© Algebra and Discrete Mathematics Volume **38** (2024). Number 1, pp. 87–92 DOI:10.12958/adm2195

Certain invariants of generic matrix algebras

Nazar Şahin Öğüşlü and Şehmus Fındık

Communicated by A. P. Petravchuk

ABSTRACT. Let K be a field of characteristic zero, W be the associative unital algebra generated by two generic traceless matrices X, Y. We also handle the Lie subalgebra L of the algebra W consisting of its Lie elements. Consider the subgroup $G = \langle e_{21} - e_{12} \rangle$ of the special linear group $SL_2(K)$ of order 4. In this study, we give free generators of the algebras W^G and L^G of invariants of the group G as a $C(W)^G$ -module.

1. Introduction

Let X and Y be two algebraically independent traceless matrices of size 2×2 with entries from polynomial algebra with six generators. We denote by W the unital associative algebra over a field K of characteristic zero generated by $\{X, Y\}$, and by L its Lie subalgebra generated by Lie elements; i.e., elements that can be expressed as a linear combinations of the form $z_1z_2 - z_2z_1$, $z_1, z_2 \in W$ and the elements of the form $\alpha X + \beta Y$, $\alpha, \beta \in K$. It is well known (see [1]) the center C(W) of the algebra W is generated by algebraically independent elements

$$t = 2X^2, \quad u = 2Y^2, \quad v = XY + YX.$$

It was showed in [1] that W is a free C(W) = K[t, u, v]-module generated by

 $I, \quad X, \quad Y, \quad [X,Y] = XY - YX,$

²⁰²⁰ Mathematics Subject Classification: 13A50, 16R30, 17B01. Key words and phrases: generic, invariant, Lie algebra.

where $I = 1_W$ is the identity matrix of size 2×2 . In the paper [2] (Lemma 1) by Drensky and the second named author, the free generators of the commutator ideal L' of the Lie algebra L as a K[t, u, v]-module was given as

$$Xv - Yt, \quad Xu - Yv, \quad [X, Y].$$

Now consider the group G of order four generated by the matrix $M = e_{21} - e_{12}$, that is a subgroup of the special linear group of size 2×2 . Then

$$G = \langle M \rangle = \{I, M, M^2, M^3\} = \{I, M, -I, -M\}.$$

We consider the group action of G on W as follows.

$$M \cdot X = Y, \quad M \cdot Y = -X$$

and thus

$$M \cdot t = u, \quad M \cdot u = t, \quad M \cdot v = -v, \quad M \cdot [X, Y] = [X, Y].$$

Similarly we obtain the other actions as below.

$$\begin{split} M^{2} \cdot X &= -X, \quad M^{2} \cdot Y = -Y, \quad M^{2} \cdot t = t, \\ M^{2} \cdot u &= u, \quad M^{2} \cdot v = v, \quad M^{2} \cdot [X, Y] = [X, Y], \\ M^{3} \cdot X &= -Y, \quad M^{3} \cdot Y = X, \quad M^{3} \cdot t = u, \\ M^{3} \cdot u &= t, \quad M^{3} \cdot v = -v, \quad M^{3} \cdot [X, Y] = [X, Y]. \end{split}$$

We give the following lemma that will be used in the proofs of main results.

Lemma 1. Let t, u, v be as above. Then

$$K[t, u, v]^G = K[t + u, tu, v^2, (u - t)v].$$

Proof. Let $p(t, u, v) \in K[t, u, v]^G$. Then by $p = M \cdot p = M^2 \cdot p = M^3 \cdot p$ we have that

$$p(t, u, v) = p(u, t, -v).$$

Firstly, verifying that $t + u, tu, v^2, (u - t)v \in K[t, u, v]^G$ is straightforward. Hence, it is sufficient to show that

$$K[t+u, tu, v^{2}, (u-t)v] = \{ p \in K[t, u, v] \mid p(t, u, v) = p(u, t, -v) \}$$

for the rest of the proof. Clearly, the first set is a subset of the latter. Now, let p(t, u, v) be a polynomial, taken from the set on the right hand side, of the form

$$\sum_{0 \le a,b,c} \varepsilon_{abc} t^a u^b v^c$$

for some $\varepsilon_{abc} \in K$. Then

$$p(u,t,-v) = \sum_{0 \le a,b,c} \varepsilon_{abc} u^a t^b (-v)^c = \sum_{0 \le a,b}^{c \text{ even}} \varepsilon_{abc} u^a t^b v^c - \sum_{0 \le a,b}^{c \text{ odd}} \varepsilon_{abc} u^a t^b v^c.$$

