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On a finite state representation of GL(n,Z)
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Abstract. It is examined finite state automorphisms of regu-
lar rooted trees constructed in [6] to represent groups GL(n,Z).
The number of states of automorphisms that correspond to elemen-
tary matrices is computed. Using the representation of GL(2,Z)
over an alphabet of size 4 a finite state representation of the free
group of rank 2 over binary alphabet is constructed.

1. Introduction

Representations of residually finite groups and semigroups by automor-
phisms and endomorphisms of regular rooted trees is an attractive and
challenging research direction. It is inspired mainly by brilliant exam-
ples of infinite finitely generated periodic groups constructed as automor-
phism groups of rooted trees ([14, 15, 16]). Results on ubiquity of free
groups and semigroups in automorphism groups of rooted trees ([7, 8])
stimulated explicit representations of groups and semigroups containing
free subgroups and subsemigroups. Among them, in [6] a natural and
brilliant representation of groups GL(n,Z), n > 1, by finite state auto-
morphisms of 2n-regular rooted tree was found.
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The purpose of this note is further investigation of the construction
presented in [6]. For elementary matrices in GL(n,Z), n > 1, it is calcu-
lated the number of states of finite state automorphisms corresponding
to them. An algorithm for constructing a finite state automorphism by
a given unimodular matrix is discussed and implemented. Finally, a
method from [1, 9] is applied to construct a quite surprising representa-
tion of the free group of rank 2 by finite state automorphisms of a regular
rooted tree based on the representation of GL(2,Z) (cf. with Section 7
of [17]).

The organization of the paper is follows. In Section 2, required con-
cepts and properties related to finite state automorphisms of regular
rooted trees are briefly reviewed. More details on rooted trees, their au-
tomorphisms and in particular finite state automorphisms can be found
in [2, 3, 4, 5]. Section 3 contains computations of the number of states
of automorphisms corresponding to elementary unimodular matrices. In
Section 4, a representation of the free group of rank 2 is constructed.

2. Rooted trees and their automorphisms

Let Tn, n > 1, be a rooted n-regular tree. Denote by X the set of vertices
of Tn, connected with the root. Then |X| = n. It is convenient to treat
the tree Tn as the (right) Cayley graph of the free monoid X∗ with basis
X. From this point of view each vertex of Tn is a finite word over X, the
root is the empty word Λ. Two words u, v are connected by an edge if
and only if u = vx or v = ux for some x ∈ X.

The automorphism group AutTn of Tn is a permutational wreath
product

Sym(X) ≀AutTn

of the symmetric group on X with AutTn itself. Each automorphism
g ∈ AutTn can be uniquely defined by a permutation σg ∈ Sym(X) and
a multiset gx ∈ AutTn, x ∈ X that form the so-called wreath recursion

g = (gx, x ∈ X)σg.

The right action of g on vertices of Tn can be written recursively as
follows

(xw)g = xσgwgx , x ∈ X, w ∈ X∗.

The permutation σg is called the rooted permutation of g. Automor-
phisms gx, x ∈ X are called states of the first level of g. Using wreath



76 On a finite automaton representation of GL(n,Z)

recursions the product of automorphisms

g = (gx, x ∈ X)σg, h = (hx, x ∈ X)σh

can be expressed as

gh = (gxhxσg , x ∈ X)σgσh.

The identity automorphism will be denoted by e.

For an arbitrary vertex v ∈ X∗ the state of g at v is a uniquely defined
automorphism gv such that

(vw)g = vgwgv , w ∈ X∗.

The set Q(g) = {gv : v ∈ X∗} is called the set of states of g. Since
gΛ = g the automorphism g is its state as well. If Q(g) is finite then the
automorphism g is called the finite state. All finite state automorphisms
of Tn form a countable subgroup FAutTn in AutTn. We say that a group
G has a finite state representation if it is isomorphic to a subgroup of
FAutTn for some n. The self-similar closure of an automorphism g is a
subgroup of AutTn generated by the set Q(g). The multiplication rule
for automorphisms imply Q(g−1) = {h−1 : h ∈ Q(g)}.

For an arbitrary automorphisms g, h and a vertex v the state of their
product gh at v is the product gvhvg . In particular, the setQ(gh) of states
of the product gh is a subset of the product Q(g)Q(h) of multipliers’ sets
of states.

Each automorphism g ∈ AutTn can be defined by its Moore diagram,
i.e. a directed graph with Q(g) as the vertex set. The vertex g is marked.
For arbitrary state h ∈ Q(g) the Moore diagram of g has exactly n
labelled arrows starting from h. For each x ∈ X exactly one arrow starts
in h and terminates in hx. It has a label of the form x|xσh .

