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Semidistributive nearrings with identity
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Abstract. It is proved that the additive group of every
semidistributive nearring R with an identity is abelian and if R
has no elements of order 2, then the nearring R actually is an
associative ring.

Introduction

Nearrings are a generalization of associative rings in the sense that with
the respect to addition they need not be commutative and only one
(left or right) distributive law is assumed. In this paper the concept
“nearring” means a left distributive nearring. Such a nearring R is called
a semidistributive if (r+ s+ r)t = rt+ st+ rt for all r, s, t ∈ R. Clearly
every associative ring is a semidistributive nearring, but not conversely.
It is proved that the additive group of every semidistributive nearring R
with an identity is abelian and if R has no elements of order 2, then the
nearring R actually is an associative ring. The reader is referred to the
books by Meldrum [3] or Pilz [4] for terminology, definitions and basic
facts concerning nearrings.

1. Preliminaries

We recall first some basic definitions of the theory of nearrings.

Definition 1. A set R with two binary operations “+” and “ ·” is called
a (left) nearring if the following statements hold:
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(1) (R,+) is a (not necessarily abelian) group with neutral element 0;

(2) (R, ·) is a semigroup;

(3) x · (y + z) = x · y + x · z for all x, y, z ∈ R.

If R is a nearring, then the group R+ = (R,+) is called the additive
group of R. Furthermore, if M is a subgroup of R+, then it follows from
statement (3) that for each element x ∈ R the set xM = x · y|y ∈ M} is
a subgroup of R+ and, in particular, x · 0 = 0. If in addition 0 · x = 0,
then the nearring R is called zero-symmetric and if the semigroup (R, ·)
is a monoid, i. e. it has an identity element i, then R is a nearring with
identity i. In the latter case the group R∗ of all invertible elements of
the monoid (R, ·) is called the multiplicative group of R. A subgroup M
of R+ is called R∗-invariant if rM ≤ M for each r ∈ R∗ and M is an
(R,R)-subgroup, if xMy ⊆ M for arbitrary elements x, y ∈ R.

It is well-known that the set of all endomorphisms of a group G forms
a monoid with respect to composition of endomorphisms. This monoid
will be denoted by End(G) and called the endomorphism monoid of G.
Clearly the automorphism group Aut(G) is a submonoid of End(G) con-
sisting of the set of all invertible elements of End(G). The following
lemma establishes a connection between some semigroups of endomor-
phisms of the additive group of a nearring and its multiplicative sub-
semigroups.

Lemma 1. Let R be a nearring with identity i and S a semigroup of
(R, ·). Then the endomorphism monoid End(R+) contains a subsemi-
group T isomorphic to S and satisfying the condition

iT = {it|t ∈ T} = S.

In particular, if S = (R, ·), then the intersection A = Aut(R+) ∩ T is a
subgroup of Aut(R+) isomorphic to the multiplicative group R∗ and

iA = {ia|a ∈ A} = R∗.

The subgroup A of the automorphism group Aut(R+) defined in
Lemma 1 is called the subgroup of Aut(R+) associated with the group R∗.

Definition 2. A (left) nearring R is called semidistributive if so is the
multiplication from the right in respect to its addition. In other words,
for any elements r, s, t ∈ R the equality (r+ s+ r)t = rt+ st+ rt holds.
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The following assertion is well-known (see, for instance, [1], Theo-
rem 3).

Lemma 2. The exponent of the additive group of a finite nearring R
with identity i is equal to the additive order of i which coincides with the
additive order of every invertible element of R.

2. Additive groups of semidistributive nearrings

It is obvious that every distributive nearring is semidistributive, but not
conversely. For example, the nearring Map(G) of all functions on the
group G of order 2 is semidistributive and not distributive.

Lemma 3. Let R be a semidistributive nearring, n a positive integer and
let r, s be any elements of R. Then the following statements hold:

(1) (−r) · s = −(r · s) and so either 0 · s = 0 or 0 · s is an element
of order 2 in R+. In particular, if r is an element of odd order in
R+, then 0 · r = 0;

(2) (r ·n)s = (rs) ·n for odd n and (r ·n)s = (rs) ·n+0 · s for even n;

(3) if r and s are elements of coprime orders, then r · s = 0.

Proof. Since r · s = (r + (−r) + r) · s = r · s + (−r) · s + r · s, it
follows that 0 = (−r) · s+ r · s whence (−r) · s = −(r · s). In particular,
if r · m = 0 for some odd m, then 1 = 2n − m for n = m+1

2 and so
0 · r = (0 · r) · 2n− (0 · r) ·m = 0, as claimed.

