
© Algebra and Discrete Mathematics RESEARCH ARTICLE

Volume 39 (2025). Number 2, pp. 284–294

DOI:10.12958/adm2169

About the theory of local homology and
local cohomology modules
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Abstract. We introduce local homology for the edge ideal of
a graph, and study some properties of local homology modules for
Artinian modules, such as the artinianness, and the characteriza-
tion of Width by local homology. Moreover, we put results which
involve the theory of local cohomology modules together with the
edge ideal of a graph simple and finite, with no isolated vertices.

1. Introduction

Throughout this paper, R is a commutative ring with non-zero identity.

In [7] we have that Grothendieck introduced the definition of local
cohomology. Let J be an ideal of R, and let M be an R-module, then

Hi
J(M) = lim−→

t∈N
ExtiR

(
R/J t,M

)
is called the i-th local cohomology module of M with respect to J . We
know that there exists the theory of local homology which is dual to the
theory of local cohomology of Grothendieck (see [4, 6, and 13]).

The purpose of this paper is to study some properties of local homo-
logy modules and local cohomology modules which involve the theory of
graphs, together with the edge ideal of a graph.
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In the Section 2, we put some definitions and prerequisites for a better
understanding of the theory and results.

We introduce preliminaries of the theory of graphs which involving
the edge ideal of a graph G; associated to the graph G is a monomial
ideal

I (G) = (vivj | vivj is an edge of G) ,

with vivj=vjvi and with i ̸=j, in the polynomial ring R=K[v1, v2, . . . , vs]
over a fieldK, called the edge ideal ofG. The preliminaries of the theory
of graphs were introduced in this Section 2 together with the concepts
suitable for the work.

In the Section 3, we prove some properties of the local homology
module, properties that involve the edge ideal of a graph G, which is a
graph simple and finite, with no isolated vertices.

In the Section 4, we prove a result about the local cohomology mo-
dule, and this result involve the edge ideal of a graph G, which is a graph
finite simple, with no isolated vertices.

Throughout the paper, we mean by a graph G, a finite simple graph
with the vertex set V (G) and with no isolated vertices.

Here, we use properties of commutative algebra and homological al-
gebra for the development of the results (see [2 and 10]).

2. Prerequisites of the graph theory

Let us present in this section the concepts of the graphs theory that we
will use in the course of this work.

2.1. Edge ideal of a graph

This section is in accordance with [1 and 12].
Let R = K [v1, . . . , vs] be a polynomial ring over a field K, and let

Z = {z1, . . . , zq} be a finite set of monomials in R. The monomial
subring spanned by Z is the K-subalgebra,

K [Z] = K [z1, . . . , zq] ⊂ R.

In general, it is very difficult to certify whether K [Z] has a given al-
gebraic property – e.g., Cohen-Macaulay, normal – or to obtain a measure
of its numerical invariants – e.g., Hilbert function. This arises because
the number q of monomials is usually large.

Thus, consider any graph G, simple and finite without isolated ver-
tices, with vertex set V (G) = {v1, . . . , vs}.
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Let Z be the set of all monomials vivj = vjvi, with i ̸= j, in R =
K [v1, . . . , vs], such that {vivj} is an edge of G, i.e., the graph finite and
simple G, with no isolated vertices, is such that the squarefree monomials
of degree two are defining the edges of the graph G.

Definition 2.1. A walk of length s in G is an alternating sequence of
vertices and edges w = {v1, z1, v2, . . . , vs−1, zh, vs}, where zi = {vi−1vi}
is the edge joining vi−1 and vi.

Definition 2.2. A walk is closed if v1 = vs. A walk may also be denoted
by {v1, . . . , vs}, the edges being evident by context. A cycle of length s
is a closed walk, in which the points v1, . . . , vs are distinct.

A path is a walk with all the points distinct. A tree is a connected
graph without cycles and a graph is bipartite if all its cycles are even.
A vertex of degree one will be called an end point.

Definition 2.3. A subgraph G
′ ⊆ G is called induced if vivj = vjvi,

with i ̸= j, is an edge of G
′
whenever vi and vj are vertices of G

′
and

vivj is an edge of G.

