Centralizers of Jacobian derivations

D. I. Efimov, A. P. Petravchuk, and M. S. Sydorov

Dedicated to the 75th birthday of Professor V. M. Bondarenko

ABSTRACT. Let \mathbb{K} be an algebraically closed field of characteristic zero, $\mathbb{K}[x, y]$ the polynomial ring in variables x, y and let $W_2(\mathbb{K})$ be the Lie algebra of all \mathbb{K} -derivations on $\mathbb{K}[x, y]$. A derivation $D \in W_2(\mathbb{K})$ is called a Jacobian derivation if there exists $f \in \mathbb{K}[x, y]$ such that $D(h) = \det J(f, h)$ for any $h \in \mathbb{K}[x, y]$ (here J(f, h) is the Jacobian matrix for f and h). Such a derivation is denoted by D_f . The kernel of D_f in $\mathbb{K}[x, y]$ is a subalgebra $\mathbb{K}[p]$ where p = p(x, y) is a polynomial of smallest degree such that $f(x, y) = \varphi(p(x, y) \text{ for some } \varphi(t) \in \mathbb{K}[t]$. Let $C = C_{W_2(\mathbb{K})}(D_f)$ be the centralizer of D_f in $W_2(\mathbb{K})$. We prove that C is the free $\mathbb{K}[p]$ -module of rank 1 or 2 over $\mathbb{K}[p]$ and point out a criterion of being a module of rank 2. These results are used to obtain a class of integrable autonomous systems of differential equations.

1. Introduction

Let \mathbb{K} be an algebraically closed field of characteristic zero, $\mathbb{K}[x, y]$ the polynomial ring in variables x, y and $R = \mathbb{K}(x, y)$ the field of rational functions. Recall that a \mathbb{K} -linear map $D : \mathbb{K}[x, y] \longrightarrow \mathbb{K}[x, y]$ is called a \mathbb{K} -derivation (or a derivation if \mathbb{K} is fixed) if D(fg) = D(f)g + fD(g) for any $f, g \in \mathbb{K}[x, y]$. All the \mathbb{K} -derivations on $\mathbb{K}[x, y]$ form a Lie algebra over \mathbb{K} (denoted by $W_2(\mathbb{K})$) with respect to the operation $[D_1, D_2] =$ $D_1D_2 - D_2D_1$. Every element $D \in W_2(\mathbb{K})$ can be uniquely written in

²⁰²⁰ Mathematics Subject Classification: Primary 17B66; Secondary 17B80.

Key words and phrases: Lie algebra, Jacobian derivation, differential equation, centralizer, integrable system.

the form $D = f(x, y)\partial_x + g(x, y)\partial_y$, where $\partial_x := \frac{\partial}{\partial x}, \partial_y := \frac{\partial}{\partial y}$ are partial derivatives on $\mathbb{K}[x, y]$. The latter means that $W_2(\mathbb{K})$ is a free module of rank 2 over $\mathbb{K}[x, y]$ and $\{\partial_x, \partial_y\}$ is a free basis of this module. The Lie algebra $W_2(\mathbb{K})$ is, from the geometrical point of view, the Lie algebra of all polynomial vector fields on \mathbb{K}^2 and was studied intensively from many points of view (see, for example, [5], [4], [10]).

Let $f \in \mathbb{K}[x, y]$. The polynomial f defines a derivation $D_f \in W_2(\mathbb{K})$ by the rule: $D_f(h) = \det J(f, h)$ for any $h \in \mathbb{K}[x, y]$ (here J(f, h) is the Jacobian matrix for f and h). The derivation D_f is called the Jacobian derivation associated with the polynomial f. The kernel Ker D_f in $\mathbb{K}[x, y]$ is an integrally closed subalgebra of $\mathbb{K}[x, y]$ and $f \in \text{Ker } D_f$. By [7], Ker $D_f = \mathbb{K}[p]$, where p is a generative closed polynomial for f.

We study the structure of the centralizer $C_{W_2(\mathbb{K})}(D_f)$. This centralizer is of interest because from viewpoint of theory of ODE with any derivation $D = f(x, y)\partial_x + g(x, y)\partial_y$ one can associate an autonomous system of ordinary differential equations

$$\frac{dx}{dt} = f(x,y), \ \frac{dy}{dt} = g(x,y)$$

and elements from $C_{W_2(\mathbb{K})}(D)$ give information about solutions of this system.