For n = 1 statement (2) is obvious. If n > 1, then (r·n)s = (r+r·(n−
2)+r)s = rs+(r ·(n−2))s+rs = (rs) ·2+(r ·(n−2))s. By induction on
n, we have (r ·(n−2))s = (rs) ·(n−2) for odd n and (r ·(n−2))s = (rs) ·
(n−2)+0·s for even n. Therefore (r ·n)s = (rs)·2+(rs)·(n−2) = (rs)·n
for odd n and (r · n)s = (rs) · 2 + (rs) · (n− 2) = (rs) · n+ 0 · s for even
n, proving (2).

Finally, let m and n be the orders of r and s, respectively. If (m,n) =
1, then one of these numbers, say m, is odd and so (rs) ·m = (r ·m)s =
0·s = 0 by statement (2). On the other hand, (rs)·n = r(s·n) = r ·0 = 0.
Therefore rs = 0, as desired.

It is well-known that the additive group of any distributive nearring
with identity is abelian. The following assertion extends this fact to
semidistributive nearrings.
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Lemma 4. The additive group of every semidistributive nearring R with
an identity is abelian.

Proof. Indeed, if i is an identity of R, then (−i)s = −s for each s ∈ R
by statement (1) of Lemma 3 and therefore (−i)(r + s) = −(r + s) =
−s − r. On the other hand, (−i)(r + s) = (−i)r + (−i)s = −r − s by
the left distributivity. Hence −s− r = −r− s and thus r+ s = s+ r, as
claimed.

On the other hand, the additive groups of semidistributive nearrings
without unity do not have to abelian, as the following example shows.

Example. Let N be a nearring whose additive group N+ is iso-
morphic to a symmetric group of degree 3. Then N+ = ⟨a⟩ + ⟨b⟩ with
a · 3 = b · 2 = 0 and b+ a+ b = a · 2. In particular, each element of N+

can be uniquely written in the form a · m + b · n with 0 ≤ m ≤ 2 and
0 ≤ n ≤ 1. We define a multiplication ∗ on N+ by the table

∗ 0 a a · 2 b a+ b a · 2 + b
0 0 0 0 0 0 0
a 0 a+ b a+ b 0 0 a+ b

a · 2 0 b b 0 0 b
b 0 0 0 0 0 0

a+ b 0 0 0 0 0 0
a · 2 + b 0 a · 2 + b a · 2 + b 0 0 a · 2 + b

Looking at this table, it is easy to see that (N,+, ∗) is a nearring that
is semidistributive and zero-symmetric.

We note in passing that the package SONATA [5] of the computer
algebra system GAP [2] contains a library of all nearrings of order at most
15. In particular, there exist 39 non-isomorphic nearrings whose additive
groups are isomorphic to the symmetric group of degree 3, among which
only 4 are semidistributive, including 2 distributive.

Lemma 5. Let R be a semidistributive nearring with an identity. If the
additive group R+ is torsion-free, then R is a ring.

Proof. Clearly it suffices to prove that in R the right distributive
law holds. Indeed, since the additive group R+ is abelian by Lemma 4,
for any elements r, s, t of R we have (r + s)t = (r + s + (−(r + s)) +
s + r)t = rt + (s + (−(r + s)) + s)t + rt = rt2 + st2 + (−(r + s))t
and (−(r + s))t = −(r + s)t by statement (1) of Lemma 3. Therefore,
((r + s)t− rt− st)2 = 0 whence (r + s)t = rt+ st, as claimed.
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3. Distributive elements in semidistributive
nearrings

Recall that an element t of a nearring R is called distributive in R if
(r + s)t = rt+ st for any elements r, s of R.

Lemma 6. Let R be a semidistributive nearring with an identity. Then
the elements of odd orders of the additive group of R are distributive in
R. In particular, each semidistributive nearring of odd order is a ring.

Proof. Let t be an element of odd order n in R+ and m = n+1
2 . Then

u = tm is an element of order n and t = u + u. Since the nearring R is
semidistributive, for any elements r, s ∈ R we have (r + s)u = (r + (s−
r)+ r)u = ru+(s− r)u+ ru and similarly (s+ r)u = (s+(r−s)+s)u =
su + (r − s)u + su. Furthermore, as r + s = s + r by Lemma 4 and
(r − s)u = (−(s − r))u = −(s − r)u by statement (1) of Lemma 3, it
follows that (r+ s)u = ru+(s− r)u+ ru = su− (s− r)u+ su. Therefore
(r + s)t = (r + s)(u + u) = r(u + u) + s(u + u) = rt + st and so the
element t is distributive. In particular, if R is of odd order, then R is a
distributive nearring with identity and so a ring.

