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Minimal non-BFC rings

O. D. Artemovych

Communicated by L. A. Kurdachenko

Abstract. We study associative rings in which every proper
subring is BFC (i.e., has center of finite index) and obtain a
characterization of minimal non-BFC unitary rings of finite cha-
racteristic.

Introduction

Let (R,+, ·) be an associative ring (not necessary with unity). By analo-
gy with group theory (see e.g. [35, Chapther 14, 14.5]), a ring R is called
an FC-ring (or shortly FC) if, for any a ∈ R, the centralizer

CR(a) = {c ∈ R | c · a = a · c}

is a subgroup of finite index in the additive group R+ of R [6]. In [9] such
rings are called FIC. Commutative rings and finite rings are FC-rings.
The concept of a Lie FC-ring can be introduced in the same way as for
the associative case (see [5, 7]).

A ring R is called a BFC-ring (or a PE-ring as in [9]) if every set
of pairwise non-commuting elements is finite. Every BFC-ring is FC.
A ring R is BFC if and only if |R : Z(R)| <∞ (see e.g. [9, Theorem 2.1]).
If R is FC, then its adjoint group R◦ (i.e. the group with respect to the
circle operation “◦” defined by the rule x ◦ g = x + g + x · g) is also
FC. The study of FC-groups is an important topic in group theory.
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A number of works are devoted to the study of unitary associative rings
R with FC-groups of units U(R) (see e.g. [13, 17,37] and others).

We study rings R for which each proper subring is BFC. But first
let’s describe the terminology.

Notations. For a ring R, elements x, g of R and a non-empty subset
S of R

• [x, g] = x · g − g · x is the additive commutator of g and x,

• J(R) the Jacobson radical of R,

• F (R) = {x ∈ R | x is of finite order in R+} the torsion part of R,

• |R : I| the index of an additive group I+ of an ideal I in R+,

• charR the characteristic of R,

• Z(R) the center of R,

• P(R) the prime radical of R (i.e., the intersection of all prime ideals
of R),

• R′ = [R,R] the additive subgroup of R+ generated by all [x, g],

• C(R) the commutator ideal of R, i.e. the ideal of R generated by
all [x, g],

• Z0 the ideal of R generated by all its central ideals,

• lannS = {a ∈ R | a · S = 0}, rannS = {a ∈ R | S · a = 0} the left
and right annihilators in R and annS = (lannS) ∩ (rannS),

• ⟨X⟩rg the subring of R generated by X ⊆ R (if X = ∅, then
⟨X⟩rg = 0),

• xσ is the image of x with respect to a ring endomorphism σ of R.

If R is a skew field, then its group of units will be denoted by R∗. More-
over, for a prime p, Fpn denotes the finite field of pn elements. Further,
we define

FC(R) = {x ∈ R | |R : CR(x)| <∞}.

A field in which each nonzero element is a root of 1 is called absolute.
If R is a nonzero radical (i.e., R is a group with respect to the circle
multiplication “◦”) FC-ring, then the commutator ideal C(R) is proper
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in R (Proposition 1). A ring (respectively group) X is said to be minimal
non-BFC if X is not BFC whereas every proper subring (respectively
subgroup) of X is BFC. The study of minimal non-BFC groups began
in [11] (see also [4, 12,28] and others).

We will say that a local ring R contains a coefficient ring S if S is
a commutative subring ofR such thatR = J(R)+S andR/J(R) ∼= S/qS,
where q is a prime or q = 0 [16]. The presence of a coefficient ring in
a local ring was investigated in [15,16,38].

We obtain the following.

Theorem 1. Let R be a unitary ring.

(i) If R is a minimal non-BFC ring, then R is local.

(ii) If R is a local ring of finite characteristic, then R is a minimal
non-BFC ring if and only if R is of one of the following types:

(a) R = ⟨x, y⟩rg is a 2-generated (as a ring) skew field of prime
characteristic with commutative proper subrings,

(b) R+ is a p-group, R = J(R)+S = C(R)+S, where S is a finite
coefficient ring of R, J(R) is commutative, pR + J(R)2 is
proper in J(R) and central in R, J(R/Z0) = Fu with u2 = 0,

F =
∞⋃
n=0

Fpqn (1)

is an absolute field, S/pS ∼= Fpqm is a finite field (p and q
are primes; m ≥ 0 is an integer), there exists a nontrivial
automorphism σ of (S +Z0)/Z0 such that uα = ασu for each
α ∈ (S +Z0)/Z0, the multiplicative group (S/pS)∗ = ⟨c+ pS⟩

is cyclic and c
pq

m
−1

pq
m−1−1 ∈ Z(R).

We also study rings R with the property that all proper subgroups
of the adjoint group R◦ are BFC and prove the next.

Theorem 2. Let R be a ring with every proper subgroup of the adjoint
group R◦ to be BFC.

(1) If R is nil, then R◦′ is proper in R◦.

(2) If R is a radical ring and R◦′ is proper in R◦, then R is BFC.

(3) If R is a local ring, then R is BFC.

Finally, any unexplained terminology is standard as in [20,35].
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1. Preliminaries

First, we establish two lemmas.

Lemma 1 ([33, Lemma 1]). If S is a proper subring of finite index in a
ring R, then there exists an ideal I of R such that I ⊆ S and |R : I| <∞.

