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Classification of the pairs of matrices of fixed
Jordan types and representations

of bundles of semichains

V. M. Bondarenko and O. V. Zubaruk

Communicated by A. P. Petravchuk

Abstract. We study the problem of classifying the pairs of
matrices over an algebraically closed field with some restrictions on
their Jordan canonical forms using earlier results of the first author.
All tame and wild, polynomial and non-polynomial growth cases
are described.

1. Introduction

In this paper, we study the problem of classifying up to simultaneous
similarity pairs of matrices over fields with some restrictions on their
canonical forms, using results of the first author on representations of
pairs of categories [1] and bundles of semichains [2, 3]. When consi-
dering various matrix problems, we use the concepts of tame and wild
ones (see general definitions and theorems in [4]); these and other types
of matrix problems (including polynomial and non-polynomial growth),
in concrete cases closed to the considered here, are given and analyzed in
[1]. Formally, cases of finite type (when the number of indecomposable
objects is finite up to the corresponding equivalence) are not excluded
by us from tame ones however as rule are considered separately.

Throughout the paper, we fix an algebraically closed field k and as
rule omit it in the notations. All matrices are considered over k. The
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Jordan block of size m with eigenvalue a is denoted by Jm(a). For a
matrix A ∈ Mn(k), we define J0(A) as the set all (i, a) ∈ N×k such that
the Jordan canonical form A0 of A contains Ji(a). The identity matrix
of size m is denoted by Im.

Let F be a finite subset of N×k. We say that a matrix A is of Jordan
type F if J0(A) ⊆ F . Obviously, if A and A′ are of Jordan type F then
the same Jordan type has also A⊕A′.

The problem of classifying up to (simultaneous) similarity the pairs
of matrices (A,B) with A,B ∈ Mn(k) (n runs through N), respectively,
of Jordan type F , G will be called by us as the problem PJ (F,G).

Our aim is to prove the following theorems.

Theorem 1. Let F , G be finite subsets of N × k. Then the problem
PJ (F,G) is of finite type if and only if F or G consists of a single
element of the form (1, a).

Theorem 2. Let a problem PJ (F,G) be of infinite type. Then it is

(1) tame of polynomial growth if and only if F = {(1, a), (1, b)},
G = {(1, c), (1, d)};

(2) tame of non-polynomial growth if and only if up to the permutation
of F and G one of the following conditions holds:

(2.1) F = {(1, a), (1, b)}, G = {(2, c)};
(2.2) F = {(1, a), (1, b)}, G = {(1, c), (2, c)};
(2.3) F = {(2, a)}, G = {(2, c)};
(2.4) F = {(1, a), (2, a)}, G = {(2, c)};
(2.5) F = {(1, a), (2, a)}, G = {(1, c), (2, c)}.
Otherwise, the problem PJ (F,G) is wild.

Let kf denotes the set of roots of the polynomial f(x) and ma, where
a ∈ kf , the multiplicity of a.

From Theorem 2 follows the next theorem.

Theorem 3. Let a problem PJ (F,G) be of infinite type and PJ (F ′, G′)
be wild for any inclusions F ⊆ F ′, G ⊆ G′ at least one of which is strict.
Then the problem PJ (F,G)

(a) is tame if and only if, for some polynomials f(x) and g(x) of the
second degree, F = {(i, a) | a ∈ kf , 1 ≤ i ≤ ma} and G = {(j, b) | b ∈
kg, 1 ≤ j ≤ mb};

(b) is of polynomial growth if and only if F and G are as in (a)
relative to f(x) and g(x) without multiple roots.
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2. Representations of pairs of completed posets

Throughout, all posets are finite. When considering a partitioned matrix
U = (Uxy) with blocks Uxy, x ∈ I1, y ∈ I2, we denote by dx the number of
its rows in the horizontal band or columns in the vertical band indexed by
the element x, and puts d(U) = (d1, d2), where d1 = (dx) and d2 = (dy)
are the vectors with x ∈ I1 and y ∈ I2; in the case when I1 = I2 and
d1 = d2, we identified (d1, d2) with d1.

