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Abstract. Let K be an algebraically closed field of characte-
ristic zero, K[x, y] the polynomial ring in variables x, y and let
W2(K) be the Lie algebra of all K-derivations on K[x, y]. A deriva-
tion D ∈ W2(K) is called a Jacobian derivation if there exists
f ∈ K[x, y] such that D(h) = det J(f, h) for any h ∈ K[x, y] (here
J(f, h) is the Jacobian matrix for f and h). Such a derivation is
denoted by Df . The kernel of Df in K[x, y] is a subalgebra K[p]
where p = p(x, y) is a polynomial of smallest degree such that
f(x, y) = φ(p(x, y) for some φ(t) ∈ K[t]. Let C = CW2(K)(Df )
be the centralizer of Df in W2(K). We prove that C is the free
K[p]-module of rank 1 or 2 over K[p] and point out a criterion of
being a module of rank 2. These results are used to obtain a class
of integrable autonomous systems of differential equations.

1. Introduction

Let K be an algebraically closed field of characteristic zero, K[x, y] the
polynomial ring in variables x, y and R = K(x, y) the field of rational
functions. Recall that a K-linear map D : K[x, y]−→K[x, y] is called a
K-derivation (or a derivation if K is fixed) if D(fg) = D(f)g+fD(g) for
any f, g ∈ K[x, y]. All the K-derivations on K[x, y] form a Lie algebra
over K (denoted by W2(K)) with respect to the operation [D1, D2] =
D1D2 − D2D1. Every element D ∈ W2(K) can be uniquely written in
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the form D = f(x, y)∂x + g(x, y)∂y, where ∂x := ∂
∂x , ∂y :=

∂
∂y are partial

derivatives on K[x, y]. The latter means that W2(K) is a free module of
rank 2 over K[x, y] and {∂x, ∂y} is a free basis of this module. The Lie
algebra W2(K) is, from the geometrical point of view, the Lie algebra of
all polynomial vector fields on K2 and was studied intensively from many
points of view (see, for example, [5], [4], [10]).

Let f ∈ K[x, y]. The polynomial f defines a derivation Df ∈ W2(K)
by the rule: Df (h) = det J(f, h) for any h ∈ K[x, y] (here J(f, h) is the
Jacobian matrix for f and h). The derivation Df is called the Jacobian
derivation associated with the polynomial f . The kernel KerDf inK[x, y]
is an integrally closed subalgebra of K[x, y] and f ∈ KerDf . By [7],
KerDf = K[p], where p is a generative closed polynomial for f .

We study the structure of the centralizer CW2(K)(Df ). This central-
izer is of interest because from viewpoint of theory of ODE with any
derivation D = f(x, y)∂x + g(x, y)∂y one can associate an autonomous
system of ordinary differential equations

dx

dt
= f(x, y),

dy

dt
= g(x, y)

and elements from CW2(K)(D) give information about solutions of this
system.

We give a criterion for a Jacobian derivation Df to have the central-
izer of rank 2 over KerDf (Theorem 1). We also prove that CW2(K)(Df )
is a free module over the subalgebra K[p] of rank 1 or 2 (Theorem 2).
We point out an example of integrable system of differential equations
associated with a Jacobian derivation of special type.

We use standard notations. If T = P∂x + Q∂y then the divergence
div T is defined as for a vector field with components P,Q: div T = P ′

x+
Q′
y. If T = P∂x +Q∂y is divergence-free (i.e., div T = 0), then T = Df

for a polynomial f that is a “potential” for the vector field determined
by T . A polynomial f ∈ K[x, y] is called a closed polynomial if the
subalgebra K[f ] is integrally closed in the polynomial algebra K[x, y].
For any polynomial f ∈ K[x, y] there exists a closed polynomial p(x, y)
such that f = φ(p) for some polynomial φ ∈ K[x, y]. This polynomial
p(x, y) will be called a generative closed polynomial for f(x, y). If L is
a subalgebra of the Lie algebra W2(K) then dimRRL will be called the
rank of L and denoted by rkK[x,y]L or simply by rkL.
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2. A criterion for centralizers to be of rank 2

Some properties of derivations on polynomial rings are collected in the
next lemma.