Lemma 2. Let R be an FC-ring and a ∈ R \Z(R). Then there exists a
proper ideal Ia of finite index in R such that Ia ⊆ CR(a) and

Ia · [R, a] = 0 = [R, a] · Ia

where [R, a] = {[r, a] | r ∈ R}. Moreover, if R is radical, then annR ̸= 0.

Proof. The ideal Ia exists by Lemma 1. Moreover, rai = ria = ari and
ira = air = iar for any r ∈ R, i ∈ Ia and consequently [a, r]i = 0 =
i[a, r]. This means that Ia ⊆ ann[R, a].

Assume that R is radical. Since (R/Ia)
n = 0 for some positive integer

n by [40, Theorem 1], we conclude that

Rn · [a,R] = 0 = [a,R] ·Rn

what implies that annR ̸= 0.

Lemma 3. A radical ring R is FC (respectively BFC) if and only if its
adjoint group R◦ is an FC-group (respectively a BFC-group).

Proof. It holds because CR(a) = CR◦(a) for any a ∈ R.

Lemma 4. Let R be a radical ring and 0 ̸= a ∈ R. If |R : lann a| < ∞,
then rannR ̸= 0.

Proof. If lann a = R, then Ra = 0. Therefore we assume that lann a
is proper in R. Then there exists an ideal I of R such that I ⊆ lann a
and |R : I| < ∞. Since Rn ⊆ I for some positive integer n in view
of [40, Theorem 1] (n ≥ 2 is the lowest possible integer with such a
property), we conclude that 0 ̸= Rn−1a ⊆ rannR.

A ring R is called right T -nilpotent if, for every sequence {ai}∞i=1 of
its elements, there is a positive integer n such that

anan−1 · · · a1 = 0.

A ring R is M -nilpotent if, for every double sequence

. . . , a−2, a−1, a0, a1, a2, . . .
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of its elements, there exist integers m, k (k ≥ 0) such that

amam+1 · · · am+k = 0

(see [36]). The set {a ∈ R | RaR = 0} is called a middle annihilator
of R. From [36] it follows that R is M -nilpotent if and only if each its
nonzero homomorphic image has nonzero middle annihilator. Each right
T -nilpotent ring is M -nilpotent.

Corollary 1. Let R be a radical ring. If lann a is of finite index in R
for any a ∈ R, then R is right T -nilpotent.

Proof. In fact, every proper quotient ring of R has a nonzero right an-
nihilator by Lemma 4. Therefore, R is right T -nilpotent by [18, Theo-
rems 1.3].

The following fact is probably well known.

Lemma 5. If R is a nonzero M -nilpotent ring, then R2 is proper in R.

Proof. By contrary. Assume that R = R2. Then R3 ̸= 0 and therefore
there exists an element r0 ∈ R such that 0 ̸= Rr0R = R2r0R

2. As
a consequence, Rr−1r0r1R ̸= 0 for some r−1, r1 ∈ R. By the same
argument we can construct a sequence {ri | i ∈ Z} such that

r−n · · · r−2r−1r0r1r2 . . . rn ̸= 0

for each integer n, a contradiction.

Proposition 1. Let R be a nonzero radical ring. If R is an FC-ring,
then its commutator ideal C(R) is proper in R.

Proof. By contrary. Assume that C(R) = R. Then R2 = R. Inasmuch
as R/A is non-commutative for each proper ideal A of R, we deduce that
rann (R/A) ̸= 0 as consistent with Lemma 2 and [40, Theorem 1]. This
yields that R is right T -nilpotent by [18, Theorem 1.3]. But then R2 is
proper in R by Lemma 5, a contradiction.

Corollary 2. Let R be a radical FC-ring. If rannR = 0 (respectively
lannR = 0 or R+ is torsion-free), then R is commutative.

Proof. In fact, if a ∈ R is non-central, then there exists an ideal Ia of
finite index in R such that [R, a] ⊆ ann Ia. Since a finite radical ring
is nilpotent by [40, Theorem 1], we obtain that Rn ⊆ Ia (n is minimal
possible). Then annR is nonzero, a contradiction.
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As follows from [23, Proposition 1] (see e.g. [6, Corollary 2 and
Lemma 18]), the commutator ideal C(R) is of finite in R if and only
if |R : Z(R)| < ∞. If |R : Z(R)| < ∞, then R is a BFC-ring and the
torsion part

F (R◦) = {x ∈ R | x is of finite order in R◦}

is a normal subgroup of the adjoint group R◦.
Recall that a ring is prime if a product of any two its nonzero ideals

is nonzero.
From Lemma 2 it holds that a prime FC-ring is commutative or finite

simple. We can even say more.

Lemma 6. Let R be an infinite prime ring and I its nonzero ideal. If I
is FC (as a ring), then R is commutative.

Proof. Assume that R is non-commutative. Then I is non-commutative
and so there exists a ∈ I \ Z(I). Then I contains a proper ideal Ia of
finite index such that Ia ⊆ CI(a) and [I, a] ⊆ ann Ia = 0. Since every
ideal of a prime ring is a prime ring, we obtain a contradiction.

Thus R is commutative.

We note that RL = (R,+, [−,−]) is a Lie ring with respect to a Lie
bracket “[−,−]” defined by the rule [a, b] = a · b − b · a for all a, b ∈ R
(so-called the associated Lie ring of R). If U is an additive subgroup of
R such that [u, r] ∈ U for any u ∈ U and r ∈ R, then U is called a Lie
ideal of R. Each ideal of R is its Lie ideal. Obviously that U is a Lie
ideal of R if and only if U is an ideal of the Lie ring RL. For example,
center Z(R) is a Lie ideal of R.

