x^{2}+7836 x-121344
$$

$$
=0 \text {. Here, }, \frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=\frac{960}{23} \text { and }\left|0-\frac{960}{23}\right|=\frac{960}{23},\left|42-\frac{960}{23}\right|=\frac{6}{23},\left|40-\frac{960}{23}\right|
$$

$$
=\frac{40}{23},\left|44-\frac{960}{23}\right|=\frac{52}{23},\left|46-\frac{960}{23}\right|=\frac{98}{23} . \text { Therefore, }
$$

$$
L E\left(\Gamma_{n c}(G)\right)=\frac{960}{23}+12 \cdot \frac{6}{23}+15 \cdot \frac{40}{23}+6 \cdot \frac{52}{23}+12 \cdot \frac{98}{23}=\frac{3120}{23}
$$

Similarly, $\left|44-\frac{960}{23}\right|=\frac{52}{23},\left|40-\frac{960}{23}\right|=\frac{40}{23},\left|42-\frac{960}{23}\right|=\frac{6}{23},\left|34-\frac{960}{23}\right|=\frac{178}{23}$, $\left|38-\frac{960}{23}\right|=\frac{86}{23}$. Since $y_{1} \approx 35.7774, y_{2} \approx 40.5202$ and $y_{3} \approx 83.7024$, we have $\left|y_{1}-\frac{960}{23}\right| \approx 137.1198,\left|y_{2}-\frac{960}{23}\right| \approx 28.0354,\left|y_{3}-\frac{960}{23}\right| \approx 965.1552$ and hence

$$
\begin{aligned}
L E^{+}\left(\Gamma_{n c}(G)\right) \approx 6 \cdot \frac{52}{23} & +15 \cdot \frac{40}{23}+17 \cdot \frac{6}{23}+2 \cdot \frac{178}{23}+3 \cdot \frac{86}{23} \\
& +137.1198+28.0354+965.1552=1201.0930 .
\end{aligned}
$$

Further,

$$
\begin{aligned}
\operatorname{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(-44)^{6},(-42)^{12}\right. & ,(-40)^{20},(-26)^{3}, \\
& \left.(-4)^{2},\left(z_{1}\right)^{1},\left(z_{2}\right)^{1},\left(z_{3}\right)^{1}\right\},
\end{aligned}
$$

where z_{1}, z_{2} and z_{3} are roots of the equation $x^{3}-1654 x^{2}-86336 x-$ $921024=0$. Since $z_{1} \approx 1704.96, z_{2} \approx-35.9132$ and $z_{3} \approx-15.042$, it follows that $E_{C N}\left(\Gamma_{n c}(G)\right) \approx 3409.9152$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=46<83.58959=E\left(\Gamma_{n c}(G)\right), \\
E\left(K_{46}\right)=2(46-1)=90>83.58959=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{46}\right)=2(46-1)(46-2)=3960>3409.9152=E_{C N}\left(\Gamma_{n c}(G)\right) .
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor CN-hyperenergetic. Also, $L E\left(K_{46}\right)=2(46-1)=90<\frac{3120}{23}=L E\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{46}\right)=2(46-1)=90<1201.0930=L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore, $\Gamma_{n c}(G)$ is L-hyperenergetic as well as Q-hyperenergetic. Further,

$$
\begin{aligned}
E\left(\Gamma_{n c}(G)\right)=83.58959 & <\frac{3120}{23} \\
& =L E\left(\Gamma_{n c}(G)\right)<1201.0930=L E^{+}\left(\Gamma_{n c}(G)\right) .
\end{aligned}
$$

If $\Gamma_{c}(G) \cong 3 K_{6}$, then $\operatorname{Spec}\left(\Gamma_{n c}(G)\right)=\left\{(0)^{15},(-6)^{2},(12)^{1}\right\}$ and so $E\left(\Gamma_{n c}(G)\right)=12+12=24$. We also have L-spec $\left(\Gamma_{n c}(G)\right)=\left\{(0)^{1},(12)^{15}\right.$, $\left.(18)^{2}\right\}$ and $\mathrm{Q}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(6)^{2},(12)^{15},(24)^{1}\right\}$. Here, $\frac{2\left|e\left(\Gamma_{n c}(G)\right)\right|}{\left|v\left(\Gamma_{n c}(G)\right)\right|}=$ 12 and $|0-12|=12,|12-12|=0,|18-12|=6$. Therefore,

$$
L E\left(\Gamma_{n c}(G)\right)=12+0+2 \cdot 6=24 .
$$

Similarly, $|6-12|=6,|12-12|=0,|24-12|=12$ and hence

$$
L E^{+}\left(\Gamma_{n c}(G)\right)=2 \cdot 6+0+12=24 .
$$

Further, $\mathrm{CN}-\operatorname{spec}\left(\Gamma_{n c}(G)\right)=\left\{(132)^{1},(24)^{2},(-12)^{15}\right\}$ and so $E_{C N}\left(\Gamma_{n c}(G)\right)$ $=360$. We have

$$
\begin{gathered}
\left|v\left(\Gamma_{n c}(G)\right)\right|=18<24=E\left(\Gamma_{n c}(G)\right), \\
E\left(K_{18}\right)=2(18-1)=34>24=E\left(\Gamma_{n c}(G)\right) \text { and } \\
E_{C N}\left(K_{18}\right)=2(18-1)(18-2)=544>360=E_{C N}\left(\Gamma_{n c}(G)\right) .
\end{gathered}
$$

Thus, $\Gamma_{n c}(G)$ is neither hypoenergetic, hyperenergetic nor CN-hyperenergetic. Also, $L E\left(K_{18}\right)=2(18-1)=34>24=L E\left(\Gamma_{n c}(G)\right)$ and $L E^{+}\left(K_{18}\right)=2(18-1)=34>24=L E^{+}\left(\Gamma_{n c}(G)\right)$. Therefore, $\Gamma_{n c}(G)$ is neither L-hyperenergetic nor Q-hyperenergetic. Further,

$$
E\left(\Gamma_{n c}(G)\right)=24=L E\left(\Gamma_{n c}(G)\right)=L E^{+}\left(\Gamma_{n c}(G)\right) .
$$

Hence, the result follows.

