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Abstract. In this paper we first show that among all double-
toroidal and triple-toroidal finite graphs only K8 ⊔ 9K1, K8 ⊔ 5K2,
K8 ⊔ 3K4, K8 ⊔ 9K3, K8 ⊔ 9(K1 ∨ 3K2), 3K6 and 3K6 ⊔ 4K4 ⊔ 6K2

can be realized as commuting graphs of finite groups, where ⊔
and ∨ stand for disjoint union and join of graphs respectively. As
consequences of our results we also show that for any finite non-
abelian group G if the commuting graph of G (denoted by Γc(G))
is double-toroidal or triple-toroidal then Γc(G) and its complement
satisfy Hansen-Vukičević Conjecture and E-LE conjecture. In the
process we find a non-complete graph, namely the non-commuting
graph of the group (Z3 × Z3) ⋊ Q8, that is hyperenergetic. This
gives a new counter example to a conjecture of Gutman regarding
hyperenergetic graphs.

Introduction

Finite groups are being characterized through various graphs defined on
it for a long time now. A survey on graphs defined on groups can be
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found in [4]. One such graph defined on groups is the commuting graph.
The commuting graph of a finite group was originated from the works
of Brauer and Fowler in [3]. Let G be a finite non-abelian group with
center Z(G). The commuting graph of G is a simple undirected graph
whose vertex set is G \ Z(G) and two vertices x and y are adjacent if
xy = yx. It is denoted by Γc(G). The complement of this graph is
the non-commuting graph of G, denoted by Γnc(G). The study of non-
commuting graph of a finite non-abelian group gets popularity because
of a question posed by Erdös in the year 1975 which was answered by
Neumann in 1976 [18].

The genus of a graph Γ is the smallest non-negative integer n such
that the graph can be embedded on the surface obtained by attaching
n handles to a sphere. It is denoted by γ(Γ). The graphs which have
genus zero are called planar graphs, those which have genus one are called
toroidal graphs, those which have genus two are called double-toroidal
graphs and those which have genus three are called triple-toroidal graphs.
Classification of finite non-abelian groups whose commuting graphs are
planar or toroidal can be found in [1] and [6] (also see [9, Theorem 3.3]).
Recently, finite non-abelian groups such that their commuting graphs are
double-toroidal or triple-toroidal are classified in [20]. In this paper, we
consider finite non-abelian groups whose commuting graphs are double or
triple-toroidal and realize their commuting graphs. As such we show that
among all double-toroidal and triple-toroidal finite graphs only K8⊔9K1,
K8 ⊔ 5K2, K8 ⊔ 3K4, K8 ⊔ 9K3, K8 ⊔ 9(K1 ∨ 3K2), 3K6 and 3K6 ⊔
4K4 ⊔ 6K2 can be realized as commuting graphs of finite groups, where
⊔ and ∨ stand for disjoint union and join of graphs respectively. We also
compute first and second Zagreb indices of Γc(G) and Γnc(G) and show
that they satisfy Hansen-Vukičević conjecture if Γc(G) is double-toroidal
or triple-toroidal. Further, we show that these graphs also satisfy E-LE
conjecture.

Let Γ be a simple undirected graph with vertex set v(Γ) and edge set
e(Γ). The first and second Zagreb indices of Γ, denoted by M1(Γ) and
M2(Γ) respectively, are defined as

M1(Γ) =
∑

v∈v(Γ)

deg(v)2 and M2(Γ) =
∑

uv∈e(Γ)

deg(u) deg(v),

where deg(v) is the number of edges incident on v (called degree of v).
Zagreb indices of graphs were introduced by Gutman and Trinajstić [13]
in 1972 to examine the dependence of total π-electron energy on molecu-
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lar structure. As noted in [19], Zagreb indices are also used in studying
molecular complexity, chirality, ZE-isomerism and heterosystems etc.
Later on, general mathematical properties of these indices are also stu-
died by many mathematicians. A survey on mathematical properties of
Zagreb indices can be found in [14]. Comparing first and second Zagreb
indices, Hansen and Vukičević [15] posed the following conjecture in 2007.

Conjecture 1 (Hansen-Vukičević Conjecture). For any simple finite
graph Γ,

M2(Γ)

|e(Γ)|
≥ M1(Γ)

|v(Γ)|
. (1)

It was shown in [15] that the conjecture is not true if Γ = K1,5 ⊔K3.
However, Hansen and Vukičević [15] showed that Conjecture 1 holds for
chemical graphs. In [22], it was shown that the conjecture holds for trees
with equality in (1) when Γ is a star graph. In [16], it was shown that the
conjecture holds for connected unicyclic graphs with equality when the
graph is a cycle. However, the search of graphs validating or invalidating
Conjecture 1 is not completed yet. Recently, Das et al. [7] have obtained
various finite non-abelian groups such that their commuting graphs satis-
fy Hansen-Vukičević Conjecture. It was also shown that Γc(G) satisfies
Hansen-Vukičević Conjecture if Γc(G) is planar or toroidal.

Let A(Γ) and D(Γ) denote the adjacency matrix and degree matrix
of Γ respectively. The set of eigenvalues of A(Γ) along with their multi-
plicities is called the spectrum of Γ. The Laplacian matrix and signless
Laplacian matrix of Γ are given by L(Γ) := D(Γ) − A(Γ) and Q(Γ) :=
D(Γ) + A(Γ) respectively. The Laplacian spectrum and signless Lapla-
cian spectrum are the set of eigenvalues of L(Γ) and Q(Γ) along with
their multiplicities respectively. Let v(Γ) := {vi : i = 1, 2, . . . , n}. The
common neighbourhood of two distinct vertices vi and vj , denoted by
C(vi, vj), is the set of all vertices other than vi and vj which are adjacent
to both vi and vj . The common neighbourhood matrix of Γ, denoted by
CN(Γ), is defined as

(CN(Γ))i,j =

{
|C(vi, vj)|, if i ̸= j,

0, if i = j.

The common neighbourhood spectrum of Γ is the set of all eigenvalues
of CN(Γ) along with their multiplicities. We write Spec(Γ), L-spec(Γ),
Q-spec(Γ) and CN-spec(Γ) to denote the spectrum, Laplacian spectrum,
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signless Laplacian spectrum and common neighbourhood spectrum of Γ
respectively.

The energy, E(Γ) and common neighbourhood energy, ECN (Γ) of
Γ are the sum of the absolute values of the elements of Spec(Γ) and
CN-spec(Γ) respectively. The Laplacian energy, LE(Γ) and signless
Laplacian energy, LE+(Γ) of Γ are defined as

LE(Γ) =
∑

λ∈L-spec(Γ)

∣∣∣∣λ− 2m

n

∣∣∣∣ and LE+(Γ) =
∑

µ∈Q-spec(Γ)

∣∣∣∣µ− 2m

n

∣∣∣∣ ,
wherem = |e(Γ)|. It is well-known that E(Kn) = LE(Kn) = LE+(Kn) =
2(n−1) and ECN (Kn) = 2(n−1)(n−2). A graph Γ with |v(Γ)| = n is cal-
led hyperenergetic if E(Γ) > E(Kn). It is called hypoenergetic if E(Γ) <
n. Similarly, Γ is called L-hyperenergetic if LE(Γ) > LE(Kn), Q-hyper-
energetic if LE+(Γ) > LE+(Kn) and CN-hyperenergetic if ECN (Γ) >
ECN (Kn).