Lemma 7. If I is a Lie ideal of a ring R, then its commutator subgroup
I ′ and the commutator ideal C(I) (i.e., generated by I ′ in I) are Lie
ideals of R.

Proof. Let a, b ∈ I, r ∈ R and c ∈ [I, I], where c = [i, j] for i, j ∈ I.
Then

[r, acb] = [r, a]cb+ a[r, c]b+ ac[r, b] =
= [r, a]cb− a[[i, r], j]b− a[[r, j], i]b+ ac[r, b] ∈ C(I).

Hence the assertion holds.

Lemma 8. If A is a finite Lie ideal of a ring R, then |R : CR(A)| <∞.
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Proof. Let a ∈ A. The group homomorphism ψ : R+ ∋ a 7→ [x, a] ∈ R+

has the finite image [R, a] and so the kernel Kerψ = CR(a) is of finite
index in R+. Since A is finite, the result follows.

Considering the following lemma, we note that infinite rings with
finite proper subrings were investigated in [30].

Lemma 9. Let R be an infinite radical ring such that pR = 0 for some
prime p. If all proper left ideals of R are finite, then R2 = 0 and R = uF
for some u ∈ R, where F is an absolute field of type (1) (p and q are
primes).

Proof. Since Ra and lann a are left ideals of an infinite ring R for each
a ∈ R, we conclude that Ra = 0. This implies that R2 = 0 and R is
an algebra over some field F. Since R is infinite, it is an indecomposable
F-module what yields that R = uF for some u ∈ R. Thus F is infinite.

If G is an infinite proper subfield of F, then uG is an infinite proper
ideal of R, a contradiction. Moreover, Fpm is a subfield of Fpn (m and n
are positive integers) if and only if m is a divisor of n. Hence F is of the
form (1).

By IDerR we denote the set of all inner derivations ∂x of R, where
∂x(y) = [x, y] (x, y ∈ R).

Lemma 10. Let R be a ring. Then:

(i) the commutator subgroup R′ is finite if and only if the commutator
ideal C(R) is finite;

(ii) R is BFC if and only if the commutator subgroup R′ is finite.

Proof. (i) (⇐) It holds from the fact that R′ ⊆ C(R).
(⇒) Since the set {[x, y] | x, y ∈ R} is finite, we conclude that

|IDerR| <∞. Then C(R) is finite by [6, Lemma 18(5)].
(ii) This part it follows from [9, Lemma 2.2 and Theorem 2.1],

[23, Proposition 1] and [6, Lemma 18(5)]. But we will prove it directly.
(⇐) Inasmuch as R′ is finite, we conclude that

IDerR = {∂x1 , . . . , ∂xn}

for some x1, . . . , xn ∈ R. Then, for every a ∈ R, there exists some xi ∈ R
(1 ≤ i ≤ n) such that ∂a = ∂xi and so a ∈ xi + Z(R). Hence |R : Z(R)|
is finite and R is BFC.
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(⇒) If R is BFC, then |R : Z(R)| < ∞ by [9, Theorem 2.1] and
therefore R = ⟨Z(R), x1, . . . , xn⟩rg for some x1, . . . , xn ∈ R. Then, for
any r, t ∈ R, there exist i, j (1 ≤ i, j ≤ n) such that [r, t] = [xi, xj ]
because r = z1 + xi, t = z2 + xj for some z1, z2 ∈ Z(R). Thus the set
R′ = {[r, t] | r, t ∈ R} is finite.

2. Unitary rings

Recall that a unitary ring R is local if the quotient ring R/J(R) is a skew
field.

Lemma 11. Let R be a unitary ring with proper subrings to be FC
(respectively BFC). If R is not local, then it is FC (respectively BFC).

Proof. 1) Assume that R is infinite with proper subrings to be FC. Let
M1, M2 be different maximal ideals of R. Then each Mi is an FC-ring
and the quotient ring R/Mi (which is isomorphic toMj/(Mi∩Mj)) is FC
(here and everywhere below in the proof i, j = 1, 2 and i ̸= j) and so it is
commutative or finite by Lemma 6. Obviously that M1 ∩M2 ⊆ FC(R).

We consider the possible cases.

a) Suppose that R/M1 and R/M2 are finite. If x ∈ Mi \Mj , then
CMi(x) ⊆ CR(x), and thus x ∈ FC(R).

b) Let |R/M1| = |R/M2| = ∞ and a ∈ Mi \ Mj . Since R/Mj is
an infinite field, we have that Xj := ⟨Mj , a⟩rg is proper in R. Then
CMi(a) + CXj (a) is of finite index in R and thus a ∈ FC(R).

c) Assume that |R/Mi| = ∞, |R/Mj | < ∞. Then Mj ⊆ FC(R).
Since Mj is BFC, we obtain that R contains an ideal A of finite index
such that A ⊆ Z(Mj) and A2C(R) = 0. If A + ⟨m⟩rg ̸= R for each
m ∈ Mi, then Mi ⊆ FC(R) and so R is BFC. Therefore we assume
that A + ⟨u⟩rg = R for some u ∈ Mi. Inasmuch as A +Mi = R, we
deduce that A = Ak +Mi ∩ A for any positive integer k. Then from
[u, a1a2a3 + s] = 0 for any a1, a2, a3 ∈ A and s ∈ Mi ∩ A it follows that
A ⊆ Z(R) what implies that R is BFC.