References

[1] Afkhami, M., Farrokhi, D.G.M., Khashyarmanesh, K.: Planar, toroidal, and projective commuting and non-commuting graphs. Comm. Algebra. 43(7), 2964-2970 (2015). https://doi.org/10.1080/00927872.2014.910796
[2] Bajaj, S., Panigrahi, P.: Universal adjacency spectrum of the commuting and non-commuting graphs on AC-groups. Asian-Eur. J. Math. 17(1), 2350237 (2024). https://doi.org/10.1142/S1793557123502376
[3] Brauer, R. Fowler, K.A.: On groups of even order. Ann. of Math. 62(3), 565-583 (1955). https://doi.org/10.2307/1970080
[4] Cameron, P.J.: Graphs defined on groups. Int. J. Group Theory. 11(2), 53-107 (2022). https://doi.org/10.22108/IJGT.2021.127679.1681
[5] Das, K.C., Gutman, I.: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103-112 (2004).
[6] Das, A.K., Nongsiang, D.: On the genus of the commuting graphs of finite nonabelian groups. Int. Electron. J. Algebra, 19, 91-109 (2016). https://doi.org/ 10.24330/ieja. 266195
[7] Das, S., Sarkhel, A., Nath, R.K.: Zagreb indices of commuting and non-commuting graphs of finite groups and Hansen-Vukič ević conjecture. Preprint at https://doi. org/10.48550/arXiv.2304.02230
[8] Das, K.C., Xu, K., Nam, J.: Zagreb indices of graphs. Front. Math. China. 10(3), 567-582 (2014). https://doi.org/10.1007/s11464-015-0431-9
[9] Dutta, J., Nath, R.K.: Spectrum of commuting graphs of some classes of finite groups. Matematika. 33(1), 87-95 (2017). https://doi.org/10.11113/matematika. v33.n1.812
[10] Dutta, P., Nath, R.K.: Various energies of commuting graphs of some super integral groups. Indian J. Pure Appl. Math. 52, 1-10 (2021). https://doi.org/10.1007/ s13226-021-00131-7
[11] Gutman, I.: The energy of a graph. Ber. Math-Statist. Sekt. Forschungsz. Graz. 103, 1-22 (1978).
[12] Gutman, I., Abreu, N.M.M., Vinagre, C.T.M., Bonifacioa, A.S., Radenkovic, S.: Relation between energy and Laplacian energy. MATCH Commun. Math. Comput. Chem. 59, 343-354 (2008).
[13] Gutman, I., Trinajstić, N.: Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535-538 (1972).
[14] Gutman, I., Das, K.C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83-92 (2004).
[15] Hansen, P., Vukičević, D.: Comparing the Zagreb indices. Croat. Chem. Acta. 80(2), 165-168 (2007).
[16] Liu, B.: On a conjecture about comparing Zagreb indices. Recent Results in the Theory of Randic Index, Univ. Kragujevac, Kragujevac. 205-209 (2008).
[17] Nath, R.K., Fasfous, W.N.T., Das, K.C., Shang, Y.: Common neighborhood energy of commuting graphs of finite groups. Symmetry. 13(9), 1-12, 1651 (2021). https://doi.org/10.3390/sym13091651
[18] Neumann, B.H.: A problem of Paul Erdös on groups. J. Aust. Math. Soc. 21(4) 467-472 (1976). https://doi.org/10.1017/S1446788700019303
[19] Nikolić, S., Kovačević, G., Miličević, A., Trinajstić, N.: The Zagreb indices 30 years after. Croat. Chem. Acta. 76(2), 113-124 (2003).
[20] Nongsiang, D.: Double-toroidal and triple-toroidal commuting graph. Hacet. J. Math. Stat. 1-13 (2024).
[21] Sharma, M., Nath, R.K.: Signless Laplacian energies of non-commuting graphs of finite groups and related results. Discrete Math., Algorithms Appl. (accepted for publication). Preprint at https://doi.org/10.48550/arXiv.2303.17795
[22] Vukičević, D., Graovac, A.: Comparing Zagreb M_{1} and M_{2} indices for acyclic molecules. MATCH Commun. Math. Comput. Chem. 57(3), 587-590 (2007).

Contact information

S. Das,	Department of Mathematical Sciences, Tezpur
R. K. Nath	University, Napaam-784028,
	Sonitpur, Assam, India.
	E-Mail: shrabanidas904@gmail.com,
	rajatkantinath@yahoo.com

D. Nongsiang Department of Mathematics, North-Eastern Hill University, Shillong-793022, Meghalaya, India.
E-Mail: ndeiborlang@yahoo.co.in

Received by the editors: 23.01.2024
and in final form 04.03.2024.

[^0]: *Corresponding author.
 The authors would like to thank the referee for his/her valuable comments. The first author is thankful to Council of Scientific and Industrial Research for the fellowship (File No. 09/0796(16521)/2023-EMR-I).

 2020 Mathematics Subject Classification: 20D60, 05C25, 05C09.
 Key words and phrases: commuting graph, genus, planar graph, doubletoroidal, triple-toroidal.

