
© Algebra and Discrete Mathematics RESEARCH ARTICLE

Volume 36 (2023). Number 2, pp. 225–242

DOI:10.12958/adm2157

The presentation of deterministic and strongly
deterministic graphs

O. S. Senchenko and M. I. Prytula

Communicated by A. V. Zhuchok

Abstract. The paper proposes a presentation of D-graphs
and SD-graphs by a defining pair of words in the alphabet of their
vertex labels. We present an algorithm that, given an arbitrary
pair of sets, either constructs a D-graph for which this pair is the
defining pair or informs that it is impossible to do so. We also
present an algorithm for constructing a canonical defining pair for
a D-graph and find some numerical estimates of this pair.

Introduction

A presentation of various mathematical structures is one of the most
important and useful ways to specify them in practice. The most well-
known are the presentations of groups, semigroups, and finite automata
by generators and defining relations between them. In the context of
the presentation theory, there are various problems, many of which have
significant application value. Faithful presentations of endomorphism
semigroups of some graphs and hypergraphs were considered, e.g., in [1],
[2]. At the same time, for non-classical algebraic structures it is known
that trioids and ordered doppelsemigroups can be represented by planar
trees and binary relations, respectively (see, e.g., [3], [4], [5]).

The authors are partially supported by the Grant EFDS-FL2-08 of the found The
European Federation of Academies of Sciences and Humanities (ALLEA)

2020 Mathematics Subject Classification: 68R10, 05C62, 05C78.
Key words and phrases: deterministic graph, presentation, defining pair.

https://doi.org/10.12958/adm2157

226 The presentation of D-graphs and SD-graphs

In the research of the presentation of finite automata without out-
put in [6], a special presentation of the automaton (the canonical system
of defining relations) was proposed, and the problem of characteriza-
tion (comparing this automaton with the reference automaton only by
its presentation) was solved. This solution used a special procedure for
transforming the presentation to the canonical system of defining rela-
tions of the reference automaton.

It is natural to want to extend the results to other objects that are
similar to automata. In our opinion, it would be logical to try to extend
the results to deterministic graphs [7] (including their subclass, strongly
deterministic graphs) for the following reasons:

1) Labeled graphs are widely used in computer science to describe
and model various computational processes. The most studied are fi-
nite directed graphs with labeled edges (Labeled Transition System [8],
weighted automata [9], finite automata etc). There are many computa-
tional processes in programming, robotics [10], model verification [11],
which are naturally presented by graphs with labeled vertices, including
deterministic graphs.

2) Such graphs have a certain resemblance to finite automata with
no output.

3) To study the structure of objects that can be modeled by vertex-
labeled graphs (including deterministic and strongly deterministic
graphs), one or more mobile agents with limited memory are often used
and placed in the object under study. This method of presentation of a
graph is very convenient for such a research.

It should be noted that no generally accepted concepts and appa-
ratus for presenting deterministic graphs have been developed so far.
Some attempts to do so were made in [12], so to develop, generalize,
and systematize these results, this paper attempts to develop a theory
of presentation of deterministic and strongly deterministic graphs.

In this paper, we propose a presentation of deterministic and strongly
deterministic graphs using two sets of words, the first set describes the
cycles of graph and the second set describes their leaf vertices. We sepa-
rated the functions of these two sets: each cycle must be described by at
least one word from the first set, and each leaf vertex must be described
by at least one word from the second set. We propose an algorithm that,
given a pair of word sets that meet certain conditions, either construct
a deterministic graph or reports that it is impossible to do so (in other
words, the pair of sets is not correct). We also found a criterion for

O. S. Senchenko, M. I. Prytula 227

sets of words, according to which, if this algorithm builds a graph, this
graph will necessarily be strongly deterministic. Similarly to the canoni-
cal system of defining relations [6], we propose a special defining pair,
which is called canonical. The numerical characteristics of the power of
the components of the canonical defining pair and the lower bounds on
the volume of these components are found. We also propose a subclass of
strongly deterministic graphs for which the volume of the first component
of the canonical defining pair is most likely to be maximal.

1. Main definitions

In this paper, we consider undirected, finite, non-empty, connected, ver-
tex-labeled simple graphs [13] G = (V,E,X, ξ(V)), where V is the set
of vertices of the graph, E is the set of its edges, ξ(V) : V → X is a
total function for labeling the vertices of a graph by symbols of a finite
alphabet X = {x1, . . . , xp}. The value of ξ(V) for a vertex v is called
the label of v. The set of all words of finite length in the alphabet X
(including the empty word ε) is denoted by X∗. Let p, q ∈ X∗, then the
concatenation of p and q is denoted by pq. Let p = x′1 . . . x

′
k (x′i ∈ X),

then the length of the word p is denoted by d(p). Let E(v) denote the
set of vertices adjacent to vertex v: v′ ∈ E(v) ↔ (v, v′) ∈ E, the degree
of a vertex v is the number |E(v)|. A vertex of degree 1 is called a leaf
or a leaf vertex.