The equality p(t, u, v) = p(u, t, -v) implies

$$\sum_{0 \le a, b}^{c \text{ even}} \varepsilon_{abc} t^a u^b v^c = \sum_{0 \le a, b}^{c \text{ even}} \varepsilon_{abc} u^a t^b v^c$$

and

$$\sum_{0 \le a, b}^{c \text{ odd}} \varepsilon_{abc} t^a u^b v^c = -\sum_{0 \le a, b}^{c \text{ odd}} \varepsilon_{abc} u^a t^b v^c$$

We rewrite $\sum_{0 \le a,b}^{c \text{ even}} \varepsilon_{abc} t^a u^b v^c$ as

$$\sum_{a} \varepsilon_{aac} t^{a} u^{a} v^{2c'} + \sum_{a < b} \varepsilon_{abc} t^{a} u^{b} v^{2c'} + \sum_{a < b} \varepsilon_{bac} t^{b} u^{a} v^{2c'}$$

and $\sum_{0 \le a,b}^{c \text{ even}} \varepsilon_{abc} u^a t^b v^c$ as

$$\sum_{a} \varepsilon_{aac} u^{a} t^{a} v^{2c'} + \sum_{a < b} \varepsilon_{abc} u^{a} t^{b} v^{2c'} + \sum_{a < b} \varepsilon_{bac} u^{b} t^{a} v^{2c'}$$

assuming that c = 2c'. These expressions yield that

$$\sum_{a < b} \varepsilon_{abc} t^a u^b v^{2c'} = \sum_{a < b} \varepsilon_{bac} u^b t^a v^{2c'}$$

and

$$\sum_{a < b} \varepsilon_{bac} t^b u^a v^{2c'} = \sum_{a < b} \varepsilon_{abc} u^a t^b v^{2c'}$$

Therefore

$$\sum_{a < b} (\varepsilon_{abc} - \varepsilon_{bac}) t^a u^b v^{2c'} = 0 = \sum_{a < b} (\varepsilon_{abc} - \varepsilon_{bac}) t^b u^a v^{2c'}$$

Consequently, $\varepsilon_{abc} = \varepsilon_{bac}$ for all a, b in the sum consisting of even powers of v. This implies that

$$\sum_{0 \leq a,b}^{c \text{ even}} \varepsilon_{abc} t^a u^b v^c = \sum_{a \leq b} \varepsilon_{abc} (t^a u^b + t^b u^a) (v^2)^{c'}$$

that is in the algebra generated by $t + u, tu, v^2$, since

$$t^{a}u^{b} + t^{b}u^{a} \in K[t, u]^{S_{2}} = K[t + u, tu]$$

are symmetric polynomials in t and u.

Similar computations for the sum consisting of odd powers of \boldsymbol{v} shows that

$$\varepsilon_{aac} = 0$$
, $\varepsilon_{abc} = -\varepsilon_{bac}$,

and assuming that c = 2c' + 1, we have

$$\sum_{0 \le a,b}^{c \text{ odd}} \varepsilon_{abc} t^a u^b v^c = \sum_{a < b} \varepsilon_{abc} (t^a u^b - t^b u^a) v^{2c'+1}$$
$$= \sum_{a < b} \varepsilon_{abc} (tu)^a (u^{b-a} - t^{b-a}) v^{2c'+1}$$
$$= \sum_{a < b} \varepsilon_{abc} (tu)^a \Delta_{ab} (u-t) v (v^2)^{c'}.$$

where

$$\Delta_{ab} = u^{b-a-1} + u^{b-a-2}t + \dots + ut^{b-a-2} + t^{b-a-1} \in K[t, u]^{S_2}$$

which completes the proof.

2. Main Results

In this section, we provide generators of

$$W^G = \{ w \in W \mid w = M \cdot w = M^2 \cdot w = M^3 \cdot w \}$$

and of

$$L^{G} = \{ l \in L \mid l = M \cdot l = M^{2} \cdot l = M^{3} \cdot l \}$$

as $K[t, u, v]^G = K[t + u, tu, v^2, (u - t)v]$ -modules.

Theorem 1. W^G is freely generated by elements

 $as \ a \ K[t+u,tu,v^2,(u-t)v]\text{-}module.$

$$\square$$

Proof. Initially, proving that an element in the $K[t+u, tu, v^2, (u-t)v]$ -module generated by I and [X, Y] is G-invariant is straightforward.

