© Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 38 (2024). Number 1, pp. 87[–92](#page-5-0) DOI[:10.12958/adm2195](https://doi.org/10.12958/adm2195)

Certain invariants of generic matrix algebras

Nazar Şahin Öğüşlü and Şehmus Fındık

Communicated by A. P. Petravchuk

ABSTRACT. Let K be a field of characteristic zero, W be the associative unital algebra generated by two generic traceless matrices X, Y . We also handle the Lie subalgebra L of the algebra W consisting of its Lie elements. Consider the subgroup $G =$ $\langle e_{21} - e_{12} \rangle$ of the special linear group $SL_2(K)$ of order 4. In this study, we give free generators of the algebras W^G and L^G of invariants of the group G as a $C(W)^G$ -module.

1. Introduction

Let X and Y be two algebraically independent traceless matrices of size 2×2 with entries from polynomial algebra with six generators. We denote by W the unital associative algebra over a field K of characteristic zero generated by $\{X, Y\}$, and by L its Lie subalgebra generated by Lie elements; i.e., elements that can be expressed as a linear combinations of the form $z_1z_2 - z_2z_1$, $z_1, z_2 \in W$ and the elements of the form $\alpha X + \beta Y$, $\alpha, \beta \in K$. It is well known (see [\[1\]](#page-5-1)) the center $C(W)$ of the algebra W is generated by algebraically independent elements

$$
t = 2X^2, \quad u = 2Y^2, \quad v = XY + YX.
$$

It was showed in [\[1\]](#page-5-1) that W is a free $C(W) = K[t, u, v]$ -module generated by

I, X, Y, $[X, Y] = XY - YX$,

²⁰²⁰ Mathematics Subject Classification: 13A50, 16R30, 17B01. Key words and phrases: generic, invariant, Lie algebra.

where $I = 1_W$ is the identity matrix of size 2×2 . In the paper [\[2\]](#page-5-2) (Lemma 1) by Drensky and the second named author, the free generators of the commutator ideal L' of the Lie algebra L as a $K[t, u, v]$ -module was given as

$$
Xv - Yt, \quad Xu - Yv, \quad [X, Y].
$$

Now consider the group G of order four generated by the matrix $M = e_{21} - e_{12}$, that is a subgroup of the special linear group of size 2×2 . Then

$$
G = \langle M \rangle = \{I, M, M^2, M^3\} = \{I, M, -I, -M\}.
$$

We consider the group action of G on W as follows.

$$
M \cdot X = Y, \quad M \cdot Y = -X
$$

and thus

$$
M \cdot t = u, \quad M \cdot u = t, \quad M \cdot v = -v, \quad M \cdot [X, Y] = [X, Y].
$$

Similarly we obtain the other actions as below.

$$
M^{2} \cdot X = -X, \quad M^{2} \cdot Y = -Y, \quad M^{2} \cdot t = t,
$$

\n
$$
M^{2} \cdot u = u, \quad M^{2} \cdot v = v, \quad M^{2} \cdot [X, Y] = [X, Y],
$$

\n
$$
M^{3} \cdot X = -Y, \quad M^{3} \cdot Y = X, \quad M^{3} \cdot t = u,
$$

\n
$$
M^{3} \cdot u = t, \quad M^{3} \cdot v = -v, \quad M^{3} \cdot [X, Y] = [X, Y].
$$

We give the following lemma that will be used in the proofs of main results.

Lemma 1. Let t, u, v be as above. Then

$$
K[t, u, v]^G = K[t + u, tu, v^2, (u - t)v].
$$

Proof. Let $p(t, u, v) \in K[t, u, v]^G$. Then by $p = M \cdot p = M^2 \cdot p = M^3 \cdot p$ we have that

$$
p(t, u, v) = p(u, t, -v).
$$

Firstly, verifying that $t + u, tu, v^2, (u - t)v \in K[t, u, v]^G$ is straightforward. Hence, it is sufficient to show that

$$
K[t+u, tu, v^2, (u-t)v] = \{p \in K[t, u, v] \mid p(t, u, v) = p(u, t, -v)\}
$$

for the rest of the proof. Clearly, the first set is a subset of the latter. Now, let $p(t, u, v)$ be a polynomial, taken from the set on the right hand side, of the form

$$
\sum_{0 \le a,b,c} \varepsilon_{abc} t^a u^b v^c
$$

for some $\varepsilon_{abc} \in K$. Then

$$
p(u,t,-v) = \sum_{0 \le a,b,c} \varepsilon_{abc} u^a t^b (-v)^c = \sum_{0 \le a,b}^c \varepsilon_{abc} u^a t^b v^c - \sum_{0 \le a,b}^c \varepsilon_{abc} u^a t^b v^c.
$$