Gutman et al. [12] conjectured that E(Γ) ≤ LE(Γ) which is known
as E-LE conjecture. Gutman [11] also conjectured that “G is not hyper-
energetic if G ≇ K|v(G)|”. Note that both the conjectures were disproved.
However, it is still unknown whether the commuting or non-commuting
graphs of finite groups satisfy E-LE conjecture. In this paper, we show
that Γc(G) and Γnc(G) satisfy E-LE conjecture if Γc(G) is double-toroidal
or triple-toroidal. Further, we find a non-complete graph, namely the
non-commuting graph of the group (Z3 × Z3) ⋊ Q8, that is hyperener-
getic. This gives a new counter example to the above mentioned con-
jecture of Gutman. We shall also determine whether Γc(G) and Γnc(G)
are hypoenergetic, hyperenergetic, L-hyperenergetic, Q-hyperenergetic
and CN-hyperenergetic if Γc(G) is double-toroidal or triple-toroidal. It
is worth mentioning that the universal adjacency eigenvalues/eigenpairs
of the commuting and non-commuting graphs for most of the groups
considered in this paper can be obtained from [2].

1. Realization of commuting graph

In this section, we determine all finite planar, toroidal, double-toroidal
and triple-toroidal graphs that can be realized as commuting graphs of
finite groups. Using [1, Theorem 2.2], [9, Theorem 3.3] and commuting
graphs of various finite non-abelian groups considered in [9] we have the
following theorem.
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Theorem 1. (a) Among all the planar finite graphs only K2 ⊔ 3K1,
3K2, K4 ⊔ 5K1,K4 ⊔ 3K2, 3K4,K3 ⊔ 4K2, 5K3 ⊔ 10K2 ⊔ 6K4,
3K2 ⊔ 4K4, K4 ⊔ 5K3 and 7K2 ⊔D can be realized as commuting
graphs of finite groups, where D is the graph obtained from 4K3

after three vertex contractions as shown in Figure 1.

(b) Among all the toroidal finite graphs only K6 ⊔ 7K1, K6 ⊔ 4K2,
K6 ⊔ 3K3, K6 ⊔ 4K4 and K6 ⊔ 7K2 can be realized as commuting
graphs of finite groups.

Figure 1: Graph after three vertex contractions in 4K3

Figure 2: K1 ∨ 3K2

The following two results from [20] are useful in determining all fi-
nite double-toroidal and triple-toroidal graphs that can be realized as
commuting graphs of finite groups.

Theorem 2 ([20, Theorem 3.6]). Let G be a finite non-abelian group.
Then the commuting graph of G is double-toroidal if and only if G is
isomorphic to one of the following groups:

(a) D18, D20, Q20, S3 × Z2 × Z2, S3 × Z4,

(b) (Z3 × Z3)⋊ Z2
∼= ⟨x, y, z : x3 = y3 = z2 = [x, y] = 1,

xz = x−1, yz = y−1⟩,
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(c) Z3 ⋊ Z8
∼= ⟨x, y : x8 = y3 = 1, yx = y−1⟩,

(d) (Z3 ⋊ Z4)× Z2
∼= ⟨x, y, z : x4 = y3 = z2 = 1,

xyx−1 = y−1, xz = zx, yz = zy⟩,

(e) (Z3 × Z3)⋊ Z4
∼= ⟨x, y : x4 = y3 = (yx2)2 = [x−1yx, y] = 1⟩,

(f) (Z3 × Z3)⋊Q8
∼= ⟨x, y, z : x4 = y4 = z3 = 1, yx = y−1,

zy
2
= z−1, zx

2
= z−1, x−1zx−1 = (zy)2⟩.

Theorem 3 ([20, Theorem 3.7]). Let G be a finite non-abelian group.
Then the commuting graph of G is triple-toroidal if and only if G is
isomorphic to either

(a) GL(2, 3), D8 × Z3, Q8 × Z3,

(b) SL(2, 3) ◦ Z2
∼= ⟨x, y, z : y3 = z4 = 1, x2 = z2, yx = y−1,

y−1zy−1z−1y−1z = xz−1xy−1zy = 1⟩.

Now we realize the structures of Γc(G) if Γc(G) is double-toroidal or
triple-toroidal.

Theorem 4. Let G be a finite non-abelian group. If Γc(G) is double-
toroidal then Γc(G) is isomorphic to K8 ⊔ 9K1, K8 ⊔ 5K2, K8 ⊔ 3K4,
K8 ⊔ 9K3 or K8 ⊔ 9(K1 ∨ 3K2).

Proof. From Theorem 2, we have Γc(G) is double-toroidal if and only if G
is isomorphic to either D18, D20, Q20, S3×Z2×Z2, S3×Z4, (Z3×Z3)⋊Z2,
Z3 ⋊ Z8, (Z3 ⋊ Z4)× Z2, (Z3 × Z3)⋊ Z4 or (Z3 × Z3)⋊Q8.

Let G be any of the groups D18 and (Z3 × Z3) ⋊ Z2. Then G is
an AC-group. The centralizers of the non-central elements of G are of
size 9 and 2. There is exactly one centralizer of size 9 and nine distinct
centralizers of size 2. Thus Γc(G) ∼= K8 ⊔ 9K1.

Let G be any of the groups D20 and Q20. Then G is an AC-group,
|Z(G)| = 2 and it has one centralizer of size 10 and 5 distinct centralizers
of size 4. Thus Γc(G) ∼= K8 ⊔ 5K2.

Let G be any of the groups S3 ×Z2 ×Z2, S3 ×Z4,Z3 ⋊Z8 and (Z3 ⋊
Z4)×Z2. Then G is an AC-group, |Z(G)| = 4 and it has three centralizer
of size 8 and one centralizer of size 12. Thus Γc(G) ∼= K8 ⊔ 3K4.

If G = (Z3 × Z3) ⋊ Z4, then G is an AC-group, |Z(G)| = 1 and it
has one centralizer of size 9 and 9 centralizers of size 4. Thus Γc(G)
∼= K8 ⊔ 9K3.
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Let G = (Z3×Z3)⋊Q8. The group G consist of one sylow 3-subgroup
of order 9 and 9 sylow 2-subgroups of order 8. The sylow 2-subgroups of
G are isomorphic toQ8 and the sylow 3-subgroup is isomorphic to Z3×Z3.
The intersection of any two of these subgroups is trivial. Thus G is exact-
ly the union of these subgroups. Let L be any of these subgroups and
x ∈ L, x ̸= 1. Then CG(x) ⊆ L. Thus the commuting graph of G con-
sist of 10 components. One of the component is Γc(G)[H], where H∪{1}
is the sylow 3-subgroup of G. The other 9 components are Γc(G)[Ki],
where Ki ∪{1}, i = 1, 2, . . . , 9, are the sylow 2-subgroups of G. It can be
seen that Γc(G)[H] ∼= K8 and Γc(G)[Ki] ∼= K1 ∨ 3K2 for i = 1, 2, . . . , 9.
Thus Γc(G) ∼= K8 ⊔ 9(K1 ∨ 3K2).

Theorem 5. Let G be a finite non-abelian group. If Γc(G) is triple-
toroidal, then Γc(G) is isomorphic to 3K6 or 3K6 ⊔ 4K4 ⊔ 6K2.

Proof. From Theorem 3, we have Γc(G) is triple-toroidal if and only if
G is isomorphic to GL(2, 3), D8 × Z3, Q8 × Z3 or C2 ◦ S4.

If G = D8 × Z3 or Q8 × Z3, then G is an AC-group, |Z(G)| = 6 and
has three distinct centralizers of size 12. Therefore, Γc(G) = 3K6.

If G = GL(2, 3) or C2 ◦ S4, then G is an AC-group, |Z(G)| = 2
and it has three centralizers of size 8, four centralizers of size 6 and six
centralizers of size 4. Thus, Γc(G) = 3K6 ⊔ 4K4 ⊔ 6K2.

We conclude this section with the following corollary.

Corollary 1. (a) Among all the double-toroidal finite graphs only
K8⊔9K1, K8⊔5K2, K8⊔3K4, K8⊔9K3 or K8⊔9(K1∨3K2) can
be realized as commuting graphs of finite groups.

(b) Among all the triple-toroidal finite graphs only 3K6 and 3K6⊔4K4

⊔6K2 can be realized as commuting graphs of finite groups.