We give a criterion for a Jacobian derivation D_f to have the centralizer of rank 2 over Ker D_f (Theorem 1). We also prove that $C_{W_2(\mathbb{K})}(D_f)$ is a free module over the subalgebra $\mathbb{K}[p]$ of rank 1 or 2 (Theorem 2). We point out an example of integrable system of differential equations associated with a Jacobian derivation of special type.

We use standard notations. If $T = P\partial_x + Q\partial_y$ then the divergence div T is defined as for a vector field with components P, Q: div $T = P'_x + Q'_y$. If $T = P\partial_x + Q\partial_y$ is divergence-free (i.e., div T = 0), then $T = D_f$ for a polynomial f that is a "potential" for the vector field determined by T. A polynomial $f \in \mathbb{K}[x, y]$ is called a closed polynomial if the subalgebra $\mathbb{K}[f]$ is integrally closed in the polynomial algebra $\mathbb{K}[x, y]$. For any polynomial $f \in \mathbb{K}[x, y]$ there exists a closed polynomial p(x, y)such that $f = \varphi(p)$ for some polynomial $\varphi \in \mathbb{K}[x, y]$. This polynomial p(x, y) will be called a generative closed polynomial for f(x, y). If L is a subalgebra of the Lie algebra $W_2(\mathbb{K})$ then dim_R RL will be called the rank of L and denoted by $\mathrm{rk}_{\mathbb{K}[x,y]}L$ or simply by rkL.

2. A criterion for centralizers to be of rank 2

Some properties of derivations on polynomial rings are collected in the next lemma.

Lemma 1. (1) Let $D_1, D_2 \in W_2(\mathbb{K})$ and $f, g \in \mathbb{K}[x, y]$. Then

$$[fD_1, gD_2] = fD_1(g)D_2 - gD_2(f)D_1 + fg[D_1, D_2].$$

(2) If $f \in \mathbb{K}[x, y]$ and p is a generative closed polynomial for f, then Ker $D_f = \mathbb{K}[p]$.

(3) If $T \in W_2(\mathbb{K})$ and divT = 0, then $T = D_g$ for some polynomial $g \in \mathbb{K}[x, y]$.

Proof. (1) Direct calculation. (2) See, for example, [9]. (3) See, for example, [8]. \Box

Lemma 2. Let $T \in W_2(\mathbb{K})$ and $T(f) = \lambda f$ for some polynomials $f, \lambda \in \mathbb{K}[x, y]$. Then $[T, D_f] = D_{\lambda f} - (\operatorname{div} T)D_f$.

Proof. Let us write down the derivation T in the form $T = P\partial_x + Q\partial_y$ for some polynomials $P, Q \in \mathbb{K}[x, y]$. Then the condition $T(f) = \lambda f$ can be written in the form

$$Pf'_x + Qf'_y = \lambda f \tag{1}$$

Let us differentiate the equality (1) on x and then on y. We obtain

$$P'_{x}f'_{x} + Pf''_{x^{2}} + Q'_{x}f'_{y} + Qf''_{yx} = \lambda'_{x}f + \lambda f'_{x},$$
(2)

$$P'_{y}f'_{x} + Pf''_{xy} + Q'_{y}f'_{y} + Qf''_{y^{2}} = \lambda'_{y}f + \lambda f'_{y}.$$
(3)

Further, write down the product of derivations T and D_f in terms of their components:

$$\begin{split} [T, D_f] &= (P'_x f'_y - P'_y f'_x - P f''_{yx} - Q f''_{y^2}) \partial_x + (P f''_{x^2} + Q f''_{xy} + f'_y Q'_x - f'_x Q'_y) \partial_y. \end{split}$$
(4)
Let us denote for convenience $\alpha &= -P'_y f'_x - P f''_{yx} - Q f''_{y^2}$ and $\beta = P f''_{x^2} + Q f''_{xy} + f'_y Q'_x.$ Then using (3) and (2) we see that

$$\alpha = Q'f'_y - \lambda'_y f - \lambda f'_y, \ \beta = \lambda'_x f + \lambda f'_x - P'_x f'_x.$$
(5)