In this paper, we consider deterministic and strongly deterministic
graphs. A labeled graph G is called deterministic [7] (or a D-graph) if
all vertices in the open neighborhood of every its vertex have different
labels. A D-graph G is called strongly deterministic [7] (or a SD-graph)
if all vertices in the closed neighborhood of every its vertex have different
labels. In other words, a D-graph can have two adjacent vertices with
the same label, but this cannot happen in a SD-graph. It is not difficult
to see that SD-graphs are the graphs with distance-2 colorings. In our
paper we will consider SD-graphs as a special case of D-graphs, which
are not ”colored” in the classical sense (see, e.g., [13]), since in D-graphs
two adjacent vertices can have the same labels. Let Gn,m denote the class
of D-graphs with n vertices and m edges.

Let’s fix some vertex v0 ∈ V of the D-graph G = (V,E,X, ξ(V)),
which we will call the root vertex, this vertex will be highlighted in
the notation of the D-graph if necessary: G = (V,E,X, ξ(V), v0). Let
G = (V1, E1, X, ξ1(V1), v0) and H = (V2, E2, X, ξ2(V2), v0). If V1 ⊆ V2,

228 The presentation of D-graphs and SD-graphs

E1 ⊆ E2 and ξ1(V1) ⊆ ξ2(V2), then G is a subgraph of H (and H a
supergraph of G), written as G ⊆ H. If G ⊆ H and G ̸= H, then G is a
proper subgraph of H.

Let G1 = (V1, E1, X, ξ1(V1), v
′) and G2 = (V2, E2, X, ξ2(V2), v

′′) be
D-graphs. A bijective mapping φ : V1 → V2 is called an isomorphism if
φ(v′) = v′′, ∀v ∈ V1 ξ1(v) = ξ2(φ(v)) and ∀v1, v2 ∈ V1 (v1, v2) ∈ E1

if and only if (φ(v1), φ(v2)) ∈ E2. An isomorphism of graphs G1 and
G2 is denoted by G1

∼= G2. Let v′1 be some vertex of the D-graph
G = (V,E,X, ξ(V)). Since the path p = v′1 . . . v

′
k uniquely corresponds

to the word ξ(p) = ξ (v′1) . . . ξ (v
′
k), then we will consider the path p as

ξ(p) and denote it by the equality v′1ξ(p) = v′k. The path (or the word)
p = x′1x

′
2 . . . x

′
k is called valid for a vertex v′1 ∈ V if ξ(v′1) = x′1, and there

exist vertices v′2, . . . , v
′
k ∈ V such that ξ(v′2) = x′2, . . . , ξ(v

′
k) = x′k, and

(v′1, v
′
2), . . . , (v

′
k−1, v

′
k) ∈ E. Let p = x′1 . . . x

′
k. The inverse of p (x′k . . . x

′
1)

is denoted by p−1. We call a word q a prefix of a word p if there exists
w such that p = qw, this fact is denoted by q ⊆ p.

All vertices of a given D-graph G = (V,E,X, ξ(V), v0) can be divided
into two classes by the following procedure: remove all leaves vertices
from G other than the root vertex, along with the edges incident to
these vertices. This procedure will be repeated as long as possible. The
graph B(G) obtained in this way is called the base of the graph G, the
vertices included in B(G) are called base vertices, and those vertices of
G that are not included in B(G) are called free vertices. It is easy to see
that the base of the graph is constructed uniquely in a finite number of
steps, the base of B(G) may consist of one root vertex (in the case when
G is a tree), and if B(G) contains at least one vertex other than the root
vertex, then it must contain at least one simple cycle. It follows that
every base vertex that is different from the root vertex v0 is adjacent to
at least two base vertices.

2. Defining pair for D-graphs and SD-graphs

As mentioned above, the structure of objects that can be presented
as D-graphs is often studied with the using of agents that are placed
in the object under study (hereafter we associate this object with the
D-graph). These agents can communicate certain information to the ob-
server and/or other agents about the local neighborhoods of the vertices
they are currently located on. Based on this information and/or instruc-
tions from the observer, agents can move along the edges of the graph.

O. S. Senchenko, M. I. Prytula 229

The movements of the agents determine the sequences of labels of the
vertices they have visited. In this regard, D-graphs are very convenient
for such a study, since if the observer has a map of the graph (the sets
V , E, X and the function ξ(V)) and knows which vertex of the studied
D-graph the agent was placed on at the beginning of the study (the root
vertex), then the trajectory of the agent’s movement along the graph can
be uniquely restored from this sequence of labels.