Hence R is FC.

2) Now we assume that R is an infinite ring with proper subrings
BFC. By the part 1), R is FC. Assume that R is non-commutative.
Applying Lemma 2 we see that R contains a proper ideal B of finite index
such that |B : Z(B)| < ∞. As a consequence, R = ⟨Z(B), a1, . . . , an⟩rg
for some its elements a1, . . . , an, where the number n of generators is
minimal possible. Then n ≥ 2. Since Li = ⟨Z(B), ai⟩rg is BFC,
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|R : Li| < ∞ and |Li : Z(Li)| < ∞, we conclude that |R : Z(Li)| < ∞
for any i = 1, . . . , n. On this basis we obtain that Z(R) is of finite index
in R and hence R is BFC.

Then [6, Lemma 6] can be reformulated as follows.

Lemma 12. Let R be a local ring. The following conditions hold.

(i) If R/J(R) is infinite, then R is FC if and only if it is commutative.

(ii) If R/J(R) is finite, then R is FC if and only if U(R) is an
FC-group.

Proof. (i) Assume that |R/J(R)| = ∞.
(⇒) The quotient ring R/J(R) not contains a proper subring of finite

index in view of [24, Corollary 1]. Since CR(a) is of finite index in R for
each a ∈ R, we conclude that R is commutative.

(⇐) Obviously.
(2) Now assume that R/J(R) is finite.
(⇒) We see that, for any a ∈ R,

|R : CR(a)| <∞ ⇔
∣∣J(R) : CJ(R)(a)

∣∣ <∞ ⇔
⇔

∣∣1 + J(R) : C1+J(R)(a)
∣∣ <∞

and, as a consequence, U(R) is an FC-group.
(⇐) Inasmuch as the residue field R/J(R) is finite, (R/J(R))∗ and

U(R)/(1 + J(R)) are isomorphic, we deduce that∣∣J(R) : CJ(R)(a)
∣∣ <∞ ⇔

∣∣U(R) : CU(R)(a)
∣∣ <∞

for each a ∈ R and so R is FC.

Example 1. Let A be a field of the form (1), B = Fp2 , a ∈ A and b ∈ B.
We consider a local ring

R = Au+B = {au+ b | a ∈ A, b ∈ B and u2 = 0}

with a multiplication induced by the rule

ua = apu.

Then
[au, b] = a(bp − b)u,
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and so the Jacobson radical J(R) = Au. Let S be a proper subring of
R. If J(R) ⊆ S, then S = Au + Fp and thus S is commutative. So,
bp−1 ∈ Z(R). Assume that J(R) ⊈ S. Since J(R) ∩ S is proper in
J(R) (and thus it is finite) and S/(J(R) ∩ S) is a field consists of p2

elements, we obtain that S is finite (and consequently BFC). Finally,
|R : CR(B)| = ∞ what means that R is not BFC, but with proper
subrings to be BFC.

Corollary 3. A minimal non-BFC (respectively non-FC) unitary ring
is local.

Proof. It holds in view of Lemma 11 and Example 1.

We will need the next fact.

Lemma 13 ([38, Theorem 2.2]). Let R be a local ring with the nilpotent
Jacobson radical J(R). If R/J(R) is a field which is algebraic over Fp,
then R has a coefficient ring S.

The next corollary is in the some sense related to [8, Corollary 34(iv)].

Corollary 4. Let R be a local ring with the nilpotent Jacobson radical
J(R) and the finite residue field R/J(R). If J(R) is a principal right
ideal, then R is finite.

Proof. Assume that J(R)n = 0 for some positive integer n and J(R) =
uR for some u ∈ R. Then R = J(R) + S has a coefficient ring S by
Lemma 13. Since piS/pi+1S and S/pS are isomorphic as additive groups
for any positive integer i, we conclude that S is finite. Then

R = J(R) + S = uJ(R) + uS + S = u2J(R) + u2S + uS + S = · · · =
= un−1J(R) + un−1S + · · ·+ uS + S = un−1S + · · ·+ uS + S

is finite.

Remark 1. Let F be a field of characteristic p > 0. Then a nonzero
element α ∈ F is algebraic over the prime subfield Fp if and only if the
field

Fp(α) =

{
f(α)

g(α)
| f, g ∈ Fp[X] and g(α) ̸= 0

}
is finite which is equivalent to that α is of finite order in the multiplicative
group Fp(α)

∗. Hence the multiplicative group F∗ is torsion infinite if and
only if F is an absolute field.
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If β ∈ F∗ is of infinite order, then it is transcendental over Fp. The
ring Fp[β] is isomorphic to the polynomial ring Fp[X], X−1 /∈ Fp[X] and
so Fp[β] ̸= F.

An associative ring R is Lie nilpotent if there exists a positive integer
n such that

[[x1, . . . , xn], xn+1] = 0

for all xi ∈ R (i = 1, . . . , n+ 1).

Lemma 14. Let R be a local ring with the additive p-group R+ and let
the unit group (R/J(R))∗ be infinite torsion. If all proper subrings of R
are BFC, then R is the ones.