3. Finite state representation of GL(n,Z)

Let n > 1. In [6], the authors constructively proved that the group
GL(n,Z) is isomorphic to a subgroup of FAutT2n . Let us recall this
embedding. We will identify the vertex set of T2n with the set of all
finite words over the vector space Zn

2 of dimension n over the binary field
Z2. Define the following permutations τ, σ, πi,j , 1 ≤ i < j ≤ n:

(x1, x2, . . . , xn)
τ = (x1 + x2, x2, . . . , xn),
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(x1, x2, . . . , xn)
σ = (x1 + 1, x2, . . . , xn),

(x1, . . . , xi, . . . , xj , . . . xn)
πij = (x1, . . . , xj , . . . , xi, . . . xn),

where (x1, x2, . . . , xn) ∈ Zn
2 . Then all these permutations and the prod-

uct τσ are involutions. Consider automorphisms t1, t2, si,j ,1 ≤ i < j ≤ n,
of AutT2n , defined by the following wreath recursions:

t1 = (t1(x1,x2,...,xn), (x1, x2, . . . , xn) ∈ Zn
2 )τ,

t2 = (t2(x1,x2,...,xn), (x1, x2, . . . , xn) ∈ Zn
2 )τσ

sij = (sij(x1,x2,...,xn), (x1, x2, . . . , xn) ∈ Zn
2 )πij ,

where

t1(x1,x2,...,xn) =

{
t2, if x1 = x2 = 1

t1, otherwise
,

t2(x1,x2,...,xn) =

{
t1, if x1 = 1, x2 = 0

t2, otherwise
,

sij(x1,x2,...,xn) = sij . Then Q(t1) = Q(t2) = {t1, t2}, Q(sij) = {sij}.
It is shown in [6], that the subgroup of FAutT2n generated by the

set {t1, sij , 1 ≤ i < j ≤ n} is isomorphic to GL(n,Z). More precisely,
the required isomorphism is defined as follows. Denote by Tij(k) the
elementary n × n matrix obtained from the identity matrix by adding
the ith column multiplied by k to the jth column, 1 ≤ i, j ≤ n, i ̸= j,
k ∈ Z, k ̸= 0, and by Ei the elementary matrix obtained from the
identity by multiplying its ith column by −1, 1 ≤ i ≤ n. Denote by
Eij the permutation matrix that correspond to the transposition (ij),
1 ≤ i < j ≤ n. Then the mapping φn that sends elementary matrix
T21(1) to t1 and permutation matrix Eij to sij , 1 ≤ i < j ≤ n, defines
the required isomorphic embedding.

This construction gives rise to the following natural algorithm of con-
structing a finite state automorphism φn(A) corresponding to a given
matrix A ∈ GL(n,Z):

1. factorize A as a product of elementary matrices F1 . . . Fm;

2. compute finite state automorphisms φ(Fi), 1 ≤ i ≤ m;

3. compute φ(A) as the product φ(F1) . . . (Fm).
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We implemented this algorithm using GAP ([10]) and AutomGrp[11]
package.

In order to estimate the number of states of φn(A) we examine the
subgroup generated by automorphisms t1, t2.

Lemma 1. Automorphisms t1 and t2 commute.

Proof. Denote by g and h the products t1t2 and t2t1 correspondingly.
Then their rooted permutations are ττσ and τστ . Each of them equals
σ. For arbitrary (x1, x2, . . . , xn) ∈ Zn

2 states of the first level of g and h
at (x1, x2, . . . , xn) have the form

g(x1,x2,...,xn) =


t21, if x1 = 1, x2 = 0

t22, if x1 = 1, x2 = 1

t1t2, otherwise

,

h(x1,x2,...,xn) =


t21, if x1 = 1, x2 = 0

t22, if x1 = 1, x2 = 1

t2t1, otherwise

.

Since rooted permutations of g and h are equal we obtain by induction
the equality g = h. The proof is complete.

Lemma 2. Let n ≥ 1 and Q = {tn1 , t
n−1
1 t2, . . . , t1t

n−1
2 , tn2}. Then auto-

morphisms from Q are pairwise different and for arbitrary g ∈ Q the set
of states of g is Q. In particular, automorphisms tn1 and tn2 have exactly
n+ 1 states.