If the observer does not know the map of the graph under study, the
movements of the agents can be organized by him in such a way that,
based on their analysis, the observer receives the desired information
about the graph structure (for example, drawing a map of the graph,
searching for the shortest paths in it, comparing the given graph with
the reference graph). Such an analysis can greatly simplify our presenta-
tion of a D-graph, by which we mean the mapping of one or more finite
sets of words in the alphabet of graph vertex labels that describe possible
(and/or impossible) trajectories in the graph. For such a presentation,
you need to determine the number of such sets of words (preferably as
few as possible) and the function that each of these word sets execute
in the graph (which structural elements of the graph each set describes).
At the same time, these sets should be chosen in such a way that a uni-
versal algorithm can be invented that either unambiguously constructs a
D-graph that matches these sets of words or informs that it is impossible
to do so. It is also necessary to invent an algorithm for transition from
any D-graph to the above sets of words.

At the same time, it is desirable that such a presentation satisfies the
following conditions:

� The presentation of graphs should be similar to the presentation of
automata [6].

� The presentation of SD-graphs must be similar to the presentation
of D-graphs, but the concepts, algorithms, etc. proposed by us
must preserve the strong determinism of graphs (i.e., all transfor-
mations performed on a graph known to be strongly deterministic
must not deprive it of its strong determinism).

Further, we assume that all paths in the graph start from the root
vertex. By the term ”pair” {C,L}(x′) we mean two finite sets of words
C and L that satisfy the conditions:

1) Each word of the set C begins and ends with the symbol x′.

230 The presentation of D-graphs and SD-graphs

2) Each word of the set L begins with the symbol x′.

3) The length of each word of C is greater than 2; the length of each
word of L is greater than 1.

The sets C and L are called the components of the pair {C,L}(x′).
If each word of each component of the pair {C,L}(x′) does not contain
a sequence of two identical symbols, then such a pair is called strong.

Let’s state the requirements that a D-graph G = (V,E,X, ξ(V), v0),
whose alphabet X coincides with the set of all symbols that appear in
words from all components of a pair {C,L}(x′), is considered a presen-
tation of this pair:

a) ξ(v0) = (x′).

b) All words from C and L are valid for v0.

c) Each word p ∈ C describe the cycle v0p = v0 in G.

d) For each word q ∈ L the vertex v0q is a leaf in G and v0q ̸= v0.

e) For each leaf vertex v ∈ V that is different from the root vertex
v0, there exists at least one word q ∈ L such that v0q = v.

f) For any pair {C,L}(x′), either no presentation exists or this pre-
sentation is uniquely determined.

At the same time, several different pairs can correspond to the same
presentation.

Fix on X the linear order <: x1 < x2 < · · · < xp. We define the
linear order ⪯ on X∗:

1) for all xi ∈ X, where 1 ≤ i ≤ p, let xi ⪯ xi;

2) for all p, q ∈ X∗, if d(p) < d(q), then p ⪯ q;

3) for all p, q ∈ X∗, if p = x′1 . . . x
′
s, q = x′′1 . . . x

′′
s , x′1 = x′′1, . . . ,

x′k−1 = x′′k−1 and x′k < x′′k, then p ⪯ q.

Let G = (V,E,X, ξ(V), v0) be some vertex-labeled graph. A reduc-
tion of G is a procedure that transforms G into a graph [G] using the
following algorithm (the AR-algorithm):

0) Set V ′ = V,E′ = E, ξ′(V ′) = ξ(V), denote by G′ = (V ′, E′, X, ξ′(V ′), v0).

1) For all v ∈ V ′, we find the shortest word w in ⪯ that corresponds
to the path from v0 to v. Associate v with w.

2) Sort the vertices of the graph G′ by their associated words in order
⪯. The current vertex vc is the first vertex in the specified order, and
the current label is x = x1.

3) If there are such different vertices v′1, . . . , v
′
q for which the condi-

tions v′1, . . . , v
′
q ∈ E′(vc) and ξ′(v′1) = . . . = ξ′(v′q) = x are simultaneously

satisfied, then we denote U = {v′1, . . . , v′q} and perform the following se-
quence of actions:

O. S. Senchenko, M. I. Prytula 231

3.1. add a new vertex v′ to V ′ and set ξ′(v′) = x;

3.2. remove the edges (vi, vj) from E′, where vi, vj ∈ U ;

3.3. for all (vi, vj), where vi ∈ U , add (v′, vj) to E′;

3.4. remove the edges (vi, vj), where vi ∈ U , from E′, remove v from
V ′, where v ∈ U ;

3.5. if v0 ∈ U , then the vertex v′ is renamed to v0 and we consider
this vertex as root;

3.6. remove the repeating edges, preserving only one copy of each;

3.7. go to step 1.