Proof. In view of Remark 1 it follows that the multiplicative group

(R/J(R))∗ =
∞⋃
i=1

⟨ai⟩

is an union of cyclic subgroups ⟨ai⟩ such that ⟨ai⟩ ⊆ ⟨ai+1⟩. Let ai be an
inverse image of ai in R. Then each Si = J(R) + ⟨ai⟩rg is BFC and so
|S′

i| <∞. Applying Lemmas 7 and 8 and [23, Proposition 1] we conclude
that S′

i ⊆ Z(R). By the same argument, if K := J(R) + ⟨ai, aj⟩rg for

any positive integers i and j, then K ′ is finite and thus it is central in R.
Hence [R,R] ⊆ Z(R) and therefore R is Lie nilpotent. The unit group
U(R) is also nilpotent by [14, Corollary 3.4] what means that

U(R) = (1 + J(R))× (R/J(R))∗

is a group direct product of an unipotent p-group 1 + J(R) and a
p′-group (R/J(R))∗. This implies that [R,R] ⊆ [J(R), J(R)] is finite and
R is BFC.

Unfortunately, it is not known whether it exists a (non-commutative)
skew field with commutative proper subrings (see e.g. [19, 26]).

Lemma 15. Let R be a local ring such that the unit group (R/J(R))∗

is non-torsion. If R is a minimal non-BFC ring, then J(R) ⊆ Z(R).
Moreover, if R/J(R) is non-commutative, then R = ⟨x, y⟩rg is a 2-gene-
rated (as a ring) skew field of prime characteristic with commutative
proper subrings.
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Proof. Let b ∈ U(R) is of infinite order and N = J(R) + ⟨b⟩rg. Then
|N : J(R)| = ∞. If we assume that a ∈ N \ Z(N), then there exists an
ideal X of finite index in N such that [N, a] ⊆ annX and so X ⊆ J(R),
a contradiction. From this it holds that N is commutative. In common
with above it follows that CR(J(R)) is commutative.

If a ∈ R \ CR(J(R)), then a ∈ U(R) is of finite order. Since (⟨a⟩rg +
J(R))/J(R) is finite, we deduce that M = ⟨CR(J(R)), a⟩rg is proper in
R (and consequently it is BFC). Inasmuch as J(R) is of infinite index
in CR(J(R)), we conclude that M is commutative in view of Lemma 2.
Hence J(R) ⊆ Z(R). But then J(R) · C(R) = 0. If R/J(R) is non-
commutative, then R = C(R) and so J(R) is zero. This implies that
R is a skew field by Lemma 6. If a, b ∈ R are non-commuting, then
R = ⟨a, b⟩rg in view of Lemma 2.

Finally, pR = 0 for some prime p.

Given the previous lemma, we note that the following is true.

Lemma 16. Let R be a simple ring with commutative proper subrings.
If [R′, R′] is proper in R′ and charR ̸= 2, then R is commutative.

Proof. Since [R′, R′] is proper in R′, we deduce that T ([R′, R′]) = {x ∈
R | [x,R] ⊆ [R′, R′]} is also proper in R by [20, Lemma 1.4]. Hence
[R′, R′] is abelian and R′ ⊆ Z(R) by [21, Lemma 1]. But then R is
commutative by [21, Lemma 1].

Lemma 17. Let R be a local ring such that (R/J(R))∗ is non-torsion
abelian. If all proper subrings of R are BFC, then R is commutative.

Proof. The Jacobson radical of the ring R is central by Lemma 15. The
ring R is non-commutative and thus there are non-commuting a, b ∈ R.
Let E = ⟨a, b⟩rg.

a) Let a be of infinite order. Since [E, a] ⊆ ann Ia ⊆ CE(a) for some
ideal Ia of finite index in E by Lemma 2, we deduce that
K = (E + J(R))/J(R) is finite, a contradiction.

b) Now suppose that a, b are of finite orders. Then K is a finite sub-
field of R/J(R) with the cyclic multiplicative group K∗ and consequently
E is commutative, a contradiction.

In this way R is commutative.

Lemma 18. Let R be a local ring with a coefficient ring S. If R is a
minimal non-BFC ring, then one of the following holds:
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(i) (R/J(R))∗ is non-torsion;

(ii) (R/J(R))∗ is infinite torsion, R+ is non-torsion,

C(R) ⊆
∞⋂
n=1

pnF (R) ⊆ Z(R); (2)

(iii) (R/J(R))∗ is finite and annR′ = annC(R); moreover, if
charR = p is a prime, then J(R) is a commutative ring that not
contains a proper subring of finite index.

Proof. Assume that (R/J(R))∗ is infinite torsion. Then R/J(R) is com-
mutative by [22]. Since R is non-BFC, we conclude that F (R) is proper
in J(R) in view of Lemma 14. If a, b ∈ U(R), then L = J(R) + ⟨a, b⟩rg
is proper in R and consequently CR(L

′) = R in view of Lemmas 7, 8
and [24, Corollary 1]. This implies that [R,R] ⊆ Z(R) and so R is Lie
nilpotent. But then C(R) satisfies (2).

Next assume that R/J(R) is a finite field. Then it is not difficult to
see that annR′ = annC(R). Suppose that R is of prime characteristic
p. If I is an ideal of finite index in R that is proper in J(R), then I + S
(and consequently R) is BFC, a contradiction. So, J(R) not contains
a proper subring of finite index in view of Lemma 2. Therefore J(R) is
commutative.