2. Some consequences

In this section we show that for any finite non-abelian group G if Γc(G) is
double-toroidal or Γc(G) is triple-toroidal then Γc(G) and Γnc(G) satisfy
Hansen-Vukičević Conjecture and E-LE conjecture. The following result
is useful in our study.

Theorem 6 ([8, page 575] and [5, Lemma 3]). For any graph Γ and its
complement Γ,

M1(Γ) = |v(Γ)|(|v(Γ)| − 1)2 − 4|e(Γ)|(|v(Γ)| − 1) +M1(Γ) and
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M2(Γ) =
|v(Γ)|(|v(Γ)| − 1)3

2
+ 2|e(Γ)|2 − 3|e(Γ)|(|v(Γ)| − 1)2

+

(
|v(Γ)| − 3

2

)
M1(Γ)−M2(Γ).

In [7], it was shown that Γc(G) satisfies Hansen-Vukičević Conjec-
ture if Γc(G) is planar or toroidal. The following theorem shows that if
Γc(G) is double-toroidal then Γc(G) and Γnc(G) satisfy Hansen-Vukičević
Conjecture.

Theorem 7. Let G be a finite non-abelian group. If Γc(G) is double-

toroidal then M2(Γ(G))
|e(Γ(G))| ≥ M1(Γ(G))

|v(Γ(G))| , where Γ(G) = Γc(G) or Γnc(G).

Proof. From Theorem 4, we have that Γc(G) is isomorphic to K8 ⊔ 3K4,
K8 ⊔ 9K1, K8 ⊔ 5K2, K8 ⊔ 9K3 or K8 ⊔ 9(K1 ∨ 3K2). If Γc(G) ∼= K8 ⊔
3K4, then |v(Γc(G))| = 20, |e(Γc(G))| = 46, |e(Γnc(G))| =

(
20
2

)
− 46 =

144. Using Theorem 2.1 of [7] and Theorem 6, we have M1(Γc(G)) =
500, M2(Γc(G)) = 1534,M1(Γnc(G)) = 4224 and M2(Γnc(G)) = 30720.
Therefore

M2(Γc(G))

|e(Γc(G))|
=

767

23
> 25 =

M1(Γc(G))

|v(Γc(G))|
and

M2(Γnc(G))

|e(Γnc(G))|
=

640

3
>

1056

5
=

M1(Γnc(G))

|v(Γnc(G))|
.

If Γc(G) ∼= K8 ⊔ 9K1, then |v(Γc(G))| = 17, |e(Γc(G))| = 28, |e(Γnc(G))|
=

(
17
2

)
− 28 = 108. Using Theorem 2.1 of [7] and Theorem 6, we

have M1(Γc(G)) = 392, M2(Γc(G)) = 1372, M1(Γnc(G)) = 2952 and
M2(Γnc(G)) = 19584. Therefore

M2(Γc(G))

|e(Γc(G))|
= 49 >

392

17
=

M1(Γc(G))

|v(Γc(G))|

and
M2(Γnc(G))

|e(Γnc(G))|
=

1632

9
>

2952

17
=

M1(Γnc(G))

|v(Γnc(G))|
.

If Γc(G) ∼= K8 ⊔ 5K2, then |v(Γc(G))| = 18, |e(Γc(G))| = 33, |e(Γnc(G))|
=

(
18
2

)
− 33 = 120. Using Theorem 2.1 of [7] and Theorem 6, we

have M1(Γc(G)) = 402,M2(Γc(G)) = 1377, M1(Γnc(G)) = 3360 and
M2(Γnc(G)) = 23040. Therefore

M2(Γc(G))

|e(Γc(G))|
=

67

3
>

459

11
=

M1(Γc(G))

|v(Γc(G))|
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and
M2(Γnc(G))

|e(Γnc(G))|
= 192 >

560

3
=

M1(Γnc(G))

|v(Γnc(G))|
.

If Γc(G) ∼= K8 ⊔ 9K3, then |v(Γc(G))| = 35, |e(Γc(G))| = 55, |e(Γnc(G))|
=

(
35
2

)
− 55 = 540. Using Theorem 2.1 of [7] and Theorem 6, we

have M1(Γc(G)) = 500,M2(Γc(G)) = 1480, M1(Γnc(G)) = 33480 and
M2(Γnc(G)) = 518400. Therefore

M2(Γc(G))

|e(Γc(G))|
=

1480

55
>

500

35
=

M1(Γc(G))

|v(Γc(G))|

and
M2(Γnc(G))

|e(Γnc(G))|
= 960 >

33480

35
=

M1(Γnc(G))

|v(Γnc(G))|
.

If Γc(G) ∼= K8 ⊔ 9(K1 ∨ 3K2), then |v(Γc(G))| = 71, |e(Γc(G))| = 109,
|e(Γnc(G))| =

(
71
2

)
− 109 = 2376, M1(Γc(G)) = 932 and M2(Γc(G)) =

2128. Using Theorem 6 we have M1(Γnc(G)) = 318312 and M2(Γnc(G))
= 10660608. Therefore

M2(Γc(G))

|e(Γc(G))|
=

2128

109
>

932

71
=

M1(Γc(G))

|v(Γc(G))|

and
M2(Γnc(G))

|e(Γnc(G))|
=

10660608

2376
>

318312

71
=

M1(Γnc(G))

|v(Γnc(G))|
.

Hence, the result follows.

The following theorem shows that if Γc(G) is triple-toroidal then
Γc(G) and Γnc(G) satisfy Hansen-Vukičević Conjecture.

Theorem 8. Let G be a finite non-abelian group. If Γc(G) is triple-

toroidal, then M2(Γ(G))
|e(Γ(G))| ≥ M1(Γ(G))

|v(Γ(G))| , where Γ(G) = Γc(G) or Γnc(G).

Proof. From Theorem 5, we have that Γc(G) is isomorphic to 6K2 ⊔
3K6 ⊔4K4 or 3K6. If Γc(G) ∼= 6K2 ⊔ 3K6 ⊔ 4K4, then |v(Γc(G))| = 46,
|e(Γc(G))| = 75, |e(Γnc(G))| =

(
46
2

)
− 75 = 960. Using Theorem 2.1

of [7] and Theorem 6, we have M1(Γc(G)) = 606,M2(Γc(G)) = 1347,
M1(Γnc(G)) = 80256 and M2(Γnc(G)) = 1677120. Therefore

M2(Γc(G))

|e(Γc(G))|
=

449

25
>

303

23
=

M1(Γc(G))

|v(Γc(G))|
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and
M2(Γnc(G))

|e(Γnc(G))|
= 1747 >

40128

23
=

M1(Γnc(G))

|v(Γnc(G))|
.

If Γc(G) ∼= 3K6, then |v(Γc(G))| = 18, |e(Γc(G))| = 45, |e(Γnc(G))| =(
18
2

)
− 45 = 108. Using Theorem 2.1 of [7] and Theorem 6, we have

M1(Γc(G)) = 450, M2(Γc(G)) = 1125, M1(Γnc(G)) = 2592 and
M2(Γnc(G)) = 15552. Therefore

M2(Γc(G))

|e(Γc(G))|
= 25 =

M1(Γc(G))

|v(Γc(G))|

and
M2(Γnc(G))

|e(Γnc(G))|
= 144 =

M1(Γnc(G))

|v(Γnc(G))|
.

Hence, the result follows.

Using results from [10,17,21], we have the following characterizations
of Γc(G) and Γnc(G) if Γc(G) is planar or toroidal.

Theorem 9. Let G be a finite non-abelian group such that Γc(G) is
planar. Then

(a) Γc(G) is neither hyperenergetic, L-hyperenergetic nor CN-hyper-
energetic.

(b) Γc(G) is hypoenergetic only when G ∼= D6 or D10.

(c) Γc(G) is Q-hyperenergetic only when G ∼= A4.