4) If there exists x′ ∈ X that is next to x in the order < (i.e., x ̸= xp),
then set x = x′ and go to step 3.

5) If there exists v that is next to vc, then set vc = v, x = x1 and go
to step 3, otherwise the AR-algorithm finishes and [G] = G′.

It is easy to see that the execution of the AR-algorithm ends in a
finite number of steps, its result is uniquely determined, and this result
is a D-graph.

Remark 1. When executing this algorithm, there is some ambiguity
with the names of the new vertices (except in the case when the newly
created vertex v′ was renamed to v0 in step 3.5), but the names of all
other vertices (except the root one) in the graph are not important to us.
In this circumstance, if step 3 of the AR-algorithm has been executed,
we can say that [G] is isomorphic to some graph. It is easy to see that
[G] = G if and only if G is a D-graph. In addition, if there are no edges
between any vertex labeled x′1 and any vertex labeled x′2 in G, then there
are no edges between vertices with these labels in [G]. This fact will be
used below when finding a criterion for constructing a SD-graph.

We define an AP-algorithm that, given a pair {C,L}(x′), either con-
struct the D-graph G({C,L}(x′)) or shows that it is impossible to con-
struct a D-graph that meets conditions (a) – (e).

0) Initially, the graph G({C,L}(x′)) consists of a single vertex v0
labeled ξ(v0) = x′.

1) For each word pi = x′xi1 . . . x
i
nx

′ ∈ C we add vertices vi1, . . . , v
i
n

with labels xi1, . . . , x
i
n and edges (v0, v

i
1), (v

i
1, v

i
2), . . . , (v

i
n−1, v

i
n), (v

i
n, v0).

After each such addition, we reduce the resulting graph by the AR-algo-
rithm.

2) For each word pj = x′xj1 . . . x
j
n ∈ L, we add vertices vj1, . . . , v

j
n with

labels xj1, . . . , x
j
n, edges (v0, v

j
1), . . . , (v

j
n−1, v

j
n) and reduce the resulting

graph by the AR-algorithm.

232 The presentation of D-graphs and SD-graphs

3) We consider all the words of L: if there exists p ∈ L such that
the vertex v0p is not leaf or v0p = v0, then we assume that the graph
G({C,L}(x′)) does not exist.

4) For each leaf vertex v ∈ G({C,L}(x′)) other than v0, we consider
the words of the component L: if there is no such p ∈ L that v = v0p,
then we assume that the graph G({C,L}(x′)) does not exist.

5) For each p ∈ C
⋃
L if the path p is not valid for v0 in the resulting

graph, then we assume that the graph G({C,L}(x′)) does not exist.
If, as a result of this procedure, it is possible to construct the graph

G({C,L}(x′)) from a pair {C,L}(x′), then such a pair is called cor-
rect. In the AP-algorithm, the first and second stages create a certain
graph, which, if the checks in stages 3 – 5 are successful, is the graph
G({C,L}(x′)). If at least one of the checks in stages 3 – 5 fails, then we
assume that the graph G({C,L}(x′)) does not exist.

From the fact that vertices and edges ofG({C,L}(x′)) are constructed
exclusively by words from the sets C and L, words from a strongly pair do
not have a sequence of two identical labels, and, therefore, at any step of
constructing G({C,L}(x′)) there are no adjacent vertices with the same
label, and the reduction procedure will not lead to the appearance of
adjacent vertices with the same label, it follows

Lemma 1. If {C,L}(x′) is a correct strong pair, then the graph
G({C,L}(x′)) is strongly deterministic.

It is easy to see that if the pair {C,L}(x′) is correct, the graph
G({C,L}(x′)) satisfies the requirements (a) – (e), any proper subgraph
of G({C,L}(x′)) does not satisfy the requirement (b), and any proper su-
pergraph of G({C,L}(x′)) satisfies the requirements (a) – (c), but may
not satisfy the requirements (d) and (e). So, if the pair {C,L}(x′) is cor-
rect, then the graph G({C,L}(x′)) is the smallest inclusion graph that
meets the requirements (a) – (e), so we consider it a presentation by the
pair {C,L}(x′).

A correct pair {C,L}(x′) is called defining for a D-graph G if
G({C,L}(x′)) ∼= G.

To summarize the above, we can consider the AP-algorithm to be a
partial map of the set of pairs to the set of D-graphs, whereby the correct
pair corresponds to the D-graph constructed by the AP-algorithm.

Let’s consider the operation of individual stages of the AP-algorithm
using the following example.