Proposition 2. Let R be a local ring of prime characteristic p such that
J(R)2 ̸= J(R) with a coefficient ring S. If all proper subrings of R are
BFC, then R is either BFC or R = J(R) + S is a group direct sum,
J(R) = C(R) is nilpotent, J(R/Z0) = Fu, where u2 = 0, F is an absolute
field of prime characteristic p, S ∼= Fpqm is a finite field (p and q are

primes, m ≥ 0 is an integer) such that S∗ = ⟨c⟩ and c
pq

m
−1

pq
m−1−1 ∈ Z(R).

In the last case, if a ∈ S1, where S1 is a homomorphic image of S in
R/Z0, then ua = aσu for nontrivial automorphism σ of S1.

Proof. Assume that R is not BFC. The quotient ring R/J(R) ∼= S is
commutative and so it is finite by Lemmas 17 and 14. Then Jacobson
radical J(R) is commutative by Lemma 18.

a) If A is an infinite ideal of R that is proper in J(R), then A+ S is
BFC and consequently |A+ S : Z(A+ S)| <∞. This implies thatR has
an infinite central ideal. Then Z0 ̸= J(R) because R is not commutative.

Consider the quotient ring B = R/Z0 = J(B) + S1, where S1 is a
homomorphic image of S in B and S1 ∼= S are isomorphic. Every ideal H
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of B that is proper in J(B) is finite and consequently H ·J(B) = 0. Since
J(B)2 is finite, we deduce that |J(B) : lann a| < ∞ for each a ∈ J(B)
and thus J(B) = lann a. Hence J(B)2 = 0. If K is a finite ideal of
J(B), then KS1 is a finite ideal of B and so J(B) = uF by Lemma 9,
where F is an absolute field and u2 = 0. Assume that B is BFC (and
so B′ is finite). Then |B : Z(B)| < ∞ what gives that J(B) ⊆ Z(B).
Then B′ ⊆ Z(B) and B is Lie nilpotent. This gives that the unit group
U(B) is torsion (because (R/J(R))∗ is a finite p′-group and 1 + J(R) is
a p-group by [1, Lemma 2.4]) and nilpotent by [25] and [31]. Since every
torsion nilpotent group is a direct product of its Sylow subgroups, we
conclude that B is commutative. But then R′ ⊆ Z0, R is Lie nilpotent
what forces R is commutative, a contradiction. Hence B is not BFC.

b) From uS1 ⊆ Fu it follows that there exists aσ ∈ F such that
ua = aσu for any a ∈ S1. Then

(a+ b)σu = u(a+ b) = ua+ ub = aσu+ bσu = (aσ + bσ)u

and

(ab)σu = u(ab) = (ua)b = (aσu)b = aσ(ub) = (aσbσ)u

what means that σ : S1 ∋ a 7→ aσ ∈ F is a ring homomorphism. More-
over, σ(1) is nonzero and so σ(1) = 1. If a ∈ S1 is nonzero, then al = 1
for some positive integer l and thus σ(a) ̸= 0. This yields that σ is a
field monomorphism and σ(S1) is isomorphic to some Fpqm .

The multiplicative group S∗ = ⟨c⟩ is cyclic of order pqm−1. Inasmuch
as |J(R) + E : Z(J(R) + E)| < ∞ for each proper subfield E of S and
J(R) not contains a proper subring of finite index in view of Lemma 18,
we deduce that E is central. Since S has unique maximal subfield of

order pq
m−1

, we deduce that c
pq

m
−1

pq
m−1−1 ∈ Z(R).

It is not difficult to see that B′ = J(B) and therefore R′+Z0 = J(R)
what gives that C(R) +Z0 = J(R). Inasmuch as R′ = [R′, S], we obtain
that C(R) + S = R. Finally, J(R)2 ⊆ Z0 and so J(R)2C(R) = 0. Then
C(R)3 = 0 and consequently J(R) is nilpotent.

Lemma 19. If R is a minimal non-BFC unitary ring and R/J(R) is
finite, then J(R)2 + pR is proper in J(R) and central in R, J(R) is
commutative and not contains a proper subring of finite index and

(a) R+ is a p-group for some prime p, or

(b) C(R) satisfies (2).
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Proof. The ring R is local by Corollary 3. Then R = J(R) + ⟨a⟩rg for
some a ∈ R and so pR ⊆ J(R) for some prime p. Since J(R) is BFC,
we conclude that |J(R) : Z(J(R))| < ∞ what yields that R contains
an ideal A ⊆ Z(J(R)) of finite index. The ring R is not BFC and
therefore A + ⟨a⟩rg = R. This means that J(R) is commutative. Then
J(R)2 ⊆ Z(R) in view of [27, Lemma 5.4]. Inasmuch as pJ(R) ⊆ Z(R)
and R′ = [J(R), ⟨a⟩rg], we deduce that

[pR,R] = pR′ = [pJ(R), ⟨a⟩rg] = 0

and consequently pR ⊆ Z(R). Thus J(R)2 + pR is proper in J(R) and
J(R) not contains a proper subring of finite index.