The equality (4) can be rewritten in the form

$$[T, D_f] = (P'_x f'_y + \alpha)\partial_x + (\beta - f'_x Q'_y)\partial_y$$

Inserting in the last equality instead α and β their expressions from (5) we see that

$$[T, D_f] = (P'_x f'_y - \lambda'_y f - \lambda f'_y + Q'_y f'_y)\partial_x + (\lambda'_x f + \lambda f'_x - P'_x f'_x - f'_x Q'_y)\partial_y.$$

After rearranging the summands in the right part of this equality we get

$$[T, D_f] = ((\operatorname{div} T)f'_y - (\lambda f)'_y)\partial_x + ((\lambda f)'_x - (\operatorname{div} T)f'_x)\partial_y$$

The latter means that

$$[T, D_f] = (\operatorname{div} T)(f'_y \partial_x - f'_x \partial_y) + D_{\lambda f} = D_{\lambda f} - (\operatorname{div} T)D_f.$$

The proof is complete.

Remark 1. The direct calculation shows that $D_{\lambda f} = \lambda D_f + f D_{\lambda}$. Therefore

$$[T, D_f] = \lambda D_f + f D_\lambda - (\operatorname{div} T) D_f = f D_\lambda + (\operatorname{div} T - \lambda) D_f.$$

Lemma 3. Let $T \in W_2(\mathbb{K}), f \in \mathbb{K}[x, y]$ be such that $[T, D_f] = 0$. If T(f) = c for some $c \in \mathbb{K}$, then $T = D_g$ for some polynomial $g \in \mathbb{K}[x, y]$.

Proof. Let us write down the derivation T in the form $T = P\partial_x + Q\partial_y$ for some $P, Q \in \mathbb{K}[x, y]$. Then $Pf'_x + Qf'_y = c$ by conditions of the lemma. Differentiating this equality first on x and then on y, we obtain the next equalities

$$P'_x f'_x + P f''_{x^2} + Q'_x f'_y + Q f''_{yx} = 0, (6)$$

$$P'_y f'_x + P f''_{xy} + Q'_y f'_y + Q f''_{y^2} = 0.$$
⁽⁷⁾

We see from (6) that

$$Pf''_{x^2} + Q'_x f'_y = -P'_x f_{-x} - Qf''_{xy}$$

and anagously from (7)

$$P'_y f'_x + P_x f''_{xy} = -Q'_y f'_y - Q f''_{y^2}.$$

Therefore it follows from (4) that

$$[T, D_f] = (-Q'_y f'_x - P'_x f'_x) \partial_y + (P'_x f'_y + Q'_y f'_y) \partial_x =$$

= $f'_y (P'_x + Q'_y) \partial_x - f'_x (P'_x + Q'_y) \partial_y = \operatorname{div} T \cdot (-D_f).$

Since $[T, D_f] = 0$ by conditions of the lemma, we see from the equality $[T, D_f] = -(\operatorname{div} T)D_f$, that $\operatorname{div} T = 0$. It follows from Lemma 1 that $T = D_g$ for some polynomial $g \in \mathbb{K}[x, y]$.

Corollary 1. (1) Let $T \in C_{W_2(\mathbb{K})}(D_f)$. If T(f) = 0, then $T = \varphi D_f$ for some rational function $\varphi \in \mathbb{K}(x, y)$ such that $\varphi \in \text{Ker } D_f$. (2) If T(f) = cfor some $c \in \mathbb{K}^*$, then $T = D_g$ for some $g \in \mathbb{K}[x, y]$ such that f, g form a Jacobian pair, i.e., $D_g(f) = -D_f(g) = c$.

Proof. (1) Take any polynomial $h \in \mathbb{K}[x, y]$ such that f, h are algebraically independent over \mathbb{K} and put $g_1 = D_f(h), g_2 = T(h)$. Then $g_1 \neq 0$ because in other case Ker D_f would be of transcendence degree 2 in $\mathbb{K}(x, y)$ which is impossible. Note that $(g_2D_f - g_1T)(h) = 0$ and $(g_2D_f - g_1T)(f) = 0$. Since f, h form a transcendence basis of the field $\mathbb{K}(x, y)$, the next equality holds: that $g_2D_f - g_1T = 0$. Therefore $T = (g_2/g_1)D_f$. It follows from the equality $[T, D_f] = 0$ that $D_f(g_2/g_1) = 0$, that is $g_2/g_1 \in \text{Ker } D_f$. Denoting $\varphi = g_2/g_1$ we get the proof of part (1) of the corollary.