Proof. Let g = t2k1+ε1
1 t2k2+ε2

2 for non-negative integers k1, k2 and ε1, ε1 ∈
{0, 1}. Using induction on n and Lemma 1 one can directly verify that
for arbitrary (x1, x2, . . . , xn) ∈ Zn

2 the states of the first level of g at
(x1, x2, . . . , xn) has the form

g(x1,x2,...,xn) =


t2k1+ε1+k2
1 tk2+ε2

2 , if x1 = x2 = 0

t2k1+ε1+k2+ε2
1 tk22 , if x1 = 1, x2 = 0

tk1+ε1
1 tk1+2k2+ε2

2 , if x1 = 0, x2 = 1

tk11 tk1+ε1+2k2+ε2
2 , if x1 = x2 = 1

. (1)

Since t1 ̸= t2 by induction on k using (1) one obtains inequality tk1 ̸= tk2,
k ≥ 1. Hence, the automorphisms from Q are pairwise different and
|Q| = n+ 1.
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Since states of the first level of g belong to Q the inclusion Q(g) ⊆ Q
holds. To prove the equality it is sufficient to show that the Moore
diagram of g is a strongly connected graph. Direct computations show
that this statement holds for n ≤ 6. Then we assume that n > 6.

Using states at (1, 0, . . . , 0) one constructs a directed path from g
to tn−1

1 t2 and tn1 . Now it is sufficient to show that for an arbitrary l,
0 ≤ l ≤ n, the state tl1t

n−l
2 is accessible from tn1 . It follows from (1) that

the accessibility of tl1t
n−l
2 implies accessibility of tn−l

1 tl2. This property
will be called the symmetricity.

Assume on the contrary that n is the least positive integer such that
there exists not accessible states from Q. Let k be an integer such that
the state tk1t

n−k
1 is not accessible. Then 0 < k < n. Since the statement

about accessibility holds for n − 1 the state tk1t
n−k−1
1 is accessible from

tn−1
1 . As soon as each state of the product is a product of states of the
multipliers it means that in the product tn−1

1 · t1 the state tk1t
n−k−1
1 is

multiplied by t1 only. Hence, the state tk+1
1 tn−k−1

1 is accessible. This
property will be called the inconsistency.

Assume now that l is the least number such that tl1t
n−l
1 is not acces-

sible. Then the symmetricity implies l < n/2. Since t1t
n−1
2 is accessible

at least one of the states t21t
n−2
2 and t31t

n−3
2 is accessible. In both cases

t21t
n−2
2 is accessible. Hence 2 ≤ l. Applying (1) for cases x2 = 0 one

obtains that the states

t2l+1
1 tn−2l−1

2 , t2l+2
1 tn−2l−2

2

are not accessible. This contradicts with the inconsistency. The proof is
complete.

Proposition 1. The self-similar closure of each of automorphisms t1
and t2 is isomorphic to Z× Z.

Proof. The statement immediately follows from Lemma 1 and Lemma 2.

Theorem 1. Let A ∈ GL(n,Z). Denote by m(A) the number of states
of the automorphism φn(A) ∈ FAutT2n.

1. If A is a permutation matrix then m(A) = 1.

2. If A = Ei, 1 ≤ i ≤ n, then m(A) = 8.

3. If A = Tij(k), 1 ≤ i, j ≤ n, i ̸= j, k ∈ Z, k ̸= 0, then m(A) =
|k|+ 1.
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Proof. 1. Definition of φn implies m(Eij) = 1 for a permutation matrix
Eij , 1 ≤ i < j ≤ n. Since the product of automorphisms with exactly
1 state has 1 state the required equality holds for arbitrary permutation
matrix.

2. Since the automorphism t1 has 2 states its inverse

t−1
1 = φn(T21(−1))

has 2 states as well. Then the equality

E1 = T21(1) · E12 · T21(−1) · E12 · T21(1) · E12.

implies m(E1) ≤ 8. Direct verification shows that the equality holds.
Since Ei = E1i · E1 · E1i one obtains m(Ei) = 8, 2 ≤ i ≤ n.

3. Since φn(T21(1)) = t1 Lemma 2 implies m(T21(k)) = k+ 1, k > 0.
The inverse automorphism t−k

1 equals φn(T21(−k)) and has k + 1 states
as well. Hence m(T21(−k)) = k + 1, k > 0.

Then from the equalies

T12(k) = E12 · T21(k) · E12,

Ti1(k) = E2i · T21(k) · E2i, 3 ≤ i ≤ n,

T2j(k) = E1j · T21(k) · E1j , 3 ≤ j ≤ n,

Tij(1) = E2i · E1j · T21(1) · E1j · E2i, 3 ≤ i, j ≤ n, i ̸= j,

it follows m(Tij(k)) = |k|+ 1, 1 ≤ i, j ≤ n, i ̸= j, k ∈ Z, k ̸= 0.