Assume that the torsion part F (R) is proper in R. Then R/F (R) is
commutative and C(R) ⊆ F (R).

a) Suppose that B = R/Z0 is not BFC. Then J(B) = C(B) by
Proposition 2 what forces that J(R) = C(R) + Z0. If C(R) + ⟨a⟩rg
is proper in R, then |R : Z(R)| < ∞, a contradiction. Hence C(R) +
⟨a⟩rg = R. Since J (R/C(R)) is isomorphic to J(R)/C(R) (as a ring)
and it is of finite index in R/C(R), we deduce that it is nilpotent by
[2, Corollary 5.1]. This implies that R+ is torsion and so it is a p-group,
a contradiction.

b) Now let B be BFC. Then B has the center Z(B) of finite index
what gives that B is commutative and C(R) ⊆ Z0. Hence R = J(R) +
(C(R)+⟨a⟩rg) is a nilpotent Lie ring (as a sum of two nilpotent Lie ideals)
by the well-known theorem of Jacobson. As a consequence, the unit
group U(R) is nilpotent by [14, Corollary 3.4]. The nilpotent unit group
U(R/pnR) is isomorphic to a direct product of a p-group 1 + J(R/pnR)
and a p′-group (R/J(R))∗ and therefore it is abelian. Thus C(R) ⊆ pnR.
It is not difficult to check that pnR ∩ F (R) = pnF (R) and so C(R)
satisfies (2).

Proof of Theorem 1. (i) It follows in view of Corollary 3.

(ii) We can assume that charR = pk for some positive integer k by
Lemma 19.

(⇐) Let L be a proper subring of R. If J(R)+L is proper in R, then
it is commutative. Therefore we assume that L is non-commutative and
J(R)+L = R. If L′ is finite, then L is BFC. Suppose that L′ is infinite.
Then its image in R/Z0 is infinite and, as a consequence, R = L + Z0

and R′ = L′. This implies that C(R) = R′R + RR′ = L′L + LL′ ⊆ L.
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By Proposition 2, C(R/pR) = J(R/pR) what yields that R = L + pR.
Then

pk−1R = pk−1L ⊆ L,
pk−2R = pk−1R+ pk−2L = pk−2L ⊆ L,

...
...

pR = p2R+ pL ⊆ L.

This gives that R = L, a contradiction. Hence R is a minimal non-BFC
ring.

(⇒) If the multiplicative group (R/J(R))∗ is non-torsion, then R is
of type (a) in view of Lemmas 15 and 17. Suppose that (R/J(R))∗ is
torsion. Then it is finite by Lemma 14. Since R/J(R) is a finite field, we
conclude that R = J(R) + ⟨a⟩rg for some a ∈ U(R). Moreover, the ring
⟨a⟩rg is finite and local and therefore it has a coefficient ring by Lemma 13.
As a consequence, R = J(R)+S and S∩J(R) = pS (and also S) is finite
by Corollary 4. By Lemma 19, J(R) is commutative and pR+ J(R)2 ⊆
Z(R) is proper in J(R). The rest follows from Proposition 2.

Remark 2. If R is a minimal non-BFC-ring satisfying one of the fol-
lowing conditions:

(a) F (R)+ is of bounded exponent, or

(b)
∞⋂
n=1

J(R)n = 0,

then R+ is a p-group.

In fact, it holds in view of (2).

3. Adjoint groups with proper BFC-subgroups

Recall that if R is an unitary ring, then

R◦ ∋ a 7→ 1 + a ∈ U(R)

is a group isomorphism. Note also that in a nil ring each subring is
radical. We will often use this in the arguments below without focusing.
A group is called indecomposable, if it is not generated by a product of
two proper subgroups. An indecomposable abelian group is isomorphic
to a cyclic q-group Cqn or to a quasicyclic q-group Cq∞ (q is a prime).
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Proposition 3. Let R be a radical ring such that the derived subgroup
R◦′ is proper in the adjoint group R◦. If every proper subgroup of R◦ is
BFC, then R◦ (and consequently R) is BFC.

Proof. Assume that R is not BFC and consequently R◦ is a minimal
non-BFC group. Then the quotient group R◦/R◦′ is a cyclic p-group
for some prime p in view of [11, Proposition 2] and the derived sub-
group R◦′ is a group direct product of finitely many quasicyclic groups
by [11, Propositions 4 and 3]. Hence R◦ is metabelian and so the ring R
is Lie metabelian by [3, Theorem A]. Then the Lie ideal [R,R] is abelian
and therefore the commutator ideal C(R) is nil by [10, Lemma 1.7]. Since
(R/C(R))◦ and R◦/C(R)◦ are isomorphic and abelian, we deduce that
R◦′ ⊆ C(R)◦ and R/C(R) is finite in view of [11, Proposition 2]. As
following from [40, Theorem 1] R is nil and, moreover, R = C(R)+ ⟨a⟩rg.
Suppose that W is an infinite proper ideal of R. Since W ◦ is a normal
subgroup of R◦ and R◦′ not contains an infinite proper normal sub-
group of R◦ by [11, Theorem], we conclude that R◦′ ⊆W ◦ and therefore
C(R) ⊆W . The centralizer CR(R

′) is a proper subring of finite index in
R and C(R) ⊆ CR(R

′) in view of [33, Lemma 1]. This gives that C(R)
is proper in R and therefore C(R) is commutative.

Let b ∈ C(R). As far as bC(R) = C(R)b, we obtain that bC(R) is
an ideal of R. If it is finite, then C(R) ⊆ rann b and so bC(R) = 0.
In the case when bC(R) is infinite we obtain that bC(R) = C(R), a
contradiction. This implies that C(R)2 = 0 (because C(R) is nil). Hence
R is a nilpotent ring and R◦ is a nilpotent group by [25, 31]. But none
of the groups described in [11, Theorem] is nilpotent, a contradiction.

As a matter of record R◦ (and so R) is BFC, a contradiction. Thus
R is BFC.