(2) Since T(f) = c we have by Lemma 1 that $T = D_g$ for some polynomial $g \in \mathbb{K}[x, y]$. But then $T(f) = D_g(f) = \det J(g, f) = c \in \mathbb{K}^*$. The latter means that the polynomials f, g form a Jacobian pair. \Box

Theorem 1. Let $f \in \mathbb{K}[x, y]$, $f = \theta(p)$ for a generative closed polynomial $p \in \mathbb{K}[x, y]$ with $\deg \theta \ge 1$. A derivation $T \in W_2(\mathbb{K})$ commutes with D_f if and only if $T(p) = \psi(p)$ for some polynomial $\psi(t) \in \mathbb{K}[t]$ and $\theta''(p)\psi(p) = \theta'(p)(\operatorname{div} T - \psi'(p))$.

Proof. Let $[T, D_f] = 0$. By Lemma 1, Ker $D_f = \mathbb{K}[p]$, therefore $T(\mathbb{K}[p]) \subseteq \mathbb{K}[p]$. Then $T(p) = \psi(p)$ for some polynomial $\psi(t) \in \mathbb{K}[t]$. Let us prove the equality

$$\theta''(p)\psi(p) = \theta'(p)(\operatorname{div} T - \psi'(p)).$$
(8)

First, let $\deg \psi(t) \geq 1$. Write $\psi(t) = a_0(t - \lambda_1) \dots (t - \lambda_k)$, where $k \geq 1$ and $\lambda_i \in \mathbb{K}$ (recall that \mathbb{K} is algebraically closed). Therefore $T(p) = a_0(p - \lambda_1) \dots (p - \lambda_k)$. This equality can be written in the form

$$T(p - \lambda_1) = a_0(p - \lambda_1) \dots (p - \lambda_k)$$

and taking $p - \lambda_1$ instead of p we can write the last equality as $T(p) = a_0 p(p - \mu_2) \dots (p - \mu_k)$ for some $\mu_k \in \mathbb{K}$ (note that the polynomial $p - \lambda_1$ is also closed and $\mathbb{K}[p] = \mathbb{K}[p - \lambda_1]$). The last equality can be written in the form

$$T(p) = \psi(p) = p\mu(p)$$
 for $\mu(p) = a_0 p(p - \mu_2) \dots (p - \mu_k)$.

By Lemma 2, we have

$$[T, D_p] = D_{\psi(p)} - (\operatorname{div} T)D_p = (\psi'(p) - \operatorname{div} T)D_p.$$
(9)

But, on the other hand, it follows from the equality

$$[T, D_f] = [T, \theta'(p)D_p] = 0$$

that $T(\theta'(p))D_p=-\theta'(p)[T,D_p]$ and therefore

$$[T, D_p] = -\frac{T(\theta'(p))}{\theta'(p)} D_p$$
(10)

(note that $\theta'(p) \neq 0$ because $f = \theta(p)$ and $f \neq const$).

It follows from (9) and (10) that

$$-\frac{T(\theta'(p))}{\theta'(p)} = \psi'(p) - \operatorname{div} T.$$

Therefore it holds the desired equality $\theta''(p)\psi(p) = \theta'(p)(\operatorname{div} T - \psi'(p))$ because $T(\theta'(p)) = \theta''(p)\psi(p)$.

Now let $\deg \psi(t) < 1$. The latter means that $\psi(t) = c \in \mathbb{K}$.

By Lemma 3, $T = D_g$ for some polynomial $g \in \mathbb{K}[x, y]$ and therefore div T = 0. If c = 0, that is $\psi(t) \equiv 0$, then obviously (8) holds. Let $c \neq 0$. Then $D_g(p) = c$ and the polynomials p, g form a Jacobian pair. Let us show that deg $\theta = 1$ in this case. Indeed, in other case

$$[T, D_f] = [D_g, D_f] = [D_g, \theta'(p)D_p] = \theta''(p) \cdot c \cdot D_p + \theta'(p)[D_g, D_p].$$

By Lemma 1, $[D_g, D_p] = D_c = 0$ (recall that $D_g(p) = c$) and therefore

$$[T, D_f] = \theta''(p) \cdot c \cdot D_p = 0.$$

The latter contradicts our choice of the derivation T because $c \neq 0$, and $\theta'' \neq 0$ by our assumption. Therefore deg $\theta(t) = 1$. Taking into account the relations $\theta''(p) = 0$, div T = 0, $\psi'(p) = 0$ we see that the equality (8) holds.