This theorem together with a factorization of a matrix A ∈ GL(n,Z)
in a product of elementary matrices give an upper estimation on the size
of Q(φn(A)). In particular, from the third statement of the theorem we
immediately have

Corollary 1. Let A ∈ SL(n,Z) be a triangular matrix, A = (aij)
n
i,j=1.

Then
|Q(φn(A))| ≤

∏
i ̸=j

(1 + |aij |).

In general, to obtain such an estimation a factorization is required.
Moreover, such a factorization strongly depends on an algorithm applied.
For instance, it is shown in [13] that for n ≥ 3 each matrix A ∈ SL(n,Z)
is a product of at most (3n2 − n)/2 + 36 elementary matrices. However,
elementary multipliers of the form Tij(k) may contain enormous k.
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4. Finite state representation of a free group

Let n = 2. We will show how the isomorphic embedding φ2 of GL(2,Z)
in FAutT4 gives rise to an isomorphic embedding of the free group of
rank 2 in FAutT2. Let X = {0, 1} be the set of vertices of the first level
of T2. Consider finite state automorphisms a, d ∈ FAutT2 defined by
their Moore diagrams, see Figure 1 and Figure 2 correspondingly.

a

a0

a1

b

b0

b1

c

c0

c1

0|0 0|0

1|1 1|1

0|1 0|1

1|0 0|1

0|0 1|1

1|1 0|0

1|1

0|0

1|0

1|0

1|0

1|1

Figure 1: Moore diagram A1 that defines generator a of the free group

d

d0

d1

e

e0

e1

f

f0

f1

0|0 0|0

1|1 0|0

0|1 0|0

1|0 1|1

0|0 1|1

1|1 1|1

1|1

1|1

1|1

0|0

0|0

0|0

Figure 2: Moore diagram A2 that defines generator d of the free group
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Theorem 2. The group generated by finite state automorphisms a and
d is free of rank 2.

Proof. Let X = {1, 2, 3, 4}. To simplify notation we use the following
bijection from Z2

2 to X:

(0, 0) 7→ 1, (1, 0) 7→ 2, (0, 1) 7→ 3, (1, 1) 7→ 11.

Then the isomorphism φ2 maps the matrices(
1 0
1 1

)
,

(
1 1
0 1

)
∈ GL(2,Z)

to the finite state automorphisms t1, s1 ∈ FAutT4 such that

t1 = (t1, t1, t1, t2)(34), t2 = (t2, t1, t2, t2)(12),

s1 = (s1, s1, s1, s2)(24), s2 = (s2, s2, s1, s2)(13).

Here s1 = s12 · t1 · s12. Since the matrices(
1 0
2 1

)
,

(
1 2
0 1

)
generate a free subgroup of rank 2 in GL(2,Z) (see [12]) then their images
under φ2, finite state automorphisms t21 and s21, generate a free subgroup
of rank 2 in FAutT4. Direct computations show that

t21 = (t21, t
2
1, t1t2, t2t1), t22 = (t2t1, t1t2, t

2
2, t

2
2),

t1t2 = t2t1 = (t1t2, t
2
1, t1t2, t

2
2)(12)(34),

and
s21 = (s21, s1s2, s

2
1, s2s1), s22 = (s2s1, s

2
2, s1s2, s

2
2),

s1s2 = s2s1 = (s1s2, s1s2, s
2
1, s

2
2)(13)(24).

Consider the bijection between the set of vertices of the first level of
T4 and the set of vertices of the second level of T2 defined by the rule

1 7→ 00, 2 7→ 11, 3 7→ 10, 4 7→ 01.

It defines an injection f from the vertex set of T4 to T2. Then one directly
verifies that for an arbitrary vertex v of T4 the following equalities hold

f(vt
2
1) = (f(v))a, f(vt1t2) = (f(v))b, f(vt

2
2) = (f(v))c,
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f(vs
2
1) = (f(v))d, f(vs1s2) = (f(v))d, f(vs

2
2) = (f(v))f .

It means that the groups generated by the sets {t1, s1} and {a, d} are
isomorphic as permutation groups. In particular, the latter group is free
of rank 2. The proof is complete.

References

[1] V. Prokhorchuk, On finite state automaton actions of HNN extensions of
free abelian groups, Carpathian Math. Publ., 13, N. 1, 2021, pp. 180–188;
DOI: 10.15330/cmp.13.1.180–188.

[2] A.S. Oliynyk, Finite state wreath powers of transformation semigroups, Semigroup
Forum, 82, N. 3, 2011, pp. 423–436; DOI: 10.1007/s00233-011-9292-z.

[3] L. Kaloujnine, Sur les p-groupes de Sylow du groupe symétrique du degré pm,
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