Example 1. Let C = {12341, 142451}, L = {152125423, 14523}(1). Fi-
gure 1 (a) shows the graph obtained after executing step 1, Figure 1 (b)

O. S. Senchenko, M. I. Prytula 233

shows the graph obtained after executing step 2. In this graph, the
vertices v0152125423 and v014523 are leaves, so the check in step 3 is
successful. For the selected vertex v with the label 1, there is no word
p ∈ L such that v0p = v, i.e., the check in step 4 fails, so the graph
G({C,L}(1)) does not exist.

Note that for a pair {C,L′}(1), where L′ = L
⋃
{1521}, the graph

G({C,L′}(1)) exists, it is shown in Figure 1 (b).

5

а) 0V

V

4 3

3

2

2 2

1
b)

5

0V

4 3

3

2
1

2

Figure 1. Illustration of the procedure for constructing a D-graph for
a given pair

3. Canonical defining pair

Let G = (V,E,X, ξ(V), v0) be a D-graph and V = {v0, . . . , vn−1}. Let’s
define the auxiliary set of words in the alphabet X. The reachability
basis of VG is the set of words {w1, w2, . . . , wn}, where for each vertex vi
there exists a word wi ∈ VG, such that v0wi = vi, and for any w ̸= wi

from v0w = vi, it follows wi ⪯ w. The spanning tree of a graph G, defined
by the basis VG, is denoted by T (VG) or T (G, v0). For each vertex v ∈ V ,
we denote by spv a word from VG such that v0spv = v.

Let’s describe the algorithm (the AC-algorithm) for constructing the
defining pair {ΣG,ΛG} for a D-graph G, which, due to some of its pro-
perties, we call canonical.

First, we set ΣG = ∅ and ΛG = ∅. If the graph G consists of a single
vertex v0, then we set ΣG = ∅, ΛG = ∅ and VG = {ξ (v0)}.

Suppose a graph G contains more than one vertex. First, we add to
the set ΛG all words w ∈ VG such that the vertex v0w is a leaf vertex of
G. After that, for each pair of words p, q ∈ VG \ΛG, if neither of them is
a prefix of the other and v0pq

−1 = v0, then we add one of the two words

234 The presentation of D-graphs and SD-graphs

pq−1 or qp−1 to the set ΣG, which is lower in the order ⪯ (hereafter,
the vertices v0p and v0q

−1 are called the generators for the word pq−1 or
qp−1 that was added to ΣG).

Let’s describe some properties of the canonical defining pair that
directly follow from the AP- and AC-algorithms.

Theorem 1. Let {ΣG,ΛG} be the canonical defining pair of a D-graph
G = (V,E,X, ξ(V), v0).

1) If at least one component {ΣG,ΛG} is not an empty set, then for
each vertex v ∈ V there exist such z1, z2, z3 ∈ X∗ that at least one of the
statements is true: a) spvz1 ∈ ΛG; b) spvz2 ∈ ΣG; c) z3(spv)

−1 ∈ ΣG.
2) Let (v1, v2) be an edge of G, ξ(v1) = x′1 and ξ(v2) = x′2. Then

there exists z1, z2 ∈ X∗ such that at least one of the following statements
is true: a) spv1x

′
2z1 ∈ ΣG

⋃
ΛG; b) spv2x

′
1z2 ∈ ΣG

⋃
ΛG.

3) If ΣG ̸= ∅, then for every σ ∈ ΣG there exist p, q ∈ X∗ such that
pq = σ, and p ∈ VG and q−1 ∈ VG.

4) Let (v1, v2) be an edge of the graph G that does not belong to the
spanning tree T (G, v0). Then there exists a unique word σ ∈ ΣG such
that the edge (v1, v2) is included in the path v0σ.

5) If ΣG ̸= ∅, then for each σ ∈ ΣG inequality d(σ) ≥ 4 is satisfied.
6) If ΣG ̸= ∅, then for each σ ∈ ΣG there are p = p′x1 (x1 ∈ X), q ∈

X∗ x2, x3 ∈ X, x2 ̸= x3 such that σ = px2qx3p
−1 and v0p = v0px2qx3x1.

7) If v1, v2 are the generators of some word σ ∈ ΣG, then (v1, v2) /∈
T (G, v0) and | d(spv1)− d(spv2) |≤ 1.

In other words, the first and the second statements state that the
pair {ΣG,ΛG} contains certain information about each vertex and edge
of G, the third statement states that each σ ∈ ΣG can be divided into
two parts such that the first part and the reverse of the second part are
the shortest by ⪯ words for the corresponding vertices of G, the fourth
statement indicates that every edge of G not belonging to the spanning
tree T (VG) is described by a some word from ΣG, the fifth statement
shows that each σ ∈ ΣG contains a simple cycle; which, as the sixth
statement establishes, cannot be presented as pxp−1 for any p ∈ X∗,
x ∈ X.

From the AP-algorithm and the AC-algorithm, we can see that the
pair {ΣG,ΛG} is correct.