Let now $T(p) = \psi(p), f = \theta(p)$ for some closed polynomial p, and let the equality (8) hold. Let us show that $[T, D_f] = 0$, i.e. $[T, \theta'(p)D_p] = 0$. The last equality is equivalent to the equality

$$T(\theta'(p))D_p = -\theta'(p)[T, D_p].$$
(11)

First, consider the case deg $\psi(t) \geq 1$. Then as above one can assume without loss of generality that $\psi(t) = t\lambda(t)$ for some polynomial $\lambda(t) \in \mathbb{K}[t]$. By Lemma 2, we get

$$[T, D_p] = (\psi'(p) - \operatorname{div} T)D_p$$

Using (11) one can easily show that the latter equality is equivalent to the equality (8):

$$\theta''(p)\psi(p)D_p = \theta'(p)(\operatorname{div} T - \psi'(p))D_p,$$

which holds by our assumptions. So, we have $[T, D_f] = 0$ in the case $\deg \psi(t) \ge 1$.

Consider the case deg $\psi(t) < 1$, i.e., $\psi(t) = c$ for some $c \in \mathbb{K}$. If $\psi(t) \equiv 0$, then div T = 0 by the equality (8). Therefore (by Lemma 1) $T = D_g$ for some polynomial $g \in \mathbb{K}[x, y]$ and $T(p) = 0 = D_g(p)$. Thus $D_p(g) = 0$, i.e., $g \in \operatorname{Ker} D_p$. It follows from the equality $\operatorname{Ker} D_p = \mathbb{K}[p]$ that $g = \mu(p)$ for some polynomial $\mu(t) \in \mathbb{K}[t]$. But then $T = D_g = \mu'(p)D_p$. Taking into account the equality $D_f = D_{\theta(p)} = \theta'(p)D_p$ we get

$$[T, D_f] = [\mu'(p)D_p, \theta'(p)D_p] = 0$$

because $\mu'(p), \theta'(p) \in \text{Ker } D_p$. Let now $\psi(t) = c, c \in \mathbb{K}^*$. Then T(p) = cand from the conditions of the theorem we have $\theta''(p) \cdot c = \theta'(p) \operatorname{div} T$. The latter equality implies that $\operatorname{div} T = 0$ because $\operatorname{div} T$ is a polynomial and $\operatorname{deg} \theta''(p) < \operatorname{deg} \theta'(p)$. But then $T = D_g$ for some polynomial $g(t) \in$ $\mathbb{K}[t]$. It follows from the conditions of the theorem that $\theta''(p) = 0$ and hence $\theta(p) = \alpha p + \beta$ for some $\alpha, \beta \in \mathbb{K}, \alpha \neq 0$. Without loss of generality one can assume that $f = \theta(p) = p$. We have T(p) = c and $T = D_g$. Then $D_p(g) = -c$ and therefore the polynomials p, g form a Jacobian pair. The latter means that

$$[T, D_f] = [D_g, D_f] = D_{[p.g]} = D_c = 0$$

that is T and D_f commute. The proof of the theorem is complete. \Box

Corollary 2. Let $f \in \mathbb{K}[x, y]$ be a closed (in particular, irreducible) polynomial. A derivation $T \in W_2(\mathbb{K})$ commutes with D_f if and only if $T(f) = \psi(f)$ for some polynomial $\psi(t) \in \mathbb{K}[t]$ and div $T = \psi'(f)$.

Proof. Since f is closed we can take without loss of generality thet $\theta(t) = t$. Then $\theta''(t) = 0$, and one can easily show that (8) is equivalent to the equality div $T = \psi'(f)$.

In [12], a class of Jacobian derivations was studied that was induced by weakly semisimple polynomials $f \in \mathbb{K}[x, y]$ (a polynomial f is called weakly semisimple if the corresponding Jacobian derivation D_f has an eigenfunction $g \in \mathbb{K}[x, y]$ with nonzero eigenvalue $\lambda \in \mathbb{K}$, i.e. if $D_f(g) =$ λg). In [3], such polynomials were described in some cases and some examples were pointed out. Using some results from [3] one can construct Jacobian derivations whose centralizers are of rank 2 over their the ring of constants.