We recall that the concepts of a subnearring and a nearring homo-
morphism are defined by the same way as for rings. In particular, if λ
is a nearring homomorphism of R, then its kernel Kerλ is a subnearring
of R whose additive subgroup is normal in R+. A subnearring I of R is
an ideal of R if I = Kerλ for some λ. It can simply be verified that I is
an ideal of R if and only if I+ is a normal subgroup of R+ and for any
elements r, s ∈ R and a ∈ I the inclusions ra ∈ I and (r + a)s− rs ∈ I
hold.

Lemma 7. Let R be a semidistributive nearring with identity. If p is a
prime number and P is the p-component of the additive group R+, then
P is an ideal of R.

Proof. Since the additive group R+ is abelian by Lemma 4, every
p-element of R belongs to P and for each a ∈ P there exists a positive
integer n such that apn = 0. As (ra)pn = r(apn) = r0 = 0 for every
r ∈ R, this implies ra ∈ P . Thus, in order to prove that P is an ideal of
R, it remains to show that for each s ∈ R the element x = (r + a)s− rs
belongs to P .

Assume first that p is odd, so that a is of odd order. Then there
exists an element b ∈ P of the same order such that a = b + b. Putting
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t = s+ s, we have x = (b+ r+ b)s− rs = bs+ rs+ bs− rs = bs+ bs = bt
and so xpn = (bt)pn = (bpn)t = 0t = 0 by statement (2) of Lemma 4.
Therefore x = 0 ∈ P , as desired.

Now let p = 2 and so a2n = 0. Then x2n = ((r + a)s − rs)2n =
((r + a)s)2n − (rs)2n. Further, applying statement (2) of Lemma 3 we
deduce ((r + a)s)2n + 0s = ((r + a)2n)s = (r2n + a2n)s = (r2n)s =
(rs)2n + 0s. From this it follows that ((r + a)s)2n = (rs)2n and hence
x2n = ((r + a)s)2n − (rs)2n = 0. Therefore, x ∈ P and this completes
the proof.

4. Modules over nearrings and semidistributivity

Let R be a nearring and G an additive group. Then G is said to be a
(right) R-module if for any elements g ∈ G and r ∈ R there exists a
unique element gr ∈ G such that (gr)s = g(rs) and g(r + s) = gr + gs
for every s ∈ R. It is clear that the additive group of a nearring R is an
R-module over R with respect to nearring multiplication from the right
as the action. In addition, if H is a subset of an R-module G, then the
set AnnR(H) = {x ∈ R|Hx = 0} is called the (right) annihilator of H
in R. An R-module G is called faithful if AnnR(G) = 0.

Lemma 8. If R is a nearring and G is an R-module, then the annihilator
AnnR(G) is an ideal of R.

Proof. Indeed, let g ∈ G and x ∈ AnnR(G). Since gr ∈ G for each
r ∈ R, it follows that g(rx) = (gr)x = 0. Therefore rx ∈ AnnR(G)
and hence AnnR(G) is a left ideal of R. To prove that AnnR(G) is
an ideal of R, it is enough to show that for any r, s ∈ R the element
t = (r+x)s− rs belongs to AnnR(G). As G is an R-module and gx = 0,
we have g(r+x) = gr+gx = gr and so gt = g((r+x)s)+g(−rs) = (g(r+
x))s + g(−rs) = g(rs) + g(−rs) = g0 = 0. This implies t ∈ AnnR(G)
and thus AnnR(G) is an ideal of R, as claimed.

The following lemma is proved in [3], Lemma 3.7.

Lemma 9. Let R be a nearring and G an R-module with the properties:

(i) G is faithful as an R-module;

(ii) (G,+) is an abelian group;

(iii) for each r ∈ R the mapping r̂ : G → G given by r̂ : g → gr is an
endomorphism of G.
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Then R is a ring.

Proof. Let s, t be elements of R and r = s+ t. Then gr = g(s+ t) =
gs+ gt = gt+ gs = g(t+ s) by property (ii). Furthermore, from (iii) it
follows that g(s+ t)r = (gs+ gt)r̂ = (gs)r + (gt)r = g(sr + tr). Finally,
since the R-module G is faithful by (i), this implies (s + t)r = sr + tr
and so R is a distributive ring.

Theorem 1. A semidistributive nearring R with identity is simple as a
nearring if and only if R is a simple associative ring.

Proof. As noted above, the additive group G = R+ can be viewed as
anR-module overR with respect to nearring multiplication from the right
as the action. If the nearring R is simple, it has no proper ideals and so
Ann(R(G)) = 0 by Lemma 8. Therefore, G is faithful as an R-module
and G = R+ is an abelian group by Lemma 4. Finally, for each r ∈ R
the mapping ρ : G → G given by ρ : g → gr is an endomorphism of G,
because ρ(g+ h) = r(g+ h) = rg+ rh = ρ(g) + ρ(h) for every g, h ∈ G.
Applying now Lemma 9, we deduce that R is a simple ring. The converse
is obvious.
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