(d) E(Γc(G)) < LE(Γc(G)) < LE+(Γc(G)) when G ∼= A4 or S4;
LE+(Γc(G)) < E(Γc(G)) < LE(Γc(G)) when G ∼= A5, SL(2, 3)
or Sz(2) and E(Γc(G)) ≤ LE+(Γc(G)) ≤ LE(Γc(G)) otherwise.

(e) Γnc(G) is neither hypoenergetic nor CN-hyperenergetic.

(f) Γnc(G) is hyperenergetic only when G ∼= S4.

(g) Γnc(G) is L-hyperenergetic when G ∼= D6, D10, D12, Q12, A4, A5, S4,
SL(2, 3) or Sz(2).

(h) Γnc(G) is Q-hyperenergetic when G ∼= D10, D12, Q12, A4, A5, S4 or
SL(2, 3).
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(i) E(Γnc(G)) ≤ LE+(Γnc(G)) ≤ LE(Γnc(G)) but

E(Γnc(S4)) < LE(Γnc(S4)) < LE+(Γnc(S4)).

Theorem 10. Let G be a finite non-abelian group such that Γc(G) is
toroidal. Then

(a) Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic.

(b) Γc(G) is L-hyperenergetic and Q-hyperenergetic when G ∼= D14,
D16, Q16, QD16 or D6 × Z3.

(c) E(Γc(G)) < LE(Γc(G)) < LE+(Γc(G)) when G ∼= D6 × Z3 or
A4 × Z2 and E(Γc(G)) < LE+(Γc(G)) < LE(Γc(G)) otherwise.

(d) Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic but is L-hyperenergetic as well as Q-hyperenergetic.

(e) E(Γnc(G)) ≤ LE+(Γnc(G)) ≤ LE(Γnc(G)) but

E(Γnc(A4×Z2)) < LE(Γnc(A4×Z2)) < LE+(Γnc(A4×Z2)).

From Theorems 9-10, it follows that Γc(G) and Γnc(G) satisfy E-LE
conjecture if Γc(G) is planar or toroidal. In the following theorems we
show that Γc(G) and Γnc(G) satisfy E-LE conjecture if Γc(G) is double-
toroidal or triple-toroidal.

Theorem 11. Let G be a finite non-abelian group such that Γc(G) is
double-toroidal. Then

(a) Γc(G) is neither hyperenergetic nor CN-hyperenergetic.

(b) Γc(G) is not L-hyperenergetic only when G ∼= (Z3 × Z3) ⋊ Z4 or
(Z3 × Z3)⋊Q8.

(c) Γc(G) is Q-hyperenergetic.

(d) Γc(G) is hypoenergetic only when G ∼= D18 or (Z3 × Z3)⋊ Z2.

(e) E(Γc(G)) < LE(Γc(G)) < LE+(Γc(G)) only when G ∼= (Z3×Z3)⋊
Z4 or (Z3 × Z3)⋊Q8 and E(Γc(G)) < LE+(Γc(G)) < LE(Γc(G))
otherwise.
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Proof. From Theorem 4, we have that Γc(G) is isomorphic to K8 ⊔ 3K4,
K8 ⊔ 9K1, K8 ⊔ 5K2, K8 ⊔ 9K3 or K8 ⊔ 9(K1 ∨ 3K2).

If Γc(G) ∼= K8⊔3K4, then Spec(Γc(G)) =
{
(−1)16, (7)1, (3)3

}
and so

E(Γc(G)) = 16 + 7 + 9 = 32. We also have L-spec(Γc(G)) =
{
(0)4, (8)7 ,

(4)9
}

and Q-spec(Γc(G)) =
{
(14)1, (6)10, (2)9

}
. Here, 2|e(Γc(G))|

|v(Γc(G))| = 23
5

and |0− 23
5 | =

23
5 , |8−

23
5 | =

17
5 , |4−

23
5 | =

3
5 . Therefore

LE(Γc(G)) = 4 · 23
5 + 7 · 17

5 + 9 · 3
5 = 238

5 .

Similarly, |14− 23
5 | =

47
5 , |6−

23
5 | =

7
5 , |2−

23
5 | =

13
5 and hence

LE+(Γc(G)) = 47
5 + 10 · 7

5 + 9 · 13
5 = 234

5 .

Further, CN-spec(Γc(G))=
{
(−6)7, (42)1, (−2)9, (6)3

}
and so ECN (Γc(G))

= 120. We have

|v(Γc(G))| = 20 < 32 = E(Γc(G)),
E(K20) = 2(20− 1) = 38 > 32 = E(Γc(G)) and

ECN (K20) = 2(20− 1)(20− 2) = 684 > 120 = ECN (Γc(G))

Thus, Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also,

LE(K20) = 2(20− 1) = 38 < 238
5 = LE(Γc(G)) and

LE+(K20) = 2(20− 1) = 38 < 234
5 = LE+(Γc(G)).

Therefore, Γc(G) is L-hyperenergetic as well as Q-hyperenergetic. Fur-
ther

E(Γc(G)) = 32 < 234
5 = LE+(Γc(G)) < 238

5 = LE(Γc(G)).

If Γc(G) ∼= K8 ⊔ 9K1, then Spec(Γc(G)) =
{
(−1)7, (7)1, (0)9

}
and so

E(Γc(G)) = 7+7 = 14. We also have L-spec(Γc(G)) =
{
(0)10, (8)7

}
and

Q-spec(Γc(G)) =
{
(14)1, (6)7, (0)9

}
. Here, 2|e(Γc(G))|

|v(Γc(G))| = 56
17 and |0 − 56

17 |
= 56

17 , |8−
56
17 | =

80
17 . Therefore

LE(Γc(G)) = 10 · 56
17 + 7 · 80

17 = 1120
17 .

Similarly, |14− 56
17 | =

182
17 , |6−

56
17 | =

46
17 , |0−

56
17 | =

56
17 and hence

LE+(Γc(G)) = 182
17 + 7 · 46

17 + 9 · 56
17 = 1008

17 .

Further, CN-spec(Γc(G)) =
{
(−6)7, (42)1, (0)9

}
and so ECN (Γc(G)) =

84. We have
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|v(Γc(G))| = 17 > 14 = E(Γc(G)),
E(K17) = 2(17− 1) = 32 > 14 = E(Γc(G)) and

ECN (K17) = 2(17− 1)(17− 2) = 480 > 84 = ECN (Γc(G)).

Thus, Γc(G) is hypoenergetic but neither hyperenergetic nor CN-hyper-
energetic. Also

LE(K17) = 2(17− 1) = 32 < 1120
17 = LE(Γc(G)) and

LE+(K17) = 2(17− 1) = 32 < 1008
17 = LE+(Γc(G)).

Therefore, Γc(G) is L-hyperenergetic as well as Q-hyperenergetic. Fur-
ther,

E(Γc(G)) = 14 < 1008
17 = LE+(Γc(G)) < 1120

17 = LE(Γc(G)).

If Γc(G) ∼= K8⊔5K2, then Spec(Γc(G)) =
{
(−1)12, (7)1, (1)5

}
and so

E(Γc(G)) = 12 + 7 + 5 = 24. We also have L-spec(Γc(G)) =
{
(0)6, (8)7 ,

(2)5
}
and Q-spec(Γc(G)) =

{
(14)1, (6)7, (2)5, (0)5

}
. Here, 2|e(Γc(G))|

|v(Γc(G))| = 11
3

and |0− 11
3 | =

11
3 , |8−

11
3 | =

13
3 , |2−

11
3 | =

5
3 . Therefore

LE(Γc(G)) = 6 · 11
3 + 7 · 13

3 + 5 · 5
3 = 182

3 .

Similarly, |14 − 11
3 | =

31
3 , |6 − 11

3 | =
7
3 , |2 − 11

3 | =
5
3 , |0 − 11

3 | =
11
3 and

hence

LE+(Γc(G)) = 31
3 + 7 · 7

3 + 5 · 5
3 + 5 · 11

3 = 160
3 .