Example 1. Let $f(x, y), g(x, y) \in \mathbb{K}[x, y]$ be nonzero polynomials such that $D_f(g) = g$. Then

$$[fD_g - gD_f, D_g] = -D_g(f)D_g - g[D_f, D_g] = gD_g - gD_g = 0,$$

(here we use the equality $[D_f, D_g] = D_h$, where $h = D_f(g)$). The latter means that the Jacobian derivation D_g has the centralizer in $W_2(\mathbb{K})$ of rank 2 over its ring of constants. This centralizer contains two linearly independent (over $\mathbb{K}[x, y]$) derivations D_g and $fD_g - gD_f$. Let us choose, for example, the polynomials f and g of the form:

$$f(x,y) = x(x-1)y, \quad g(x,y) = x^3(x-1)y^2$$

One can easily check that $D_f(g) = g$. So, the derivation $D_g = -2yx^3(x-1)\partial_x + (4x^3 - 3x^2)y^2\partial_y$ has the centralizer in $W_2(\mathbb{K})$ of rank 2 over $\mathbb{K}[p]$ and the corresponding system of differential equations

$$\frac{dx}{dt} = -2yx^3(x-1), \ \frac{dy}{dt} = (4x^3 - 3x^2)y^2$$

is integrable (see, for example, [6]).

3. On structure of centralizers of Jacobian derivations

Theorem 2. Let $f \in \mathbb{K}[x, y]$ be a nonconstant polynomial and D_f the corresponding Jacobian derivation. Let p be a generative closed polynomial for f. Then the centralizer $C_{W_2(\mathbb{K})}(D_f)$ is a free module of rank 1 or 2 over the subring $\mathbb{K}[p]$ of $\mathbb{K}[x, y]$.

Proof. Since p is a generative closed polynomial for f we have $f = \theta(p)$ for some polynomial $\theta(t) \in \mathbb{K}[t]$. Obviously $D_f = \theta'(p)D_p$ and, by Lemma 1, ker $D_f = \text{ker}D_p$. Let us denote for brevity $C = C_{W_2(\mathbb{K})}(D_f)$. Obviously C is a module over the subring $\mathbb{K}[p]$ of $\mathbb{K}[x, y]$. Denote $C_1 = \mathbb{K}[x, y]C$, it is obvious that C_1 is a $\mathbb{K}[x, y]$ -module and $\operatorname{rk}_{\mathbb{K}[x,y]}C_1 \leq 2$ (recall that $W_2(\mathbb{K})$ is a free $\mathbb{K}[x, y]$ -module of rank 2).

First, let $\operatorname{rk}_{\mathbb{K}[x,y]}C_1 = 1$. Let us show that in this case $\operatorname{rk}_{\mathbb{K}[p]}C = 1$ and D_p is a free generator of the module C. Take any $T \in C, T \neq C$ 0. By our assumptions on C_1 , there exist polynomials $g, h \in \mathbb{K}[x, y]$ such that $gD_p + hT = 0$, and at least one of the polynomials g, h is nonzero. Since $D_p \neq 0$ we have $h \neq 0$ and therefore $T = -(g/h)D_p$. But then $D_f(g/h) = 0$. The latter means that the rational function g/h belongs to $\ker_R D_f$, where $\ker_R D_f$ is the kernel of the extension of D_f on $R = \mathbb{K}(x, y)$. Since $\ker_R D_f = \mathbb{K}(p)$ (see, for example [9]) we have g/h = a(p)/b(p) for some polynomials $a(t), b(t) \in \mathbb{K}[t]$ that can be chosen to be coprime. Thus, we obtain the equality $a(p)D_p + b(p)T = 0$ and a(p), b(p) are coprime. From the latter equality we see that b(p)divides D_p , i.e. $D_p = b(p)D_1$ for some derivation $D_1 \in W_2(\mathbb{K})$. But then b(p) = const because $D_p = -p'_y \partial_x + p'_x \partial_y$ and b(p) does not divide p'_y, p'_x if degb(t) > 0. Thus, we have $T = (-a(p)/b(p))D_p$ and D_p is a free generator for the centralizer $C = C_{W_2(\mathbb{K})}(D_f)$ as a $\mathbb{K}[p]$ -module.