Theorem 2. G({ΣG,ΛG}) ∼= G.

To prove this theorem, we investigated the step-by-step construction
of the graph G({ΣG,ΛG}) by words from the sets ΣG and ΛG. To do

O. S. Senchenko, M. I. Prytula 235

this, let’s ΣG = {σ1, . . . , σk} and ΛG = {λ1, . . . , λq}. Let’s introduce
the family of sets Mi (0 ≤ i ≤ k + q) as follows: M0 = ∅, M1 = {σ1},
M2 = {σ1, σ2}, . . ., Mk = {σ1, . . . , σk} = ΣG, Mk+1 = {σ1, . . . , σk, λ1},
. . ., Mk+q = {σ1, . . . , σk, λ1, . . . , λq} = ΣG

⋃
ΛG. Given this family of

sets, two families of graphs are introduced: Gi and Hi. The graphs of the
family Gi are subgraphs of the graph G, defined by the vertices and edges
of the words from the corresponding set Mi, and the graphs of the family
Hi are constructed from the words from the corresponding set Mi using
the AP-algorithm. According to this algorithm, Hk+q = G({ΣG,ΛG}),
and the equality Gk+q = G follows from the first and the second state-
ments of Theorem 1. By induction on i (0 ≤ i ≤ k + q), we show that
Hi

∼= Gi.

4. Metric properties of the components of a canonical
defining pair

Let’s further assume that the D-graph G = (V,E,X, ξ(V), v0) belongs to
the class Gn,m. This section presents estimates of the power (i.e., in our
case, the number of elements) and volume (i.e., in our case, the sum of
the lengths of all words) of each component of a canonical defining pair:
|ΣG|, |ΛG|, ∥ΣG∥, ∥ΛG∥. Hereafter, the notation ⌈x⌉ denotes the smallest
natural number, that is not less than x.

Theorem 3. |ΣG| = m− n+ 1.

Proof. Since each member of the class Gn,m is a connected simple graph,

n− 1 ≤ m ≤ n(n−1)
2 . The proof will be done by induction on the number

of edges.

Let m = n − 1. Then any member of the class Gn,n−1 is a tree, i.e.,
it does not contain cycles, which implies that |ΣG| = 0. In this case,
n− 1− n+ 1 = 0, which proves the base of induction.

Suppose that for any member G of the class Gn,k (n−1 ≤ k < n(n−1)
2),

|ΣG| = k − n+ 1. We prove that for any member G′ of the class Gn,k+1

it is satisfied |ΣG′ | = k − n+ 2.

Let G′ = (V,E,X, ξ(V), v0) ∈ Gn,k+1. Since n ≤ k + 1, the D-graph
G′ contains at least one simple cycle. Let (v1, v2) ∈ E belongs to some
simple cycle of G′ and does not belong to the spanning tree T (G′, v0).
Then the graph G = G′− (v1, v2) [13] is connected and contains k edges.
It is easy to see that this graph is a D-graph. By inductive assumption,
|ΣG| = k − n+ 1.

236 The presentation of D-graphs and SD-graphs

Let p1, p2 ∈ VG and v0p1 = v1 and v0p2 = v2. Then, since the
vertices v1 and v2 are not adjacent in the graph G, neither of two words
p1 (p2)

−1 and p2 (p1)
−1 do not belong to ΣG. In this case, according to the

AC-algorithm, one of two words p1 (p2)
−1 or p2 (p1)

−1 (lesser in the order
⪯) belongs to ΣG′ . Let p1 (p2)

−1 ∈ ΣG′ .

Since the edge (v1, v2) ̸∈ T (G′, v0), VG′ = VG, so, according to the
AC-algorithm, ΣG = ΣG′\{p1 (p2)−1}, so |ΣG′ | = (k−n+1)+1 = k−n+2,
which proves the inductive step.

Theorem 4. If m = n − 1 (i.e., G is a tree), then 1 ≤ |ΛG| ≤ n − 1.

If m > n − 1, then 0 ≤ |ΛG| ≤ n − ⌈32 +
√

9
4 − 2 · n+ 2 ·m⌉, and all

estimates are attainable.

Proof. Consider the first case, where G is a tree. G can contain from
two (for a line graph [13]) to n − 1 (for a star graph [13]) leaf vertices.
Since, according to the AC-algorithm, |ΛG| is equal to the number of leaf
vertices in the graph G that are different from the root vertex v0, the
largest value of |ΛG| is in the star graph, where the central vertex is the
root vertex (Figure 2 a), and this value is n− 1, and the smallest value
of |ΛG| is in the line graph, where the root vertex is one of the two leaf
vertices (Figure 2 b), and this value is 1, which proves the first part of
the theorem.