Lemma 1. (1) Let D1, D2 ∈W2(K) and f, g ∈ K[x, y]. Then

[fD1, gD2] = fD1(g)D2 − gD2(f)D1 + fg[D1, D2].

(2) If f ∈ K[x, y] and p is a generative closed polynomial for f , then
KerDf = K[p].

(3) If T ∈ W2(K) and divT = 0, then T = Dg for some polynomial
g ∈ K[x, y].

Proof. (1) Direct calculation. (2) See, for example, [9]. (3) See, for
example, [8].

Lemma 2. Let T ∈W2(K) and T (f) = λf for some polynomials f, λ ∈
K[x, y]. Then [T,Df ] = Dλf − (div T )Df .

Proof. Let us write down the derivation T in the form T = P∂x + Q∂y
for some polynomials P,Q ∈ K[x, y]. Then the condition T (f) = λf can
be written in the form

Pf ′x +Qf ′y = λf (1)

Let us differentiate the equality (1) on x and then on y. We obtain

P ′
xf

′
x + Pf ′′x2 +Q′

xf
′
y +Qf ′′yx = λ′xf + λf ′x, (2)

P ′
yf

′
x + Pf ′′xy +Q′

yf
′
y +Qf ′′y2 = λ′yf + λf ′y. (3)

Further, write down the product of derivations T and Df in terms of
their components:

[T,Df ] = (P ′
xf

′
y−P ′

yf
′
x−Pf ′′yx−Qf ′′y2)∂x+(Pf ′′x2+Qf

′′
xy+f

′
yQ

′
x−f ′xQ′

y)∂y.
(4)

Let us denote for convenience α = −P ′
yf

′
x−Pf ′′yx−Qf ′′y2 and β = Pf ′′x2 +

Qf ′′xy + f ′yQ
′
x. Then using (3) and (2) we see that

α = Q′f ′y − λ′yf − λf ′y, β = λ′xf + λf ′x − P ′
xf

′
x. (5)

The equality (4) can be rewritten in the form

[T,Df ] = (P ′
xf

′
y + α)∂x + (β − f ′xQ

′
y)∂y.
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Inserting in the last equality instead α and β their expressions from (5)
we see that

[T,Df ] = (P ′
xf

′
y − λ′yf − λf ′y +Q′

yf
′
y)∂x + (λ′xf + λf ′x − P ′

xf
′
x − f ′xQ

′
y)∂y.

After rearranging the summands in the right part of this equality we get

[T,Df ] = ((div T )f ′y − (λf)′y)∂x + ((λf)′x − (div T )f ′x)∂y

The latter means that

[T,Df ] = (div T )(f ′y∂x − f ′x∂y) +Dλf = Dλf − (div T )Df .

The proof is complete.

Remark 1. The direct calculation shows thatDλf = λDf+fDλ. There-
fore

[T,Df ] = λDf + fDλ − (div T )Df = fDλ + (div T − λ)Df .

Lemma 3. Let T ∈ W2(K), f ∈ K[x, y] be such that [T,Df ] = 0. If
T (f) = c for some c ∈ K, then T = Dg for some polynomial g ∈ K[x, y].

Proof. Let us write down the derivation T in the form T = P∂x+Q∂y for
some P,Q ∈ K[x, y]. Then Pf ′x + Qf ′y = c by conditions of the lemma.
Differentiating this equality first on x and then on y, we obtain the next
equalities

P ′
xf

′
x + Pf ′′x2 +Q′

xf
′
y +Qf ′′yx = 0, (6)

P ′
yf

′
x + Pf ′′xy +Q′

yf
′
y +Qf ′′y2 = 0. (7)

We see from (6) that

Pf ′′x2 +Q′
xf

′
y = −P ′

xf x−Qf ′′xy

and anagously from (7)

P ′
yf

′
x + Pxf

′′
xy = −Q′

yf
′
y −Qf ′′y2 .

Therefore it follows from (4) that

[T,Df ] = (−Q′
yf

′
x − P ′

xf
′
x)∂y + (P ′

xf
′
y +Q′

yf
′
y)∂x =

= f ′y(P
′
x +Q′

y)∂x − f ′x(P
′
x +Q′

y)∂y = div T · (−Df ).