Lemma 20. Let R be a radical ring such that the adjoint group R◦′ = R◦

is perfect. If R◦ is a minimal non-BFC group, then R has a homo-
morphic image B, which is a simple commutative domain such that
Ba = B = aB for any nonzero a ∈ B and either

(a) B+ is torsion-free divisible, or

(b) pB = 0 for some prime p.

If R is a nil ring with every proper subgroup of R◦ to be BFC, then R◦′

is proper in R◦.
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Proof. 1) The ring R not contains a proper subring of finite index in view
of [40, Theorem 1] and [33, Lemma 1]. Let S be a proper ideal of R. Then
S is BFC and consequently S′ ⊆ Z(R) by Lemma 8. This means that S
is Lie nilpotent and so it is (associative) nilpotent by [34, Corollary 2].

As far as R2 = R, we obtain that R is not M -nilpotent and therefore
there exists some homomorphic image K of R such that rannK = 0 =
lannK as consistent with [36]. Without loss of generality we may assume
that R = K.

A commutative proper right ideal A of R is nilpotent in view of
[34, Corollary 2]. Suppose that A is a non-commutative proper right
ideal of R. Since A is a radical ring by [39, Proposition 2.1 2)], it is
BFC in view of Lemma 3 what implies that there exists an ideal X
of finite index in A such that X ⊆ Z(A) and X · C(A) = 0. Since
Am ⊆ X for some positive integer m in view of [40, Theorem 1], we
deduce that Am · C(A) = 0. Suppose that m is the smallest number
with such a property. Then 0 ̸= Am−1 · C(A) ⊆ rannA (if m = 1, then
C(A) ⊆ rannA). Inasmuch as rannR = 0, we conclude that A + RA is
a proper ideal of R what yields that A is (associative) nilpotent. Hence
all proper one-sided ideals of R are nilpotent.

2) Assume that R is not nil (then P(R) ̸= R) and so B = R/P(R)
is without nonzero nilpotent elements (because C(R) ⊆ P(R)). On this
basis Ba = B = aB for any 0 ̸= a ∈ B. For each nonzero c ∈ B there is
some b ∈ B such that c = ba. If we assume that ac = 0, then c2 = 0, a
contradiction. This implies that B is a domain. Then either pB = 0 for
some prime p or B+ is divisible (and so torsion-free).

3) If R is nil, then ⟨a⟩rg + ⟨a⟩rgR has a nonzero left annihilator for
each a ∈ R and so is proper in R what means that every element of R is
contained in a nilpotent ideal (and thus the adjoint group R◦ is locally
nilpotent). If R+ is torsion, then R◦′ ̸= R◦ by [12, p. 360, Corollary], a
contradiction with assumption. In the other case pR = R for any prime p
and so R+ is divisible. Then R/F (R) is a Q-algebra. Every two elements
of R/F (R) generates its proper subring and so R/F (R) is commutative.
Hence C(R) ⊆ F (R) and the result follows.

Remark 3. From time to time various authors publish works devoted
to the search of perfect minimal non-FC-groups (see e.g. [28, 32] and
others). So far, no such group has been designed.

Proposition 4. Let R be a local ring with the proper commutator ideal
C(R). If all proper subgroups of the unit group U(R) are BFC, then
U(R) (and so R) is BFC.
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Proof. Suppose that R◦ (which is isomorphic to U(R)) is a minimal non-
BFC group. If J(R)◦ = R◦, then J(R)◦′ = J(R)◦ by Proposition 3
and so J(R) cannot contains a proper ideal of finite index in view of
[40, Theorem 1]. As a consequence, a BFC-ring J(R) is commutative, a
contradiction. Hence J(R)◦ is proper in R◦ and R◦′ is proper in R◦.

If R◦/R◦′ is a product of two different nonzero proper subgroups,
then R◦ = G1 ◦G2 is a product of two nonzero proper normal subgroups
G1 and G2. Since the derived subgroup G′

i is finite and normal in R◦

(i = 1, 2), we deduce that the quotient group H := R◦/(G′
1 ◦ G′

2) is a
nilpotent group (as a product of two abelian normal subgroups). The
derived subgroup R◦′ (and so H ′) is infinite what gives that H is not
BFC. Then H is a torsion group of one of types from [11, Theorem].
Since none of these types is a nilpotent group, we get a contradiction.
This implies that R◦/R◦′ is an indecomposable group. If R◦/R◦′ ∼= Cq∞

is quasicyclic, then R◦ is BFC by [11, Corollary 2.3], a contradiction.
Hence R◦/R◦′ is finite and so R/J(R) is a finite field. Therefore J(R) is
commutative and then pR ⊆ J(R) for some prime p.

Let S be a proper subring of R. From S ⊆ J(R) it follows that S is
BFC. If J(R) is properly contained in S, then S is a local ring and S◦

is a proper subgroup (and so it is BFC) of R◦. Then S is a BFC-ring
by Lemma 12. Thus R is a minimal non-BFC ring and J(R)2 ⊆ Z0 by
Proposition 2. As a consequence, C(R) ⊆ Z0 and so C(R)2 = 0. But
then R◦′ ⊆ Z(R) and we obtain a contradiction with [11, Propositions 3
and 4]. Hence R◦ (and so R) is BFC.

Proof of Theorem 2. (1) It follows from Lemma 20.
(2) This part is proven in Proposition 3.
(3) It is proved in Proposition 4.
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