V0

V1 V2

V1

Vn-1...

... Vn-1a) b) V0

Figure 2. The trees for which the maximum and minimum estimates
|ΛG| are attainable

Consider the case when G is not a tree, i.e. n− 1 < m ≤ n·(n−1)
2 . In

this case, there always exists a graph from the class Gn,m such that all
vertices are the part of some simple cycle (i.e., there are no leaf vertices
in G), so the smallest value of |ΛG| is 0.

Find an upper bound of |ΛG|. Let’s describe the structure of a graph
G from the class Gn,m, for which the number of leaf vertices is maximized.
Let |B(G)| vertices belonging to the base of G. It is easy to see that the
maximum number of leaf vertices in G is n − |B(G)|, which is possible

O. S. Senchenko, M. I. Prytula 237

in the case when all free vertices of the graph are leaves (for example, all
free vertices of such a graph are adjacent to the root vertex). Denote by
δ(n,m) the minimum possible number of vertices for G ∈ Gn,m belonging
to B(G). Then the number n− δ(n,m) is an upper bound of |ΛG|.

Let’s find δ(n,m) for G ∈ Gn,m. It is easy to see that the largest
power of the first component of the canonical defining pair for a graph
G′ with y vertices is that of the complete graph Ky. By Theorem 3,
|ΣG| = m − n + 1, so δ(n,m) is equal to the minimum value of y such

that m− n+ 1 does not exceed |ΣKy |. Since Ky has y·(y−1)
2 edges, then

|ΣKy | =
y·(y−1)

2 − y + 1 = (y2 − 1) · (y − 1). In other words, the value
of δ(n,m) is the minimal natural number y that satisfies the inequality
m − n + 1 ≤ (y2 − 1) · (y − 1). Since m, n and y are natural num-

bers, δ(n,m) = ⌈32 +
√

9
4 − 2 · n+ 2 ·m⌉, so the upper bound of |ΛG| is

n− ⌈32 +
√

9
4 − 2 · n+ 2 ·m⌉.

Below we provide all the estimates of the volume of the components
of the canonical defining pair found to date.

Theorem 5. Let G ∈ Gn,m be a tree. Then:

1) ∥ΣG∥ = 0;

2) n ≤ ∥ΛG∥ ≤ ⌈n2+2n
4 ⌉, and these estimates are attainable.

Proof. 1) Since G is a tree, ΣG = ∅, so ∥ΣG∥ = 0.

2) Given the second statement of Theorem 1, for every edge (v1, v2)
of G, there must exist a word λ ∈ ΛG such that (v1, v2) is in the path
v0λ. Since a path length of k edges is k + 1, the smallest possible total
number of symbols in ΛG required to include all n− 1 edges of G in the
words of ΛG is n − 1 + 1, which proves the lower bound. This estimate
is attainable for the line graph shown in Figure 2 (b).

Let’s prove the upper bound. Suppose that a graph G has q leaf
vertices other than the root vertex v0, and, accordingly, |ΛG| = q
(q = 1, . . . , n− 1). It is easy to see that the maximum possible volu-
me of the second component of the canonical defining pair will be for a
tree with at most one vertex of degree greater than 2 (v′). This vertex
can either coincide with the root vertex or not, then it is adjacent to
some vertex that belongs to the shortest path from v0 to v′. Also all leaf
vertices of the tree other than the root vertex are necessarily adjacent
to the vertex v′. The vertex v′ is not adjacent to other vertices in the
tree. An example of such a tree is shown in Figure 3, where vertex v′ is

238 The presentation of D-graphs and SD-graphs

adjacent to the vertex v′′ and to all leaf vertices {v′1, . . . , v′q} other than
the root vertex.

V0 V'
...

...

V''

V'1

V'2

V'q

Figure 3. A tree for which the volume of the second component of the
canonical defining pair is maximal

Let G be such a tree, we find ∥ΛG∥. Since d(spv′) = n − q, and the
length of each word in ΛG is n−q+1, ∥ΛG∥ = q(n−q+1). Thus, we need
to find q (q ∈ N , q ∈ [1, n−1]) for which the function f(q) = q(n−q+1)
takes the largest value. Without taking into account the naturalness of
q, we get q = n+1

2 , taking into account q ∈ N , we get that the desired
value is q = n+1

2 for odd n and q = n
2 or q = n

2 + 1 for even n. Then

∥ΛG∥ = n2+2n+1
4 for odd n and ∥ΛG∥ = n2+2n

4 for even n. Combining

these cases, we get ∥ΛG∥ = ⌈n2+2n
4 ⌉, which proves the upper bound.

Lemma 2. Let G ∈ Gn,m is not a tree. Then ∥ΣG∥ ≥ 4(m−n+1), and
this estimate is attainable.