The equality $p(t, u, v) = p(u, t, -v)$ implies

$$
\sum_{0 \leq a,b}^{c \text{ even}} \varepsilon_{abc} t^a u^b v^c = \sum_{0 \leq a,b}^{c \text{ even}} \varepsilon_{abc} u^a t^b v^c
$$

and

$$
\sum_{0 \le a,b}^{c \text{ odd}} \varepsilon_{abc} t^a u^b v^c = -\sum_{0 \le a,b}^{c \text{ odd}} \varepsilon_{abc} u^a t^b v^c
$$

We rewrite $\sum_{n=1}^{\infty}$ $0\leq a,b$ $\varepsilon_{abc}t^au^bv^c$ as

$$
\sum_{a} \varepsilon_{aac} t^a u^a v^{2c'} + \sum_{a
$$

and $\sum_{n=1}^{\infty}$ $0\leq a,b$ $\varepsilon_{abc}u^at^b v^c$ as

$$
\sum_{a} \varepsilon_{aac} u^{a} t^{a} v^{2c'} + \sum_{a
$$

assuming that $c = 2c'$. These expressions yield that

$$
\sum_{a
$$

and

$$
\sum_{a
$$

Therefore

$$
\sum_{a
$$

Consequently, $\varepsilon_{abc} = \varepsilon_{bac}$ for all a, b in the sum consisting of even powers of v. This implies that

$$
\sum_{0\leq a,b}^c\varepsilon_{abc}t^au^bv^c=\sum_{a\leq b}\varepsilon_{abc}(t^au^b+t^bu^a)(v^2)^{c'}
$$

that is in the algebra generated by $t + u, tu, v^2$, since

$$
t^{a}u^{b} + t^{b}u^{a} \in K[t, u]^{S_{2}} = K[t + u, tu]
$$

are symmetric polynomials in t and u .

Similar computations for the sum consisting of odd powers of v shows that

$$
\varepsilon_{aac}=0\ ,\ \varepsilon_{abc}=-\varepsilon_{bac}\ ,
$$

and assuming that $c = 2c' + 1$, we have

$$
\sum_{0 \le a,b}^{c \text{ odd}} \varepsilon_{abc} t^a u^b v^c = \sum_{a < b} \varepsilon_{abc} (t^a u^b - t^b u^a) v^{2c'+1}
$$

$$
= \sum_{a < b} \varepsilon_{abc} (tu)^a (u^{b-a} - t^{b-a}) v^{2c'+1}
$$

$$
= \sum_{a < b} \varepsilon_{abc} (tu)^a \Delta_{ab} (u - t) v (v^2)^{c'}.
$$

where

$$
\Delta_{ab} = u^{b-a-1} + u^{b-a-2}t + \dots + ut^{b-a-2} + t^{b-a-1} \in K[t, u]^{S_2}
$$

which completes the proof.

2. Main Results

In this section, we provide generators of

$$
W^{G} = \{ w \in W \mid w = M \cdot w = M^{2} \cdot w = M^{3} \cdot w \}
$$

and of

$$
L^G = \{ l \in L \mid l = M \cdot l = M^2 \cdot l = M^3 \cdot l \}
$$

as $K[t, u, v]^G = K[t + u, tu, v^2, (u - t)v]$ -modules.

Theorem 1. W^G is freely generated by elements

$$
I, \ [X, Y]
$$

as a $K[t+u, tu, v^2, (u-t)v]$ -module.

 \Box

Proof. Initially, proving that an element in the $K[t+u, tu, v^2, (u-t)v]$ module generated by I and $[X, Y]$ is G -invariant is straightforward.