Now let $w \in W^{\tilde{G}} \subset W$ be of the form

$$w = Ip_1(t, u, v) + Xp_2(t, u, v) + Yp_3(t, u, v) + [X, Y]p_4(t, u, v)$$

for some $p_i(t, u, v) \in K[t, u, v], i = 1, 2, 3, 4$. Then

$$w = M \cdot w = M^2 \cdot w = M^3 \cdot w$$

gives the followings.

$$Ip_{1}(t, u, v) + Xp_{2}(t, u, v) + Yp_{3}(t, u, v) + [X, Y]p_{4}(t, u, v)$$

=Ip_{1}(u, t, -v) + Yp_{2}(u, t, -v) - Xp_{3}(u, t, -v) + [X, Y]p_{4}(u, t, -v)
=Ip_{1}(t, u, v) - Xp_{2}(t, u, v) - Yp_{3}(t, u, v) + [X, Y]p_{4}(t, u, v)
=Ip_{1}(u, t, -v) - Yp_{2}(u, t, -v) + Xp_{3}(u, t, -v) + [X, Y]p_{4}(u, t, -v).

Working in the free K[t, u, v]-module W, by comparing the multipliers of generators I, X, Y, [X, Y], we get that

$$p_1(t, u, v) = p_1(u, t, -v), \quad p_4(t, u, v) = p_4(u, t, -v),$$

$$p_2(t, u, v) = -p_3(u, t, -v) = -p_2(t, u, v) = p_3(u, t, -v),$$

$$p_3(t, u, v) = p_2(u, t, -v) = -p_3(t, u, v) = -p_2(u, t, -v).$$

This implies that $p_2(t, u, v) = p_3(t, u, v) = 0$, and

$$p_1(t, u, v), p_4(t, u, v) \in K[t + u, tu, v^2, (u - t)v]$$

by Lemma 1. The freeness of the generators I and [X, Y] is a direct consequence of the module structure of W, that completes the proof. \Box

Theorem 2. L^G is generated by the element [X, Y] as a $K[t+u, tu, v^2, (u-t)v]$ -module.

Proof. First of all, we have to show that there are no nonzero linear elements of L^G . Let $l = \alpha X + \beta Y \in L^G$. Then

$$\alpha X + \beta Y = \alpha Y - \beta X = -\alpha X - \beta Y = -\alpha Y + \beta X$$

that implies $\alpha = \beta = 0$. Now let

$$l = (Xv - Yt)p_1(t, u, v) + (Xu - Yv)p_2(t, u, v) + [X, Y]p_3(t, u, v) \in L'$$

be an element in $(L')^G$. Then we have

$$\begin{aligned} (Xv - Yt)p_1(t, u, v) + (Xu - Yv)p_2(t, u, v) + [X, Y]p_3(t, u, v) \\ = (-Yv + Xu)p_1(u, t, -v) + (Yt - Xv)p_2(u, t, -v) + [X, Y]p_3(u, t, -v) \\ = -(Xv - Yt)p_1(t, u, v) - (Xu - Yv)p_2(t, u, v) + [X, Y]p_3(t, u, v) \\ = (Yv - Xu)p_1(u, t, -v) + (-Yt + Xv)p_2(u, t, -v) + [X, Y]p_3(u, t, -v) \end{aligned}$$

that yields

$$p_1(t, u, v) = -p_2(u, t, -v) = -p_1(t, u, v) = p_2(u, t, -v)$$

$$p_2(t, u, v) = p_1(u, t, -v) = -p_2(t, u, v) = -p_1(u, t, -v)$$

$$p_3(t, u, v) = p_3(u, t, -v)$$

comparing the multipliers of free generators (Xv - Yt), (Xu - Yv), [X, Y]of K[t, u, v]-module L'. Hence, $p_1(t, u, v) = p_2(t, u, v) = 0$, and $p_3(t, u, v)$ satisfies the condition of the statement by Lemma 1. Finally checking that an element stated in the theorem is *G*-invariant is straightforward.

3. Conclusion

In this study, we examine the algebras W^G and L^G of invariant of a specific group G with its action inherited from the general linear group of size 2×2 . In the further studies, one may consider the algebra of invariants of other important subgroups.

References

- Bruyn, L.Le.: Trace rings of generic 2 by 2 matrices. Mem. Amer. Math. Soc. 66(363) (1987). http://dx.doi.org/10.1090/memo/0363
- [2] Drensky, V., Findik, S.: Inner automorphisms of Lie algebras related with generic 2 × 2 matrices. Algebra Discrete Math. 14(1), 49–70 (2012).

CONTACT INFORMATION

N. Ş. Öğüşlü,	Department of Mathematics, Çukurova
Ş. Fındık	University, Adana, Turkey
	E-Mail: noguslu@cu.edu.tr,
	sfindik@cu.edu.tr

Received by the editors: 22.11.2023 and in final form 20.08.2024.