Since [T,Df ] = 0 by conditions of the lemma, we see from the equality
[T,Df ] = −(div T )Df , that div T = 0. It follows from Lemma 1 that
T = Dg for some polynomial g ∈ K[x, y].
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Corollary 1. (1) Let T ∈ CW2(K)(Df ). If T (f) = 0, then T = φDf for
some rational function φ ∈ K(x, y) such that φ ∈ KerDf . (2) If T (f) = c
for some c ∈ K∗, then T = Dg for some g ∈ K[x, y] such that f, g form
a Jacobian pair, i.e., Dg(f) = −Df (g) = c.

Proof. (1) Take any polynomial h ∈ K[x, y] such that f, h are alge-
braically independent over K and put g1 = Df (h), g2 = T (h). Then
g1 ̸= 0 because in other case KerDf would be of transcendence de-
gree 2 in K(x, y) which is impossible. Note that (g2Df − g1T )(h) = 0
and (g2Df − g1T )(f) = 0. Since f, h form a transcendence basis of the
field K(x, y), the next equality holds: that g2Df − g1T = 0. There-
fore T = (g2/g1)Df . It follows from the equality [T,Df ] = 0 that
Df (g2/g1) = 0, that is g2/g1 ∈ KerDf . Denoting φ = g2/g1 we get
the proof of part (1) of the corollary.

(2) Since T (f) = c we have by Lemma 1 that T = Dg for some
polynomial g ∈ K[x, y]. But then T (f) = Dg(f) = detJ(g, f) = c ∈ K∗.
The latter means that the polynomials f, g form a Jacobian pair.

Theorem 1. Let f ∈ K[x, y], f = θ(p) for a generative closed polynomial
p ∈ K[x, y] with deg θ ≥ 1. A derivation T ∈ W2(K) commutes with
Df if and only if T (p) = ψ(p) for some polynomial ψ(t) ∈ K[t] and
θ′′(p)ψ(p) = θ′(p)(div T − ψ′(p)).

Proof. Let [T,Df ] = 0. By Lemma 1, KerDf = K[p], therefore T (K[p]) ⊆
K[p]. Then T (p) = ψ(p) for some polynomial ψ(t) ∈ K[t]. Let us prove
the equality

θ′′(p)ψ(p) = θ′(p)(div T − ψ′(p)). (8)

First, let degψ(t) ≥ 1. Write ψ(t) = a0(t − λ1) . . . (t − λk), where
k ≥ 1 and λi ∈ K (recall that K is algebraically closed). Therefore
T (p) = a0(p− λ1) . . . (p− λk). This equality can be written in the form

T (p− λ1) = a0(p− λ1) . . . (p− λk)

and taking p − λ1 instead of p we can write the last equality as T (p) =
a0p(p−µ2) . . . (p−µk) for some µk ∈ K (note that the polynomial p−λ1
is also closed and K[p] = K[p− λ1]). The last equality can be written in
the form

T (p) = ψ(p) = pµ(p) for µ(p) = a0p(p− µ2) . . . (p− µk).

By Lemma 2, we have

[T,Dp] = Dψ(p) − (div T )Dp = (ψ′(p)− div T )Dp. (9)
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But, on the other hand, it follows from the equality

[T,Df ] = [T, θ′(p)Dp] = 0

that T (θ′(p))Dp = −θ′(p)[T,Dp] and therefore

[T,Dp] = −T (θ
′(p)

θ′(p)
Dp (10)

(note that θ′(p) ̸= 0 because f = θ(p) and f ̸= const).
It follows from (9) and (10) that

−T (θ
′(p)

θ′(p)
= ψ′(p)− div T.

Therefore it holds the desired equality θ′′(p)ψ(p) = θ′(p)(div T − ψ′(p))
because T (θ′(p)) = θ′′(p)ψ(p).

Now let degψ(t) < 1. The latter means that ψ(t) = c ∈ K.
By Lemma 3, T = Dg for some polynomial g ∈ K[x, y] and therefore

div T = 0. If c = 0, that is ψ(t) ≡ 0, then obviously (8) holds. Let c ̸= 0.
Then Dg(p) = c and the polynomials p, g form a Jacobian pair. Let us
show that deg θ = 1 in this case. Indeed, in other case

[T,Df ] = [Dg, Df ] = [Dg, θ
′(p)Dp] = θ′′(p) · c ·Dp + θ′(p)[Dg, Dp].