By definition, a completed poset S consists of a poset A and an
equivalence relation ∼ on A≤ = {(x, y) ∈ A × A|x ≤ y}. These data
are subjected to the condition that x ≤ z ≤ y and (x, y) ∼ (x′, y′) imply
the existence of a unique z′ satisfying x′ ≤ z′ ≤ y′, (x, z) ∼ (x′, z′) and
(z, y) ∼ (z′, y′). It is easy to see that (x, y) ∼ (x′, x′) implies x = y, and
(x, y) ∼ (x′, y′) implies x ∼ x′ and y ∼ y′. The last property for x = y,
x′ = y′ determines an equivalence relation on A. A special case of such
posets are posets with equivalence when the relation ∼ on A< is trivial
(special cases of which in turn are usual posets and sets with equivalence
when, respectively, ∼ and ≤ is trivial).

For a pair (P,Q) of disjoint sets with equivalence P = (A0,∼1), Q =
(B0,∼2) and vectors d1 = (dx) with x ∈ A0 and d2 = (dy) with y ∈ B0,
where dx, dy ∈ N∪0, we denote by Md1,d2(P,Q) the set of all partitioned
matrices U = (Uxy) with blocks Uxy, x ∈ A0, y ∈ B0, such that

(1) Uxy is a dx × dy matrix;

(2) dz = dz′ if z, z
′ ∈ A0 and z ∼1 z

′ or z, z′ ∈ B0 and z ∼2 z
′.

Note that U ∈ Md1,d2(P,Q) is of size d01×d02, where d01 =
∑

x∈A0
dx,

d02 =
∑

y∈B0
dy.

Let now S = (A,∼) be a completed poset and S0 = (A0,∼) the cor-
responding set with equivalence. By an S-matrix we mean a partitioned
matrix U = (Uxy), x, y ∈ A0, from Md1,d2(S0, S0) for some d1, d2, such
that

(3) Uxy = Ux′y′ if x ∼ x′ and y ∼ y′;

(4) Uxy = 0 if x ̸≤ y.

The set of all such matrices is denoted byMd1,d2(S) or also byMd1(S)
if d1 = d2.

Let S = (A,∼1) and T = (B,∼2) be completed posets and S0 =
(A0,∼1), T0 = (B0,∼2) the corresponding sets with equivalence. We call
representation of (S, T ) of dimension d = (d1, d2) a partitioned matrix R
from Md1,d2(A0, B0). The representation R is called exact if all coordi-
nates of d1 and d2 differ from 0. Two representations R and R′ is called
equivalent if there exist invertible matrices X ∈ Md1(S) and Y ∈ Md2(T )
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such that XR = R′Y .
We call a pair (S, T ) of completed posets of finite type, tame (res-

pectively, of inv-finite type, inv-tame) and so on if so is the problem of
classification up to equivalence all (respectively, all invertible) its repre-
sentations.

Theorem 4. Let S = (A,∼1) and T = (B,∼2) be completed posets that
are not linearly ordered with trivial equivalence relations.

Then it is of infinite type and the following conditions are equivalent:
I. The pair (S, T ) is tame.
II. The pair (S, T ) is inv-tame.
III. For each of the completed posets
(a) the relation on {(x, y) |x < y} is trivial;
(b) the order of any class of equivalent elements is less than 3;
(c) an element that does not belong to a two-element equivalence class

is incomparable with no more than one element, otherwise it is compa-
rable with all.

Proof. Note that a completed poset that satisfies III − a) and III − b)
can be considered as a poset with involution (x∗ = y if either x is not
equal to and is equivalent to y, or x is equal to y and is not equivalent to
z ̸= x). Then (by definition) III−c) means that the completed poset is a
∗-semichain. Therefore II ⇔ III follows from Theorem 6 [1], and III ⇒ I
from the main classification theorem of [2] and [3, §1]. The implication
I ⇔ II is trivial.

From the last two mentioned papers it also follows the next theorem.