Further, CN-spec(Γc(G)) =
{
(−6)7, (42)1, (0)10

}
and so ECN (Γc(G)) =

84. We have

|v(Γc(G))| = 18 < 24 = E(Γc(G)),
E(K18) = 2(18− 1) = 34 > 24 = E(Γc(G)) and

ECN (K18) = 2(18− 1)(18− 2) = 544 > 84 = ECN (Γc(G)).

Thus, Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also

LE(K18) = 2(18− 1) = 34 < 182
3 = LE(Γc(G)) and

LE+(K18) = 2(18− 1) = 34 < 160
3 = LE+(Γc(G)).

Therefore, Γc(G) is L-hyperenergetic as well as Q-hyperenergetic. Fur-
ther

E(Γc(G)) = 24 < 160
3 = LE+(Γc(G)) < 182

3 = LE(Γc(G)).
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If Γc(G) ∼= K8 ⊔ 9K3, then Spec(Γc(G)) =
{
(−1)25, (7)1, (2)9

}
and

so E(Γc(G)) = 25 + 7 + 18 = 50. We also have L-spec(Γc(G)) ={
(0)10, (8)7, (3)18

}
and Q-spec(Γc(G)) =

{
(14)1, (6)7, (4)9, (1)18

}
. Here,

2|e(Γc(G))|
|v(Γc(G))| = 22

7 and |0− 22
7 | =

22
7 , |8−

22
7 | =

34
7 , |3−

22
7 | =

1
7 . Therefore,

LE(Γc(G)) = 10 · 22
7 + 7 · 34

7 + 18 · 1
7 = 68.

Similarly, |14 − 22
7 | =

76
7 , |6 −

22
7 | =

20
7 , |4 −

22
7 | =

6
7 , |1 −

22
7 | =

15
7 and

hence

LE+(Γc(G)) = 76
7 + 7 · 20

7 + 9 · 6
7 + 18 · 15

7 = 540
7 .

Further, CN-spec(Γc(G)) =
{
(−6)7, (42)1, (−1)18, (2)9

}
and so ECN (Γc(G)) =

120. We have

|v(Γc(G))| = 35 < 50 = E(Γc(G)),
E(K35) = 2(35− 1) = 68 > 50 = E(Γc(G)) and

ECN (K35) = 2(35− 1)(35− 2) = 2244 > 120 = ECN (Γc(G)).

Thus, Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K35) = 2(35 − 1) = 68 = LE(Γc(G)) and LE+(K35) =
2(35 − 1) = 68 < 540

7 = LE+(Γc(G)). Therefore, Γc(G) is not L-hyper-
energetic but Q-hyperenergetic. Further,

E(Γc(G)) = 50 < 68 = LE(Γc(G)) < 540
7 = LE+(Γc(G)).

If Γc(G) ∼= K8 ⊔ 9(K1 ∨ 3K2), then Spec(Γc(G)) =
{
(−1)34, (7)1, (−2)9 ,

(1)18, (3)9
}

and so E(Γc(G)) = 34 + 34 + 18 + 18 = 104. We also
have L-spec(Γc(G)) =

{
(0)10, (8)7, (3)27, (1)18, (7)9

}
and Q-spec(Γc(G))

=

{
(14)1, (6)7, (3)18, (1)27,

(
9+

√
33

2

)9
,
(
9−

√
33

2

)9
}
. Here, 2|e(Γc(G))|

|v(Γc(G))| =

218
71 and |0 − 218

71 | =
218
71 , |8 −

218
71 | =

350
71 , |3 −

218
71 | =

5
71 , |1 −

218
71 | =

147
71 ,

|7− 218
71 | =

279
71 . Therefore,

LE(Γc(G)) = 10 · 218
71 + 7 · 350

71 + 18 · 147
71 + 27 · 5

71 + 9 · 279
71 = 9922

71 .

Similarly, |14 − 218
71 | = 776

71 , |6 − 218
71 | = 208

71 , |9+
√
33

2 − 218
71 | ≈ 610.86

71 ,

|9−
√
33

2 − 218
71 | ≈

204.86
71 and hence

LE+(Γc(G)) ≈ 776
71 +7· 20871 +27· 14771 +18· 5

71+9· 610.8671 +9· 204.8671 ≈ 13632.48
71 .

Further, CN-spec(Γc(G)) =
{
(−6)7, (42)1, (−1)54, (6)9

}
and so ECN (Γc(G)) =

192. We have
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|v(Γc(G))| = 71 < 104 = E(Γc(G)),
E(K71) = 2(71− 1) = 140 > 104 = E(Γc(G)) and

ECN (K71) = 2(71− 1)(71− 2) = 9660 > 192 = ECN (Γc(G)).

Thus, Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K71) = 2(71 − 1) = 140 > 9922

71 = LE(Γc(G)) and
LE+(K71) = 2(71 − 1) = 140 < 13632.48

71 ≈ LE+(Γc(G)). Therefore,
Γc(G) is not L-hyperenergetic but Q-hyperenergetic. Further,

E(Γc(G)) = 104 < 9922
71 = LE(Γc(G)) < 13632.48

71 = LE+(Γc(G)).

Hence, the result follows.

Theorem 12. Let G be a finite non-abelian group such that Γc(G) is
triple-toroidal. Then

(a) Γc(G) is neither hypoenergetic, hyperenergetic, CN-hyperenergetic
nor Q-hyperenergetic.

(b) Γc(G) is L-hyperenergetic only when G ∼= GL(2, 3).

(c) E(Γc(G)) ≤ LE+(Γc(G)) ≤ LE(Γc(G)).

Proof. From Theorem 5, we have that Γc(G) is isomorphic to 6K2⊔ 3K6

⊔4K4 or 3K6.

If Γc(G) ∼= 6K2 ⊔ 3K6 ⊔ 4K4, then Spec(Γc(G)) =
{
(−1)33, (1)6, (5)3 ,

(3)4
}
and so E(Γc(G))=33+6+15+12 = 66. We also have L-spec(Γc(G))

=
{
(0)13, (2)6, (6)15, (4)12

}
and Q-spec(Γc(G))=

{
(0)6, (10)3, (4)15, (6)4,

(2)18
}
. Here, 2|e(Γc(G))|

|v(Γc(G))| = 75
23 and |0− 75

23 | =
75
23 , |2−

75
23 | =

29
23 , |6−

75
23 | =

63
23 ,

|4− 75
23 | =

17
23 . Therefore,

LE(Γc(G)) = 13 · 75
23 + 6 · 29

23 + 15 · 63
23 + 12 · 17

23 = 2298
23 .

Similarly, |0 − 75
23 | =

75
23 , |10 − 75

23 | =
155
23 , |4 − 75

23 | =
17
23 , |6 − 75

23 | =
63
23 ,

|2− 75
23 | =

29
23 and hence

LE+(Γc(G)) = 6 · 75
23 + 3 · 155

23 + 15 · 17
23 + 4 · 63

23 + 18 · 29
23 = 1944

23 .

Further, CN-spec(Γc(G)) =
{
(0)12, (−4)15, (20)3, (−2)12, (6)4

}
and so

ECN (Γc(G)) = 168. We have

|v(Γc(G))| = 46 < 66 = E(Γc(G)),
E(K46) = 2(46− 1) = 90 > 66 = E(Γc(G)) and

ECN (K46) = 2(46− 1)(46− 2) = 3960 > 168 = ECN (Γc(G)).
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Thus, Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K46) = 2(46 − 1) = 90 < 2298

23 = LE(Γc(G)) and
LE+(K46) = 2(46− 1) = 90 > 1944

23 = LE+(Γc(G)). Therefore, Γc(G) is
L-hyperenergetic but not Q-hyperenergetic. Further,

E(Γc(G)) = 66 < 1944
23 = LE+(Γc(G)) < 2298

23 = LE(Γc(G)).