Let now $\operatorname{rk}_{\mathbb{K}[x,y]}C_1 = 2$. Choose any $T \in C$ such that T and D_p are linearly independent over $\mathbb{K}[x, y]$. It follows from the equality $[T, D_p] = 0$ that $T(\operatorname{ker}(D_f)) \subseteq \operatorname{ker}(D_f)$, so $T(\mathbb{K}[p]) \subseteq \mathbb{K}[p]$. Therefore $T(p) = \mu(p)$ for some polynomial $\mu(t) \in \mathbb{K}[t]$. Choose among all such $T \in C$ a derivation T_0 such that $\operatorname{deg}\mu_0(t)$ is minimum, where $\mu_0(t)$ is the corresponding polynomial for T_0 . One can easily show that for any $T \in C$ its polynomial $\mu(t)$ is divisible by $\mu_0(t)$. Really, let

$$\mu(t) = q(t)\mu_0(t) + r(t)$$

with degr(t) < deg $\mu_0(t)$. Then $T - q(p)T_0 \in C$ and $(T - q(p)T_0)(p) = r(p)$. By our choice of T_0 we have r(t) = 0. So, every $T \in C$ can be written in the form $T = q(p)T_0 + T_1$, where $T_1 = T - q(p)T_0$ satisfies the equality $T_1(p) = 0$. Since $[T_1, D_p] = 0$ we can show using Corollary (1) that $T_1 = \delta(p)D_p$ for some polynomial $\delta(t) \in \mathbb{K}[t]$. Therefore $T = q(p)T_0 + \delta(p)D_p$. The latter means that the derivations T_0 and D_p are free generators of the $\mathbb{K}[p]$ -module C. The proof is complete.

References

- L.P.Bedratyuk, Ie.YU.Chapovsky, A.P.Petravchuk Centralizers of linear and locally nilpotent derivations, Ukrainian Math. J., issue 75, N.8, 2023, pp. 1043–1052, doi:10.3842/umzh.v75i8.7529 (in Ukrainian).
- [2] Y. Chapovskyi, D. Efimov, A. Petravchuk, Centralizers of elements in Lie algebras of vector fields with polynomial coefficients, Proceedings of the International Geometry Center, 14 (4), 2021, pp. 257–270.
- [3] V.S. Gavran, V.V. Stepukh, On weakly semisimple derivations of the polynomial ring in two variables, Algebra and Discrete mathematics, Vol. 18. N.1, 2014, pp. 50–58.

- [4] A. González-López, N. Kamran, P.J. Olver, Lie algebras of vector fields in the real plane, Proc. Lond. Math. Soc. (3) 64 (2), 1992, pp. 339–368.
- [5] S. Lie, Theorie der Transformationsgruppen, vol. 3, B.G. Teubner, Leipzig, 1893.
- [6] J. Nagloo, A. Ovchinnikov, P. Thompson. Commuting planar polynomial vector fields for conservative newton systems, Communications in Contemporary Mathematics, 22(04), 2020, pp. 195–225.
- [7] A. Nowicki, M. Nagata, Rings of constants for k-derivations in $k[x_1, \ldots, x_n]$, J. Math. Kyoto Univ., Vol. 28, N.1, 1988, pp. 111-118.
- [8] A. Nowicki, Polynomial derivations and their rings of constants, Uniwersytet Mikolaja Kopernika Torun, 1994.
- [9] A. Petravchuk, O.G. Iena, On closed rational functions in several variables, Algebra and Discrete Mathematics, N.2, 2007, pp. 115–124,
- [10] A.P. Petravchuk, O.G. Iena, On centralizers of elements in the Lie algebra of the special Cremona group SA₂(k), J. Lie Theory, v.16, no.3, 2006, pp. 561–567.
- [11] A. Schinzel, *Polynomials with special regard to reducibility*, volume 77. Cambridge University Press, 2000.
- [12] Y. Stein, Weakly nilpotent and weakly semisimple polynomials on the plane, Int. Math. Research Notices, 13, 2000, pp. 681-698.

CONTACT INFORMATION

Danil Efimov,	Department of Algebra and Computer
Anatoliy	Mathematics, Faculty of Mechanics and
Petravchuk,	Mathematics, Taras Shevchenko National
Maksym Sydorov	University of Kyiv, 64, Volodymyrska street,
	01033 Kyiv, Ukraine
	E-Mail: danil.efimov@yahoo.com,
	apetrav@gmail.com,
	smsidorov95@gmail.com
	URL:

Received by the editors: 05.09.2023.