Theorem 5. Let completed posets S = (A,∼1) and T = (B,∼2) be as
in Theorem 4, and the condition III holds. Then the pair (S, T ) is of
polynomial growth if and if both the equivalence relations are trivial and
each of the posets has the only pair of incomparable elements.

3. Block Jordan canonical form

Let A ∈ Mn(k) be a matrix with a fixed set J0(A) (see Introduction) and
E(A) the set of its eigenvalues. Denote by r(i, a), where (i, a) ∈ J0(A),
the number of Jordan block Ji(a) in the Jordan canonical form A0 of A
and put N(a) = {i ∈ N | (i, a) ∈ J0(A)}. Then A0 can be writen up to
renumbering the rows and columns as the following partitioned matrix:

A□ := ⊕a∈E(A) ⊕i∈N(a) Ji(a)⊗ Ir(i,a).
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We call A□ the block Jordan canonical form of the matrix A.
Large blocks A□

(i,a)(i′,a′) of A□, where (i, a), (i′, a′) ∈ J0(A
□), are of

sizes ir(i, a)× i′r(i′, a′) and in turn consist of the blocks A□
(i,a,j)(i′,a′,j′) :=

(A□
(i,a)(i′,a′))j1j2 of sizes r(i, a) × r(i′, a′), where 1 ≤ j ≤ i, 1 ≤ j′ ≤ i′.

So as the result we have that A□ consist of the blocks A□
xy with x, y

running through the set I(A□) := {(i, a, j) | (i, a) ∈ J0(A
□), 1 ≤ j ≤ i}.

By d(A□) we denote the vector (dx) with x running through I(A□), where
dx is equal to the size of the (square) block A□

xx.
Now we determine the structure of matrices that commute with a

block Jordan canonical matrix.
Let A = A□ be a block Jordan canonical matrix with d := d(A) and

Md(k) the algebra of all partitioned matrices M with d(M) = d. Let
further St(A) be the stabilizer of A by which we mean the subalgebra
of all matrices X ∈ Md(k) such that AX = XA. Define the completed
poset CPA = (PA,∼A) as follows. The poset PA consists of the elements
from I(A) and for elements x = (i, a, j), y = (i′, a′, j′),

(a) x ≤ y if and only if a = a′ and i ≥ i′, j ≤ j′, or i < i′, j ≤ j′+i−i′;
(b) x ∼A y if and only if (i, a) = (i′, a′).
Elements (u, v) and (u′, v′) of P<

A = {(x, y) ∈ PA × PA|x < y}
with u = (i, a, j), v = (i′, a, j′), u′ = (s, b, t), v′ = (s′, b, t′) are in the
equivalence relation ∼A if and only if u ∼A u′, v ∼A v′ and j− t = j′− t′.

Theorem 6. The algebra St(A) coincides in Md(k) with the algebra
Md(CPA) of all CPA-matrices.

Proof. Let us introduce some notations for matrices over the field k.
Denote by ∆=(p), where p ∈ N, the set of all upper triangular p × p
matrices A = (aij) such that aij = ai′j′ holds whenever j−i = j′−i′ ≥ 0.
For p, q ∈ N denote by ∆=(p, q) the set ∆=(p) if p = q, the set of all p×q
matrices of the form

(
0 A

)
with A ∈ ∆=(p) if p < q, and of the form(

A
0

)
with A ∈ ∆=(q) if p > q.

Lemma 1 (see e.g. [5], Ch. VIII). For Jordan blocks Jp(a), Jq(b) and a
p× q matrix X, the equality Jp(a)X = XJq(b) holds if and only if a = b,
X ∈ ∆=(p, q) or a ̸= b, X = 0.

Now we replace Jp(a), Jq(b) on their direct sums Jm
p (a)(= Jp(a) ⊕

. . .⊕ Jp(a), m summands) and Jn
q (b), where m,n ∈ N, and renumbering

the rows and columns (in the same way) each of them, we write these
matrices, reprectively, in the form Jp(a) ⊗ Im and Jq(a) ⊗ In (in other
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words, in the above terms they are block Jordan matrices). Denote by
∆=

mn(p) the set of upper block-triangular pm× pn matrices with blocks
Aij of size m×n satisfying the same equalities as aij in ∆=(p). The sets
∆=

mn(p, q) are defined similarly to ∆=(p, q), however in the case p < q
(respectively, p > q) the matrix ∆=

mn(p) should already be supplemented
by q − p vertical (respectively, p− q horizontal) zero bands.