If Γc(G) ∼= 3K6, then Spec(Γc(G)) =
{
(−1)15, (5)3

}
and so E(Γc(G))

= 15 + 15 = 30. We also have L-spec(Γc(G)) =
{
(0)3, (6)15

}
and

Q-spec(Γc(G)) =
{
(10)3, (4)15

}
. Here, 2|e(Γc(G))|

|v(Γc(G))| = 5 and |0 − 5| = 5,

|6 − 5| = 1. Therefore, LE(Γc(G)) = 3 · 5 + 15 · 1 = 30. Similarly,
|10 − 5| = 5, |4 − 5| = 1 and hence LE+(Γc(G)) = 3 · 5 + 15 · 1 = 30.
Further, CN-spec(Γc(G)) =

{
(−4)15, (20)3

}
and so ECN (Γc(G)) = 120.

We have

|v(Γc(G))| = 18 < 30 = E(Γc(G)),
E(K18) = 2(18− 1) = 34 > 30 = E(Γc(G)) and

ECN (K18) = 2(18− 1)(18− 2) = 544 > 120 = ECN (Γc(G)).

Thus, Γc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K18) = 2(18 − 1) = 34 > 30 = LE(Γc(G)) and
LE+(K18) = 2(18 − 1) = 34 > 30 = LE+(Γc(G)). Therefore, Γc(G)
is neither L-hyperenergetic nor Q-hyperenergetic. Further,

E(Γc(G)) = 30 = LE+(Γc(G)) = LE(Γc(G)).

Hence, the result follows.

Theorem 13. Let G be a finite non-abelian group such that Γc(G) is
double-toroidal. Then

(a) Γnc(G) is neither hypoenergetic nor CN-hyperenergetic.

(b) Γnc(G) is hyperenergetic only when G ∼= (Z3 × Z3)⋊Q8.

(c) Γnc(G) is L-hyperenergetic and Q-hyperenergetic.

(d) E(Γnc(G)) < LE(Γnc(G)) < LE+(Γnc(G)) only when G ∼= (Z3 ×
Z3)⋊Z4 and E(Γnc(G)) < LE+(Γnc(G)) < LE(Γnc(G)) otherwise.

Proof. From Theorem 4, we have that Γc(G) is isomorphic to K8 ⊔ 3K4,
K8 ⊔ 9K1, K8 ⊔ 5K2, K8 ⊔ 9K3 or K8 ⊔ 9(K1 ∨ 3K2).

If Γc(G) ∼= K8 ⊔ 3K4, then Spec(Γnc(G)) =
{
(0)16, (−4)2, (4 +

√
112)1,

(4−
√
112)1

}
and so E(Γnc(G)) = 8+2

√
112. We also have L-spec(Γnc(G)) ={

(0)1, (16)9, (12)7, (20)3
}
and Q-spec(Γnc(G)) =

{
(12)9, (16)9, (18 +

√
132)1,
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(18−
√
132)1

}
. Here, 2|e(Γnc(G))|

|v(Γnc(G))| = 72
5 and |0 − 72

5 | =
72
5 , |16 − 72

5 | =
8
5 ,

|12− 72
5 | =

12
5 , |20−

72
5 | =

28
5 . Therefore,

LE(Γnc(G)) = 72
5 + 9 · 8

5 + 7 · 12
5 + 3 · 28

5 = 312
5 .

Similarly, |12 − 72
5 | =

12
5 , |16 − 72

5 | =
7
5 , |18 +

√
132 − 72

5 | =
18+5

√
132

5 ,

|18−
√
132− 72

5 | =
5
√
132−18
5 and hence

LE+(Γnc(G)) = 9 · 12
5 + 9 · 8

5 + 18+5
√
132

5 + 5
√
132−18
5 = 36 + 2

√
132.

Further, CN-spec(Γnc(G)) =
{
2(57 +

√
1761)1, 2(57−

√
1761)1, (−16)9,

(−12)7, (0)2
}
and so ECN (Γnc(G)) = 456. We have

|v(Γnc(G))| = 20 < 8 + 2
√
112 = E(Γnc(G)),

E(K20) = 2(20− 1) = 38 > 8 + 2
√
112 = E(Γnc(G)) and

ECN (K20) = 2(20− 1)(20− 2) = 684 > 456 = ECN (Γnc(G)).

Thus, Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K20) = 2(20 − 1) = 38 < 312

5 = LE(Γnc(G)) and

LE+(K20) = 2(20 − 1) = 38 < 36 + 2
√
132 = LE+(Γnc(G)). Therefore,

Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic. Further,

E(Γnc(G)) = 8 + 2
√
112 < 36 + 2

√
132

= LE+(Γnc(G)) <
312

5
= LE(Γnc(G)).

If Γc(G) ∼= K8 ⊔ 9K1, then Spec(Γnc(G)) =
{
(0)7, (−1)8, (4 +

√
88)1,

(4−
√
88)1

}
and so E(Γnc(G)) = 8+2

√
88. We also have L-spec(Γnc(G))

=
{
(0)1, (9)7, (17)9

}
and Q-spec(Γnc(G)) =

{
(9)7, (15)8,

(
33+

√
513

2

)1
,(

33−
√
513

2

)1
}
. Here, 2|e(Γnc(G))|

|v(Γnc(G))| = 216
17 and |0− 216

17 | =
216
17 , |9−

216
17 | =

63
17 ,

|17− 216
17 | =

73
17 . Therefore,

LE(Γnc(G)) = 216
17 + 7 · 63

17 + 9 · 73
17 = 1314

17 .

Similarly, |9− 216
17 | =

63
17 , |15− 216

17 | =
39
17 , |33+

√
513

2 − 216
17 | =

129+17
√
513

34 ,

|33−
√
513

2 − 216
17 | =

17
√
513−129
34 and hence

LE+(Γnc(G)) = 7 · 63
17 + 8 · 39

17 + 129+17
√
513

34 + 17
√
513−129
34 = 753+17

√
513

17 .

Further,

CN-spec(Γnc(G)) =
{
3
2(61 +

√
2049)1, 3

2(61−
√
2049)1, (−15)8, (−9)7

}
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and so ECN (Γnc(G)) = 366. We have

|v(Γnc(G))| = 17 < 8 + 2
√
88 = E(Γnc(G)),

E(K17) = 2(17− 1) = 32 > 8 + 2
√
88 = E(Γnc(G)) and

ECN (K17) = 2(17− 1)(17− 2) = 480 > 366 = ECN (Γnc(G)).

Thus, Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K17) = 2(17 − 1) = 32 < 1314

17 = LE(Γnc(G)) and

LE+(K17) = 2(17 − 1) = 32 < 753+17
√
513

17 = LE+(Γnc(G)). Therefore,
Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic. Further,

E(Γnc(G)) = 8 + 2
√
88 <

753 + 17
√
513

17

= LE+(Γnc(G)) <
1314

17
= LE(Γnc(G)).

If Γc(G) ∼= K8⊔5K2, then Spec(Γnc(G)) =
{
(0)12, (−2)6, (4 +

√
96)1,

(4−
√
96)1

}
and so E(Γnc(G))=12+2

√
96. We also have L-spec(Γnc(G))

=
{
(0)1, (16)5, (10)7, (18)5

}
and Q-spec(Γnc(G)) =

{
(10)7, (16)5, (14)4,

(17 +
√
129)1, (17−

√
129)1

}
. Here, 2|e(Γnc(G))|

|v(Γnc(G))| = 40
3 and |0 − 40

3 | =
40
3 ,

|16− 40
3 | =

8
3 , |10−

40
3 | =

10
3 , |18−

40
3 | =

14
3 . Therefore,

LE(Γnc(G)) = 40
3 + 5 · 8

3 + 7 · 10
3 + 5 · 14

3 = 220
3 .