By Lemma 1, [Dg, Dp] = Dc = 0 (recall that Dg(p) = c) and therefore

[T,Df ] = θ′′(p) · c ·Dp = 0.

The latter contradicts our choice of the derivation T because c ̸= 0, and
θ′′ ̸= 0 by our assumption. Therefore deg θ(t) = 1. Taking into account
the relations θ′′(p) = 0, div T = 0, ψ′(p) = 0 we see that the equality (8)
holds.

Let now T (p) = ψ(p), f = θ(p) for some closed polynomial p, and let
the equality (8) hold. Let us show that [T,Df ] = 0, i.e. [T, θ′(p)Dp] = 0.
The last equality is equivalent to the equality

T (θ′(p))Dp = −θ′(p)[T,Dp]. (11)

First, consider the case degψ(t) ≥ 1. Then as above one can assume
without loss of generality that ψ(t) = tλ(t) for some polynomial λ(t) ∈
K[t]. By Lemma 2, we get

[T,Dp] = (ψ′(p)− div T )Dp.
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Using (11) one can easily show that the latter equality is equivalent to
the equality (8):

θ′′(p)ψ(p)Dp = θ′(p)(div T − ψ′(p))Dp,

which holds by our assumptions. So, we have [T,Df ] = 0 in the case
degψ(t) ≥ 1.

Consider the case degψ(t) < 1, i.e., ψ(t) = c for some c ∈ K . If
ψ(t) ≡ 0, then div T = 0 by the equality (8). Therefore (by Lemma 1)
T = Dg for some polynomial g ∈ K[x, y] and T (p) = 0 = Dg(p). Thus
Dp(g) = 0, i.e., g ∈ KerDp. It follows from the equality KerDp = K[p]
that g = µ(p) for some polynomial µ(t) ∈ K[t]. But then T = Dg =
µ′(p)Dp. Taking into account the equality Df = Dθ(p) = θ′(p)Dp we get

[T,Df ] = [µ′(p)Dp, θ
′(p)Dp] = 0

because µ′(p), θ′(p) ∈ KerDp. Let now ψ(t) = c, c ∈ K∗. Then T (p) = c
and from the conditions of the theorem we have θ′′(p) · c = θ′(p) div T .
The latter equality implies that div T = 0 because div T is a polynomial
and deg θ′′(p) < deg θ′(p). But then T = Dg for some polynomial g(t) ∈
K[t]. It follows from the conditions of the theorem that θ′′(p) = 0 and
hence θ(p) = αp+β for some α, β ∈ K, α ̸= 0. Without loss of generality
one can assume that f = θ(p) = p. We have T (p) = c and T = Dg.
Then Dp(g) = −c and therefore the polynomials p, g form a Jacobian
pair. The latter means that

[T,Df ] = [Dg, Df ] = D[p.g] = Dc = 0

that is T and Df commute. The proof of the theorem is complete.

Corollary 2. Let f ∈ K[x, y] be a closed (in particular, irreducible)
polynomial. A derivation T ∈ W2(K) commutes with Df if and only if
T (f) = ψ(f) for some polynomial ψ(t) ∈ K[t] and div T = ψ′(f).

Proof. Since f is closed we can take without loss of generality thet θ(t) =
t. Then θ′′(t) = 0, and one can easily show that (8) is equivalent to the
equality div T = ψ′(f).

In [12], a class of Jacobian derivations was studied that was induced
by weakly semisimple polynomials f ∈ K[x, y] (a polynomial f is called
weakly semisimple if the corresponding Jacobian derivation Df has an
eigenfunction g ∈ K[x, y] with nonzero eigenvalue λ ∈ K, i.e. if Df (g) =
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λg). In [3], such polynomials were described in some cases and some
examples were pointed out. Using some results from [3] one can construct
Jacobian derivations whose centralizers are of rank 2 over their the ring
of constants.