From Lemma 1 we have the following one.

Lemma 2. For a pm×qn partitioned matrix X with blocks of size m×n,
the equality Jp(a) ⊗ ImX = XJq(b) ⊗ In holds if and only if a = b,
X ∈ ∆=

mn(p, q) or a ̸= b, X = 0.

Let now X ∈ St(A). We consider A and X as matrices with large
block, i.e. A = (A(i,a)(i′,a′)) and X = (X(i,a)(i′,a′)), where (i, a), (i′, a′) ∈
J0(A). Since the matrix A is block diagonal with A(i,a)(i,a) = Ji(a) ⊗
Ir(i,a), the equality AX = XA is equivalent to the equalities of the form
(Jp(a)⊗ Im)X(p,a)(q,b) = X(p,a)(q,b)(Jq(b)⊗ In) with (p, a), (q, b) running
through J0(A) and therefore by Lemma 2 X(p,a)(q,b) belongs to ∆=

mn(p, q)
if a = b and ie equal to 0 if a ̸= b. And this, as is easy to see, means that
X ∈ Md(CPA) and moreover that St(A) with d = d(A) and Md(CPA)
coincide in Md(k).

4. Proof of Theorems 1 and 2

Let us associate a finite subset of N × k the completed poset CPF =
(PF ,∼F ) in the same way as for a block canonical matrix A□, replacing
J0(A

□) by F . Note that if a matrix A is of Jordan type F ̸= J0(A),
it means that the horizontal and vertical bands of A□ corresponding
x ∈ F \ J0(A) are empty.

The following theorem will allow us to use Theorems 4 and 5 (and
ultimately the results of papers [2, 3]).

Theorem 7. Let F and G be finite subsets in N× k. Then the problem
PJ (F,G) is equivalent to the problem of classifying up to equivalence the
invertible representations of the pair of completed posets (CPF , CPG).

Proof. Let A,B ∈ Mn(k) (with n any fixed) be matrices of Jordan
type F and G, respectively. Then the pair (A,B) is similar to the pair
TAB(R) = (A□, RB□R−1), where R is an invertible n× n matrix. Since
the block Jordan canonical form of a matrix is uniquely determined by
the matrix itself (like the usual one), when studying pairs of matrices
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with the property under consideration, it is sufficient to limit ourselves
to pairs of the form TAB(R) with R running through the group of invert-
ible n× n matrices.

So let we have pairs TAB(R) = (A□, RB□R−1) and TAB(R
′) =

(A□, R′B□(R′)−1) and let they are similar, i.e., for some invertible n×n
matrix X, hold the equations XA□X−1 = A□ and XRB□R−1X−1 =
R′B□(R′)−1 Then from the first equality it follows that X ∈ St(A□) and
from the second one that Y := (R′)−1XR ∈ St(B□). Therefore XR =
R′Y , where all the matrices are invertible and X ∈ St(A□), Y ∈ St(B□),
and it is natural to consider X and Y as block matrices the divisions of
which into horizontal and vertical bands are consistent with the divisions
of matrices A□ and B□. By Theorem 6 St(A□) coincides with the alge-
bra of all CPF -matrices and St(B□) of all CPG-matrices, and hence the
equation XR = R′Y means that R and R′ are equivalent as invertible
representations of the pair of completed posets (CPF , CPG). The oppo-
site statement – i.e., that the equivalence of TAB(R) and TAB(R

′) follows
from the equivalence of R and R′ as representations of (CPF , CPG) – is
obvious.

Note that the construction given in the proof preserves types and
growth of the both problems what can be proved by the standard method
of the representation theory.

Now Theorems 1 and 2 follow from the two theorems of Section 1 and
elementary considerations concerning connections between properties of
completed posets CPF and sets F .
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