Similarly, |10− 40
3 | =

10
3 , |16−

40
3 | =

8
3 , |14−

40
3 | =

2
3 , |17 +

√
129− 40

3 |
= 11+3

√
129

3 , |17−
√
129− 40

3 | =
3
√
129−11
3 and hence

LE+(Γnc(G)) = 7 · 10
3 + 5 · 8

3 + 4 · 2
3 + 11+3

√
129

3 + 3
√
129−11
3 = 118+6

√
129

3 .

Further, CN-spec(Γnc(G)) =
{
(99 +

√
5961)1, (99−

√
5961)1, (−16)5,

(−2)4, (−10)7
}
and so ECN (Γnc(G)) = 356. We have

|v(Γnc(G))| = 18 < 12 + 2
√
96 = E(Γnc(G)),

E(K18) = 2(18− 1) = 34 > 12 + 2
√
96 = E(Γnc(G)) and

ECN (K18) = 2(18− 1)(18− 2) = 544 > 356 = ECN (Γnc(G)).

Thus, Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K18) = 2(18 − 1) = 34 < 220

3 = LE(Γnc(G)) and

LE+(K18) = 2(18 − 1) = 34 < 118+6
√
129

3 = LE+(Γnc(G)). Therefore,
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Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic. Further,

E(Γnc(G)) = 12 + 2
√
96 <

118 + 6
√
129

3

= LE+(Γnc(G)) <
220

3
= LE(Γnc(G)).

If Γc(G) ∼= K8⊔9K3, then Spec(Γnc(G)) =
{
(0)25, (−3)8,

(
12 + 6

√
10
)1

,(
12− 6

√
10

)1}
and so E(Γnc(G)) = 24 + 12

√
10. We also have

L-spec(Γnc(G)) =
{
(0)1, (27)7, (32)18, (35)9

}
and

Q-spec(Γnc(G)) =

{
(27)7, (29)8, (32)18,

(
83+

√
12073
2

)1
,
(
83−

√
12073
2

)1
}
.

Here, 2|e(Γnc(G))|
|v(Γnc(G))| = 216

7 and |0 − 216
7 | = 216

7 , |32 − 216
7 | = 8

7 , |27 − 216
7 |

= 27
7 , |35−

216
7 | = 29

7 . Therefore,

LE(Γnc(G)) = 216
7 + 18 · 8

7 + 7 · 27
7 + 9 · 29

7 = 810
7 .

Similarly, |29 − 216
7 | = 13

7 , |
83+

√
12073
2 − 216

7 | ≈ 918.14
14 , |83−

√
12073
2 − 216

7 |
≈ 620.14

14 and hence

LE+(Γnc(G)) = 7 · 27
7 + 18 · 8

7 + 8 · 13
7 + 918.14

14 + 620.14
14 ≈ 2412.28

14 .

Further, CN-spec(Γnc(G))=

{(
949+

√
823705
2

)1
,
(
949−

√
823705
2

)1
, (−32)18,

(−27)7, (−23)8
}
and so ECN (Γnc(G)) = 1898. We have

|v(Γnc(G))| = 35 < 24 + 12
√
10 = E(Γnc(G)),

E(K35) = 2(35− 1) = 68 > 24 + 12
√
10 = E(Γnc(G)) and

ECN (K35) = 2(35− 1)(35− 2) = 2244 > 1898 = ECN (Γnc(G)).

Thus, Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K35) = 2(35 − 1) = 68 < 810

7 = LE(Γnc(G)) and
LE+(K35) = 2(35 − 1) = 68 < 2412.28

14 = LE+(Γnc(G)). Therefore,
Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic. Further,

E(Γnc(G)) = 24 + 12
√
10 <

810

7

= LE(Γnc(G)) <
2412.28

14
= LE+(Γnc(G)).

If Γc(G) ∼= K8⊔9(K1∨3K2), then Spec(Γnc(G)) =
{
(0)34, (−2)18, (−4)8,

(1)8, (x1)
1, (x2)

1, (x3)
1
}
, where x1, x2 and x3 are roots of the equation
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x3 − 60x2 − 472x + 288 = 0. Since x1 ≈ 66.98, x2 ≈ −7.55, x3 ≈ 0.569,
we have

E(Γnc(G)) = 8 + 36 + 32 + 66.98 + 7.55 + 0.569 ≈ 151.09.

We also have L-spec(Γnc(G)) =
{
(71)7, (70)16, (68)27, (64)7, (63)7, (y1)

1,
(y2)

1, (y3)
1, (z1)

1, (z2)
1, (z3)

1, (z4)
1
}
, where y1, y2 and y3 are roots of the

equation x3 − 205x2 + 13994x − 318088 = 0 and z1, z2, z3 and z4 are
roots of the equation x4 − 205x3 + 14010x2 − 320232x+ 71680 = 0 and

Q-spec(Γnc(G)) =

{
(68)27, (66)18, (63)7,

(
129+

√
33

2

)8
,
(
129−

√
33

2

)8
, (l1)

1,

(l2)
1, (l3)

1

}
, where l1, l2 and l3 are roots of the equation x3 − 255x2 +

19848x − 487296 = 0. Here, 2|e(Γnc(G))|
|v(Γnc(G))| = 4752

71 and |71 − 4752
71 | = 289

71 ,

|70− 4752
71 | = 218

71 , |68−
4752
71 | = 76

71 , |64−
4752
71 | = 208

71 , |63−
4752
71 | = 279

71 . Since
y1 ≈ 71.63, y2 ≈ 69.07, y3 ≈ 64.20, z1 ≈ 71.49, z2 ≈ 69.15, z3 ≈ 64.21 and
z4 ≈ 0.226, we have |y1 − 4752

71 | ≈ 333.73
71 , |y2 − 4752

71 | ≈ 151.97
71 , |y3 − 4752

71 |
≈ 193.8

71 , |z1 − 4752
71 | ≈ 323.79

71 , |z2 − 4752
71 | ≈ 157.65

71 , |z3 − 4752
71 | ≈ 193.09

71 and
|z4 − 4752

71 | ≈ 4736.38
71 . Therefore,

LE(Γnc(G)) ≈ 7 · 289
71

+ 16 · 218
71

+ 27 · 76
71

+ 7 · 208
71

+ 7 · 279
71

+
333.73

71

+
151.97

71
+

193.8

71
+

323.79

71
+

157.65

71
+

193.09

71
+

4736.38

71

≈ 17062.41

71
.

Similarly, |66 − 4752
71 | = 66

71 , |
129+

√
33

2 − 4752
71 | ≈ 62.86

142 , |129−
√
33

2 − 4752
71 |

≈ 752.86
142 . Since l1 ≈ 134.06, l2 ≈ 65.11 and l3 ≈ 55.82, we have |y1− 4752

71 |
≈ 4766.26

71 , |y2 − 4752
71 | ≈ 129.19

71 , |y3 − 4752
71 | ≈ 788.78

71 and hence

LE+(Γnc(G)) ≈ 27 · 76
71

+ 18 · 66
71

+ 7 · 279
71

+ 8 · 62.86
142

+ 8 · 752.86
142

+
4766.26

71
+

129.19

71
+

788.78

71
≈ 28280.22

142
.

Further, CN-spec(Γnc(G)) =

{
(−68)27, (−64)18, (−63)7,

(
−115−

√
217

2

)8
,(

−115+
√
217

2

)8
, (m1)

1, (m2)
1, (m3)

1

}
, where m1,m2 and m3 are roots of

the equation x3− 4349x2− 311676x− 1809504 = 0. Since m1 ≈ 4419.69,
m2 ≈ −64.86 andm3 ≈ −6.37 we have ECN (Γnc(G)) ≈ 8839.83. We have
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|v(Γnc(G))| = 71 < 151.09 = E(Γnc(G)),
E(K71) = 2(71− 1) = 140 < 151.09 = E(Γnc(G)) and

ECN (K71) = 2(71− 1)(71− 2) = 9660 > 8839.83 = ECN (Γnc(G)).