The complement of a graph G, for which we write Gc, is the graph
on the same vertex set in which vivj = vjvi, with j ̸= i, is an edge of Gc

if and only if it is not an edge of G. Finally, let Ck denote the cycle on k
vertices; a chord is an edge which is not in the edge set of Ck. A cycle
is called minimal if it has no chord.

If G is a graph without isolated vertices, simple and finite, then let R
denote the polynomial ring on the vertices of G over some fixed field K.

Definition 2.4 ([1]). According to the previous context, the edge ideal
of a finite simple graph G, with no isolated vertices, is defined by

I (G) = (vivj | vivj is an edge of G) ,

with vivj = vjvi, and with i ̸= j.

3. Local homology module of the edge ideal of a graph

We have the following definition.

Definition 3.1. Let J be an ideal of the ring R, and let M be an R-
module. The i-th local homology module HJ

i (M) of M with respect to
J is defined by

HJ
i (M) = lim←−

t∈N
TorRi (R/J t,M)

for all i ≥ 0.
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Remark 3.2. (1) Let ΛJ(G) = lim←−
t∈N

G/J tG be the J-adic completion

of an R-module G, and so we have HJ
0 (M) ∼= ΛJ(M).

(2) Since TorRi (R/J t,M) has a natural structure as a module over the
ring R/J t for all t > 0, HJ

i (M) has a natural structure as a module
over the ring ΛJ(R) = lim←−

t∈N
R/J t.

In this section, we present some results about the local homology
module which involve the theory of graphs together with the edge ideal
of a graph G, which is simple and finite and with no isolated vertices.

Here, we take K a fixed field and we consider K[v1, v2 . . . , vs] the
ring polynomial over the field K. Since K is a field, we have that K
is a Noetherian ring and then K[v1, . . . , vs] is also a Noetherian ring
(Theorem of the Hilbert Basis).

Remark 3.3. By the previous context, R = K[v1, v2 . . . , vs] is a Noethe-
rian ring. Thus, the edge ideal I (G) is an R-module, and thus we can
get characterizations for this module under certain hypothesis.

Proposition 3.4. Let R = K[v1, . . . , vs] be the polynomial ring, I(G) the
edge ideal in R of a finite simple graph G, with no isolated vertices. Then,

the local homology module H
(v1,...,vs)
i (I(G)) is (v1, . . . , vs)-separated, for

all i ≥ 0, i.e., ⋂
t>0

(v1, . . . , vs)
tH

(v1,...,vs)
i (I(G)) = 0.

Proof. It should be noted that inverse limits are left exact and any two
inverse limits commute. Therefore,⋂

n>0
(v1, . . . , vs)

nH
(v1,...,vs)
i (I(G)) ∼=

lim←−
n∈N

(v1, . . . , vs)
n lim←−
t∈N

TorRi (R/(v1, . . . , vs)
t, I(G)),

and, as lim←−
n∈N

(v1, . . . , vs)
n lim←−
t∈N

TorRi (R/(v1, . . . , vs)
t, I(G)) it is contained in

lim←−
n∈N

lim←−
t∈N

(v1, . . . , vs)
nTorRi (R/(v1, . . . , vs)

t, I(G)), which in turn is isomor-

phic to lim←−
t∈N

lim←−
n∈N

(v1, . . . , vs)
nTorRi (R/(v1, . . . , vs)

t, I(G)), it follows that

⋂
n>0

(v1, . . . , vs)
nH

(v1,...,vs)
i (I(G)) = 0,
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since we have

(v1, . . . , vs)
nTorRi (R/(v1, . . . , vs)

t, I(G)) = 0

for all s ≥ t, as required.

Now, we have the following result.