Example 1. Let f(x, y), g(x, y) ∈ K[x, y] be nonzero polynomials such
that Df (g) = g. Then

[fDg − gDf , Dg] = −Dg(f)Dg − g[Df , Dg] = gDg − gDg = 0,

(here we use the equality [Df , Dg] = Dh, where h = Df (g)). The latter
means that the Jacobian derivation Dg has the centralizer in W2(K) of
rank 2 over its ring of constants. This centralizer contains two linearly
independent (over K[x, y] ) derivations Dg and fDg−gDf . Let us choose,
for example, the polynomials f and g of the form:

f(x, y) = x(x− 1)y, g(x, y) = x3(x− 1)y2.

One can easily check that Df (g) = g. So, the derivation Dg = −2yx3(x−
1)∂x + (4x3 − 3x2)y2∂y has the centralizer in W2(K) of rank 2 over K[p]
and the corresponding system of differential equations

dx

dt
= −2yx3(x− 1),

dy

dt
= (4x3 − 3x2)y2

is integrable (see, for example, [6]).

3. On structure of centralizers of Jacobian derivations

Theorem 2. Let f ∈ K[x, y] be a nonconstant polynomial and Df the
corresponding Jacobian derivation. Let p be a generative closed polyno-
mial for f . Then the centralizer CW2(K)(Df ) is a free module of rank 1
or 2 over the subring K[p] of K[x, y].

Proof. Since p is a generative closed polynomial for f we have f = θ(p)
for some polynomial θ(t) ∈ K[t]. ObviouslyDf = θ′(p)Dp and, by Lemma
1, kerDf = kerDp. Let us denote for brevity C = CW2(K)(Df ). Obviously
C is a module over the subring K[p] of K[x, y]. Denote C1 = K[x, y]C,
it is obvious that C1 is a K[x, y]-module and rkK[x,y]C1 ≤ 2 (recall that
W2(K) is a free K[x, y]-module of rank 2).

First, let rkK[x,y]C1 = 1. Let us show that in this case rkK[p]C = 1
and Dp is a free generator of the module C. Take any T ∈ C, T ̸=
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0. By our assumptions on C1, there exist polynomials g, h ∈ K[x, y]
such that gDp + hT = 0, and at least one of the polynomials g, h is
nonzero. Since Dp ̸= 0 we have h ̸= 0 and therefore T = −(g/h)Dp.
But then Df (g/h) = 0. The latter means that the rational function
g/h belongs to kerRDf , where kerRDf is the kernel of the extension of
Df on R = K(x, y). Since kerRDf = K(p) (see, for example [9]) we
have g/h = a(p)/b(p) for some polynomials a(t), b(t) ∈ K[t] that can be
chosen to be coprime. Thus, we obtain the equality a(p)Dp + b(p)T = 0
and a(p), b(p) are coprime. From the latter equality we see that b(p)
divides Dp, i.e. Dp = b(p)D1 for some derivation D1 ∈ W2(K). But
then b(p) = const because Dp = −p′y∂x + p′x∂y and b(p) does not divide
p′y, p

′
x if degb(t) > 0. Thus, we have T = (−a(p)/b(p))Dp and Dp is a free

generator for the centralizer C = CW2(K)(Df ) as a K[p]-module.
Let now rkK[x,y]C1 = 2. Choose any T ∈ C such that T and Dp are

linearly independent over K[x, y]. It follows from the equality [T,Dp] = 0
that T (ker(Df )) ⊆ ker(Df ), so T (K[p]) ⊆ K[p]. Therefore T (p) = µ(p)
for some polynomial µ(t) ∈ K[t]. Choose among all such T ∈ C a deriva-
tion T0 such that degµ0(t) is minimum, where µ0(t) is the corresponding
polynomial for T0. One can easily show that for any T ∈ C its polynomial
µ(t) is divisible by µ0(t). Really, let

µ(t) = q(t)µ0(t) + r(t)

with degr(t) < degµ0(t). Then T − q(p)T0 ∈ C and (T − q(p)T0)(p) =
r(p). By our choice of T0 we have r(t) = 0. So, every T ∈ C can be
written in the form T = q(p)T0 + T1, where T1 = T − q(p)T0 satisfies
the equality T1(p) = 0. Since [T1, Dp] = 0 we can show using Corollary
(1) that T1 = δ(p)Dp for some polynomial δ(t) ∈ K[t]. Therefore T =
q(p)T0 + δ(p)Dp. The latter means that the derivations T0 and Dp are
free generators of the K[p]-module C. The proof is complete.
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