Thus, Γnc(G) is hyperenergetic but neither hypoenergetic nor CN-hyper-
energetic. Also, LE(K71) = 2(71 − 1) = 140 < 17062.41

71 ≈ LE(Γnc(G))
and LE+(K71) = 2(71−1) = 140 < 28280.22

142 ≈ LE+(Γnc(G)). Therefore,
Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic. Further,

E(Γnc(G)) ≈ 151.09 <
28280.22

142

= LE+(Γnc(G)) <
17062.41

71
≈ LE(Γnc(G)).

Hence, the result follows.

Theorem 14. Let G be a finite non-abelian group such that Γc(G) is
triple-toroidal. Then

(a) Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic.

(b) Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic only when
G ∼= GL(2, 3).

(c) E(Γnc(G)) ≤ LE(Γnc(G)) ≤ LE+(Γnc(G)).

Proof. From Theorem 5, we have that Γc(G) is isomorphic to 6K2⊔ 3K6

⊔4K4 or 3K6.
If Γc(G)∼= 6K2⊔3K6⊔4K4, then Spec(Γnc(G))=

{
(0)33, (−2)5, (−6)2,

(−4)3, (x1)
1, (x2)

1, (x3)
1
}
, where x1, x2 and x3 are roots of the equation

x3 − 34x2 − 312x − 576 = 0. Since x1 ≈ −5.08401, x2 ≈ −2.71078,
x3 ≈ 41.7948, we have

E(Γnc(G)) ≈ 10 + 12 + 12 + 5.08401 + 2.71078 + 41.7948 = 83.58959.

We also have

L-spec(Γnc(G)) =
{
(0)1, (42)12, (40)15, (44)6, (46)12

}
and

Q-spec(Γnc(G)) =
{
(44)6, (40)15, (42)17, (34)2, (38)3, (y1)

1, (y2)
1, (y3)

1
}
,

where y1, y2 and y3 are roots of the equation x3−160x2+7836x−121344
= 0. Here, 2|e(Γnc(G))|

|v(Γnc(G))| = 960
23 and |0− 960

23 | =
960
23 , |42−

960
23 | =

6
23 , |40−

960
23 |

= 40
23 , |44−

960
23 | =

52
23 , |46−

960
23 | =

98
23 . Therefore,

LE(Γnc(G)) = 960
23 + 12 · 6

23 + 15 · 40
23 + 6 · 52

23 + 12 · 98
23 = 3120

23 .
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Similarly, |44− 960
23 | =

52
23 , |40−

960
23 | =

40
23 , |42−

960
23 | =

6
23 , |34−

960
23 | =

178
23 ,

|38 − 960
23 | =

86
23 . Since y1 ≈ 35.7774, y2 ≈ 40.5202 and y3 ≈ 83.7024, we

have |y1 − 960
23 | ≈ 137.1198, |y2 − 960

23 | ≈ 28.0354, |y3 − 960
23 | ≈ 965.1552

and hence

LE+(Γnc(G)) ≈ 6 · 52
23

+ 15 · 40
23

+ 17 · 6

23
+ 2 · 178

23
+ 3 · 86

23
+ 137.1198 + 28.0354 + 965.1552 = 1201.0930.

Further,

CN-spec(Γnc(G)) =
{
(−44)6, (−42)12, (−40)20, (−26)3,

(−4)2, (z1)
1, (z2)

1, (z3)
1
}
,

where z1, z2 and z3 are roots of the equation x3 − 1654x2 − 86336x −
921024 = 0. Since z1 ≈ 1704.96, z2 ≈ −35.9132 and z3 ≈ −15.042, it
follows that ECN (Γnc(G)) ≈ 3409.9152. We have

|v(Γnc(G))| = 46 < 83.58959 = E(Γnc(G)),
E(K46) = 2(46− 1) = 90 > 83.58959 = E(Γnc(G)) and

ECN (K46) = 2(46− 1)(46− 2) = 3960 > 3409.9152 = ECN (Γnc(G)).

Thus, Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K46) = 2(46 − 1) = 90 < 3120

23 = LE(Γnc(G)) and
LE+(K46) = 2(46 − 1) = 90 < 1201.0930 = LE+(Γnc(G)). Therefore,
Γnc(G) is L-hyperenergetic as well as Q-hyperenergetic. Further,

E(Γnc(G)) = 83.58959 <
3120

23
= LE(Γnc(G)) < 1201.0930 = LE+(Γnc(G)).

If Γc(G) ∼= 3K6, then Spec(Γnc(G)) =
{
(0)15, (−6)2, (12)1

}
and so

E(Γnc(G)) = 12+12 = 24. We also have L-spec(Γnc(G)) =
{
(0)1, (12)15,

(18)2
}
and Q-spec(Γnc(G)) =

{
(6)2, (12)15, (24)1

}
. Here, 2|e(Γnc(G))|

|v(Γnc(G))| =

12 and |0− 12| = 12, |12− 12| = 0, |18− 12| = 6. Therefore,

LE(Γnc(G)) = 12 + 0 + 2 · 6 = 24.

Similarly, |6− 12| = 6, |12− 12| = 0, |24− 12| = 12 and hence

LE+(Γnc(G)) = 2 · 6 + 0 + 12 = 24.

Further, CN-spec(Γnc(G))=
{
(132)1, (24)2, (−12)15

}
and so ECN (Γnc(G))

= 360. We have
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|v(Γnc(G))| = 18 < 24 = E(Γnc(G)),
E(K18) = 2(18− 1) = 34 > 24 = E(Γnc(G)) and

ECN (K18) = 2(18− 1)(18− 2) = 544 > 360 = ECN (Γnc(G)).

Thus, Γnc(G) is neither hypoenergetic, hyperenergetic nor CN-hyperener-
getic. Also, LE(K18) = 2(18 − 1) = 34 > 24 = LE(Γnc(G)) and
LE+(K18) = 2(18− 1) = 34 > 24 = LE+(Γnc(G)). Therefore, Γnc(G) is
neither L-hyperenergetic nor Q-hyperenergetic. Further,

E(Γnc(G)) = 24 = LE(Γnc(G)) = LE+(Γnc(G)).

Hence, the result follows.
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org/10.48550/arXiv.2304.02230

[8] Das, K.C., Xu, K., Nam, J.: Zagreb indices of graphs. Front. Math. China. 10(3),
567–582 (2014). https://doi.org/10.1007/s11464-015-0431-9

[9] Dutta, J., Nath, R.K.: Spectrum of commuting graphs of some classes of finite
groups. Matematika. 33(1), 87–95 (2017). https://doi.org/10.11113/matematika.
v33.n1.812

[10] Dutta, P., Nath, R.K.: Various energies of commuting graphs of some super integ-
ral groups. Indian J. Pure Appl. Math. 52, 1–10 (2021). https://doi.org/10.1007/
s13226-021-00131-7

[11] Gutman, I.: The energy of a graph. Ber. Math-Statist. Sekt. Forschungsz. Graz.
103, 1–22 (1978).

https://doi.org/10.1080/00927872.2014.910796
https://doi.org/10.1142/S1793557123502376
https://doi.org/10.2307/1970080
https://doi.org/10.22108/IJGT.2021.127679.1681
https://doi.org/10.24330/ieja.266195
https://doi.org/10.24330/ieja.266195
https://doi.org/10.48550/arXiv.2304.02230
https://doi.org/10.48550/arXiv.2304.02230
https://doi.org/10.1007/s11464-015-0431-9
https://doi.org/10.11113/matematika.v33.n1.812
https://doi.org/10.11113/matematika.v33.n1.812
https://doi.org/10.1007/s13226-021-00131-7
https://doi.org/10.1007/s13226-021-00131-7


214 Characterization of commuting graphs of finite groups

[12] Gutman, I., Abreu, N.M.M., Vinagre, C.T.M., Bonifacioa, A.S., Radenkovic, S.:
Relation between energy and Laplacian energy. MATCH Commun. Math. Comput.
Chem. 59, 343–354 (2008).
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