Proposition 3.5. Let R = K[v1, . . . , vs] be the polynomial ring, I(G)
the edge ideal in R of a finite simple graph G, with no isolated vertices.
Suppose that I(G) is an R-module Artinian and let

0→ N
′ → I(G)→ N

′′ → 0,

be a short exact sequence of Artinian modules. Then, we have a long
exact sequence of local homology modules

. . .→ H
(v1,...,vs)
i (N

′
)→ H

(v1,...,vs)
i (I(G))→ H

(v1,...,vs)
i (N

′′
)→ . . .→

H
(v1,...,vs)
0 (N

′
)→ H

(v1,...,vs)
0 (I(G))→ H

(v1,...,vs)
0 (N

′′
)→ 0.

Proof. The short exact sequence

0→ N
′ → I(G)→ N

′′ → 0

gives rise to a long exact sequence, for all t > 0,

. . .TorRi (R/(v1, . . . , vs)
t, N

′
)→ TorRi (R/(v1, . . . , vs)

t, I(G))→
TorRi (R/(v1, . . . , vs)

t, N
′′
)→ . . .→ R/(v1, . . . , vs)

t ⊗R N
′ →

R/(v1, . . . , vs)
t ⊗R I(G)→ R/(v1, . . . , vs)

t ⊗R N
′′ → 0.

Since I(G) is an R-module Artinian, the modules in the long exact se-
quence are Artinian. It should be noted that the inverse limit lim←−

t∈N
is exact

on Artinian R-modules by [8, 9.1]. Therefore, we have the long exact se-
quence of local homology modules, and the proof is complete.

Let us now make a definition, which we will use in a later result.

Definition 3.6. A sequence of elements x1, . . . , xr inR = K[v1, . . . , vs] is
said to be an I(G)-coregular sequence (see [9, 3.1]) if

(
0 :I(G) (x1, . . . , xr)

)
̸= 0 and (

0 :I(G) (x1, . . . , xi−1)
) ·xi→

(
0 :I(G) (x1, . . . , xi−1)

)
is surjective for i=1, . . . , r. We denote by Width(v1,...,vs)(I(G)) the length
of the longest I(G)-coregular sequence in (v1, . . . , vs). In the case in that
I(G) is an Artinian R-module, we know that Width(v1,...,vs)(I(G)) < ∞
(see [4, Paragraph 5]).
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Theorem 3.7. Let R = K[v1, . . . ,vs] be the polynomial ring, I(G) the
edge ideal in R of a finite simple graph G, with no isolated vertices,
and such that Ann(R) ⊆ (v1, . . . , vs). Suppose that I(G) is an Artinian
R-module. Then all maximal I(G)-coregular sequences in (v1, . . . , vs)
have the same length. Moreover,

Width(v1,...,vs)(I(G)) = inf
{
i | H(v1,...,vs)

i (I(G)) ̸= 0
}
.

Before doing the proof of the theorem, let’s put a result that will be
used in proof of the Theorem 3.7

Lemma 3.8. Let R = K[v1, . . . , vs] be the polynomial ring, I(G) the
edge ideal in R of a finite simple graph G, with no isolated vertices,
and such that Ann(R) ⊆ (v1, . . . , vs). Suppose that I(G) is an Artinian

R-module. Then H
(v1,...,vs)
0 (I(G)) = 0 if and only if xI(G) = I(G) for

some x ∈ (v1, . . . , vs).

Proof. If there exists x ∈ (v1, . . . , vs) such that xI(G) = I(G), then

(v1, . . . , vs)I(G) = I(G)

and Λ(v1,...,vs)(I(G)) = 0. Moreover,

R⊗R Λ(v1,...,vs)(I(G)) ∼= H
(v1,...,vs)
0 (I(G)),

by [6, 4.3]. It follows that H
(v1,...,vs)
0 (I(G)) = 0.

We now suppose that, there exists not any element x∈(v1,. . . ,vs) such
that xI(G) = I(G), then (v1, . . . , vs)I(G) ̸= I(G) and Λ(v1,...,vs)(I(G))
̸= 0. From [14, 1.21], we get

Coass(R⊗R Λ(v1,...,vs)(I(G))) = V(Ann(R)) ∩ Coass(Λ(v1,...,vs)(I(G))).

By [5, 3.5 and 4.2], we also have

Coass(Λ(v1,...,vs)(I(G))) ⊆ V ((v1, . . . , vs)) ⊆ V(Ann(R)).