Now let $w \in W^G \subset W$ be of the form

$$
w = I p_1(t, u, v) + X p_2(t, u, v) + Y p_3(t, u, v) + [X, Y] p_4(t, u, v)
$$

for some $p_i(t, u, v) \in K[t, u, v], i = 1, 2, 3, 4$. Then

$$
w = M \cdot w = M^2 \cdot w = M^3 \cdot w
$$

gives the followings.

$$
I_{p_1}(t, u, v) + X_{p_2}(t, u, v) + Y_{p_3}(t, u, v) + [X, Y]_{p_4}(t, u, v)
$$

= $I_{p_1}(u, t, -v) + Y_{p_2}(u, t, -v) - X_{p_3}(u, t, -v) + [X, Y]_{p_4}(u, t, -v)$
= $I_{p_1}(t, u, v) - X_{p_2}(t, u, v) - Y_{p_3}(t, u, v) + [X, Y]_{p_4}(t, u, v)$
= $I_{p_1}(u, t, -v) - Y_{p_2}(u, t, -v) + X_{p_3}(u, t, -v) + [X, Y]_{p_4}(u, t, -v).$

Working in the free $K[t, u, v]$ -module W, by comparing the multipliers of generators $I, X, Y, [X, Y]$, we get that

$$
p_1(t, u, v) = p_1(u, t, -v), \quad p_4(t, u, v) = p_4(u, t, -v),
$$

\n
$$
p_2(t, u, v) = -p_3(u, t, -v) = -p_2(t, u, v) = p_3(u, t, -v),
$$

\n
$$
p_3(t, u, v) = p_2(u, t, -v) = -p_3(t, u, v) = -p_2(u, t, -v).
$$

This implies that $p_2(t, u, v) = p_3(t, u, v) = 0$, and

$$
p_1(t, u, v), p_4(t, u, v) \in K[t+u, tu, v^2, (u-t)v]
$$

by Lemma [1.](#page-1-0) The freeness of the generators I and $[X, Y]$ is a direct consequence of the module structure of W, that completes the proof. \Box

Theorem 2. L^G is generated by the element $[X, Y]$ as a $K[t+u, tu, v^2,$ $(u - t)v$]-module.

Proof. First of all, we have to show that there are no nonzero linear elements of L^G . Let $l = \alpha X + \beta Y \in L^G$. Then

$$
\alpha X + \beta Y = \alpha Y - \beta X = -\alpha X - \beta Y = -\alpha Y + \beta X
$$

that implies $\alpha = \beta = 0$. Now let

$$
l = (Xv - Yt)p_1(t, u, v) + (Xu - Yv)p_2(t, u, v) + [X, Y]p_3(t, u, v) \in L'
$$

be an element in $(L')^G$. Then we have

$$
(Xv - Yt)p_1(t, u, v) + (Xu - Yv)p_2(t, u, v) + [X, Y]p_3(t, u, v)
$$

= $(-Yv + Xu)p_1(u, t, -v) + (Yt - Xv)p_2(u, t, -v) + [X, Y]p_3(u, t, -v)$
= $-(Xv - Yt)p_1(t, u, v) - (Xu - Yv)p_2(t, u, v) + [X, Y]p_3(t, u, v)$
= $(Yv - Xu)p_1(u, t, -v) + (-Yt + Xv)p_2(u, t, -v) + [X, Y]p_3(u, t, -v)$

that yields

$$
p_1(t, u, v) = -p_2(u, t, -v) = -p_1(t, u, v) = p_2(u, t, -v)
$$

\n
$$
p_2(t, u, v) = p_1(u, t, -v) = -p_2(t, u, v) = -p_1(u, t, -v)
$$

\n
$$
p_3(t, u, v) = p_3(u, t, -v)
$$

comparing the multipliers of free generators $(Xv-Yt)$, $(Xu-Yv)$, [X, Y] of $K[t, u, v]$ -module L'. Hence, $p_1(t, u, v) = p_2(t, u, v) = 0$, and $p_3(t, u, v)$ satisfies the condition of the statement by Lemma [1.](#page-1-0) Finally checking that an element stated in the theorem is G-invariant is straightforward. \Box

3. Conclusion

In this study, we examine the algebras W^G and L^G of invariant of a specific group G with its action inherited from the general linear group of size 2×2 . In the further studies, one may consider the algebra of invariants of other important subgroups.

References

- [1] Bruyn, L.Le.: Trace rings of generic 2 by 2 matrices. Mem. Amer. Math. Soc. 66(363) (1987). <http://dx.doi.org/10.1090/memo/0363>
- [2] Drensky, V., Findik, S.: Inner automorphisms of Lie algebras related with generic 2×2 matrices. Algebra Discrete Math. 14(1), 49–70 (2012).

CONTACT INFORMATION

Received by the editors: 22.11.2023 and in final form 20.08.2024.