Hence,

Coass(H
(v1,...,vs)
0 (I(G))) = Coass(R⊗R Λ(v1,...,vs)(I(G))) =

Coass(Λ(v1,...,vs)(I(G))).

As Λ(v1,...,vs)(I(G)) ̸= 0, we have that H
(v1,...,vs)
0 (I(G)) ̸= 0.
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Proof of the Theorem 3.7:

Assume that (x1, x2,. . . , xn)⊆(v1, v2,. . . , vs) is a maximal I(G)-core-
gular sequence, let us use induction on n. When n = 0, there does not
exists any x in (v1, . . . , vs) such that xI(G) = I(G). Thus, we have that

H
(v1,...,vs)
0 (I(G)) ̸= 0 by Lemma 3.8. Let n > 0. The short exact sequence

of Artinian R-modules

0→ (0 :I(G) x1)→ I(G)
·x1→ I(G)→ 0

gives rise to a long exact sequence of local homology modules

. . .→ H
(v1,...,vs)
i (0 :I(G) x1)→ H

(v1,...,vs)
i (I(G))

·x1→ H
(v1,...,vs)
i (I(G))→

H
(v1,...,vs)
i−1 (0 :I(G) x1)→ . . ..

By the inductive hypothesis, we have H
(v1,...,vs)
i (0 :I(G) x1) = 0 for all

i < n− 1 and H
(v1,...,vs)
n−1 (0 :I(G) x1) ̸= 0. It follows that,

H
(v1,...,vs)
i (I(G)) = x1H

(v1,...,vs)
i (I(G)) for all i < n.

Hence, we have that

H
(v1,...,vs)
i (I(G)) =

⋂
t>0

xt1H
(v1,...,vs)
i (I(G)) = 0 for all i < n,

by Proposition 3.4. We now have the exact sequence

. . .→ H(v1,...,vs)
n (I(G))

·x1→ H(v1,...,vs)
n (I(G))→ H

(v1,...,vs)
n−1 (0 :I(G) x1)→ 0.

As H
(v1,...,vs)
n−1 (0 :I(G) x1) ̸= 0, we get H

(v1,...,vs)
n (I(G)) ̸= 0. Thus, the

proof is complete.

4. Local cohomology module of the edge ideal of a graph

Definition 4.1. Let J be an ideal of the ring R, and let M be an
R-module. The i-th local cohomology module Hi

J(M) of M with respect
to J is defined by

Hi
J(M) = lim−→

t∈N
ExtiR

(
R/J t,M

)
for all i ≥ 0.
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In this section, we presented a result about the local cohomology
module which involve the theory of graphs together with the edge ideal
of a graph G, which is simple and finite and with no isolated vertices.
Here, we continue in the same context of the previous section.

We begin by proving a lemma which will be used for the proof of the
main theorem of this section.

Lemma 4.2. Let R = K[v1, . . . , vs] be the polynomial ring, I(G) the edge
ideal in R of a finite simple graph G, with no isolated vertices. Suppose
that I(G) is an (v1, . . . , vs)-torsion R-module. Then Hi

(v1,...,vs)
(I(G)) is

a finitely generated R-module for all i ≥ 0.

Proof. First we observe that, using the additivity of the local cohomology
functor, that Hi

(v1,...,vs)
(F ⊗ I(G)) is finitely generated whenever F is a

finitely generated free R-module.
Since R is a finitely generated R-module, we have that R can be

included in an exact sequence

0→ L→ F → R→ 0,

of finitely generated R-modules in which F is free. Since I(G) is an
(v1, . . . , vs)-torsion R-module, by [3, 2.1.6] there exists an injective reso-
lution E• of I(G) in which each term is an (v1, . . . , vs)-torsion R-module.
Since all the terms of E• are injective, the above sequence induces an
exact sequence

0→ HomR(R,E•)→ HomR(F,E
•)→ HomR(L,E

•)→ 0

of complexes.
Note that, for a finitely generated R-module S and an (v1, . . . , vs)-

torsion R-module T , we have Γ(v1,...,vs)(HomR(S, T )) = HomR(S, T ).
Hence, in view of [3, 2.1.7(i)] we obtain the following long exact se-
quence of local cohomology modules, which induces from the above exact
sequence of complexes by applying the functor Γ(v1,...,vs) on it

0→ H0
(v1,...,vs)

(I(G))→ H0
(v1,...,vs)

(F ⊗ I(G))→ H0
(v1,...,vs)

(L⊗ I(G))→
H1

(v1,...,vs)
(I(G))→ H1

(v1,...,vs)
(F ⊗ I(G))→ H1

(v1,...,vs)
(L⊗ I(G))→ . . .→

Hi
(v1,...,vs)

(I(G))→ Hi
(v1,...,vs)

(F ⊗ I(G))→ Hi
(v1,...,vs)

(L⊗ I(G))→
Hi+1

(v1,...,vs)
(I(G))→ . . ..

We have, by what was put above, that Hi
(v1,...,vs)

(F ⊗ I(G)) is finitely

generated for all i ≥ 0. Hence H1
(v1,...,vs)

(I(G)) is finitely generated.
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But R is an finitely generated R-module, and so, H1
(v1,...,vs)

(L⊗ I(G)) is
finitely generated. The above long exact sequence therefore shows that
H2

(v1,...,vs)
(I(G)) is finitely generated. Now use induction.

We finalize with a theorem.

Theorem 4.3. Let R = K[v1, . . . , vs] be the polynomial ring, I(G) the
edge ideal in R of a finite simple graph G, with no isolated vertices. Let i
be a non-negative integer such that Hj

(v1,...,vs)
(I(G)) is finitely generated

for all j < i. Then,

HomR

(
R/(v1, . . . , vs),H

i
(v1,...,vs)

(I(G))
)

is a finitely generated R-module.

Proof. We proceed by induction on i. The case i = 0 is obvious, because

H0
(v1,...,vs)

(I(G)) = Γ(v1,...,vs) (HomR(R, I(G)))

is finitely generated. So, let i ≥ 1. Consider the exact sequence

0→ Γ(v1,...,vs)(I(G))→ I(G)→ I(G)

Γ(v1,...,vs)(I(G))
→ 0,

to deduce the exact sequence

Hi
(v1,...,vs)

(Γ(v1,...,vs)(I(G)))
f→ Hi

(v1,...,vs)
(I(G))

g→

Hi
(v1,...,vs)

(
I(G)

Γ(v1,...,vs)
(I(G))

)
(note that

(
Hi

(v1,...,vs)
(•)

)
i≥0

is a connected right sequence of covariant

functors from C(R) to C(R) (in the sense of [11, Paragraph 6.5])). By
the Lemma 4.2, Hi

(v1,...,vs)
(Γ(v1,...,vs)(I(G))) is finitely generated and so is

Im(f). Therefore we conclude from the exact sequences

0→ Im(f)→ Hi
(v1,...,vs)

(I(G))→ Im(g)→ 0, and

0→ Im(g)→ Hi
(v1,...,vs)

(
I(G)

Γ(v1,...,vs)
(I(G))

)
,

by applying the left exact functor HomR(R/(v1, . . . , vs), •) on them, that
it is enough for us to show that

HomR

(
R/(v1, . . . , vs),H

i
(v1,...,vs)

(
I(G)

Γ(v1,...,vs)(I(G))

))
is finitely generated.
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Hence we can (and do) assume that I(G) is an (v1, . . . , vs)-torsion-
free R-module. So (v1, . . . , vs) contains an element x which is a non-

zerodivisor on I(G). Set ¯I(G) := I(G)
xI(G) . Now the exact sequence

0→ I(G)
x→ I(G)→ ¯I(G)→ 0

induces an exact sequence

Hi−1
(v1,...,vs)

(I(G))
k→ Hi−1

(v1,...,vs)
( ¯I(G))

h→ Hi
(v1,...,vs)

(I(G))
x→

Hi
(v1,...,vs)

(I(G)).
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