Proof. This bound follows directly from Theorem 3 and the fifth state-
ment of Theorem 1. This bound is attainable for a graph with all vertices
adjacent to the root vertex. In such graph, ΣG consists of m−n+1 words
of the length 4.

Let’s consider an upper bound on the volume of the first component
of the canonical defining pair for a graph that is not a tree. Let’s consider
the following graph F ∈ Gn,m, which, due to its certain resemblance to a
flower, we call the ”flower graph”, and its structural elements are given
corresponding biological names.

When finding the upper bound of |ΛG| in Theorem 4, we found

δ(n,m) = ⌈32 +
√

9
4 − 2 · n+ 2 ·m⌉, which is the minimum number of

vertices in a connected simple graph G, such that |ΣG| = m−n+1. We
divide all vertices of the graph F into two classes. The first class (the
inflorescence) consists of vertices that are generators for words in ΣF ,

O. S. Senchenko, M. I. Prytula 239

the inflorescence contains δ(n,m) vertices. The second class (the stem)
contains the remaining n − δ(n,m) vertices, in the case n = δ(n,m) all
vertices of the graph F are part of the inflorescence. If n > δ(n,m), then
the stem is a line with one end being the root vertex and the other end
connected by an edge to one of the vertices of the inflorescence (let’s call
this vertex a receptacle). There are no other edges between the stem
and the inflorescence. If n = δ(n,m), then the root vertex becomes
the receptacle. The inflorescence can be a complete graph Kδ(n,m), then
µ(n,m) = 0. Otherwise, µ(n,m) denotes the number of edges whose
addition to the inflorescence makes it a complete graph.

Let’s find µ(n,m). The complete graphKδ(n,m) contains
δ(n,m)(δ(n,m)−1)

2

edges, the stem contains n− δ(n,m) edges, and the graph F contains m

edges. Thus µ(n,m) = δ(n,m)(δ(n,m)−1)
2 −(m−n+δ(n,m)). If µ(n,m) > 0,

then there are no edges between the receptacle and some µ(n,m) other
vertices of the inflorescence, and there is an edge between any other
vertices in the inflorescence. Let’s illustrate the above definitions in Fi-
gure 4.

0

2

4

3

6

5

1

Figure 4. The flower graph F ∈ G7,14

For the flower graph shown in Figure 4, n = 7, m = 14, δ(n,m) =
= 6, µ(n,m) = 2, the stem consists of the root vertex with label 0, the
inflorescence includes vertices with labels 1, . . . , 6, the receptacle is the
vertex with label 1, and the inflorescence lacks edges (1, 5) and (1, 6).

Let’s find ∥ΣF ∥ for a flower graph F ∈ Gn,m. The length of the
shortest path from the root vertex to the receptacle is n − δ(n,m) + 1.
Consider two classes of vertices in the inflorescence. The class I includes
those vertices of the inflorescence that are adjacent to the receptacle, and
the class II includes those that are not adjacent to the receptacle (the
receptacle does not belong to either class). The number of vertices of
the class II is µ(n,m), the length of the shortest path to these vertices is

240 The presentation of D-graphs and SD-graphs

n−δ(n,m)+3. The number of vertices of the class I is δ(n,m)−µ(n,m)−1,
the length of the shortest path to these vertices is n− δ(n,m) + 2.

Let’s consider how the pairs of generators in the flower graph F are
formed. It is easy to see that the vertices that form the stem and the
receptacle aren’t generators for any word in ΣF . All possible pairs of
vertices in the class I are generators for the words in ΣF . The number of
such pairs is

(
δ(n,m)−µ(n,m)−1

2

)
, so the sum of the lengths of words from

ΣF formed by such vertices is

(δ(n,m)− µ(n,m)− 1)(δ(n,m)− µ(n,m)− 2)

2
2(n− δ(n,m) + 2) =

= (δ(n,m)− µ(n,m)− 1)(δ(n,m)− µ(n,m)− 2)(n− δ(n,m) + 2).

All possible pairs of vertices in the class II are generators for the
words in ΣF . The number of such pairs is

(
µ(n,m)

2

)
, so the sum of the

lengths of words from ΣF formed by such vertices is

µ(n,m)(µ(n,m)− 1)

2
2(n− δ(n,m) + 3) =

= µ(n,m)(µ(n,m)− 1)(n− δ(n,m) + 3).

In addition, each vertex of the class II forms a pair of generators with
any but one vertex of the class I, so the length of the words from ΣF

formed in this way is

µ(n,m)(δ(n,m)− µ(n,m)− 2)(2n− 2δ(n,m) + 5).

Consequently,

∥ΣF ∥ = (δ(n,m)−µ(n,m)−1)(δ(n,m)−µ(n,m)−2)(n− δ(n,m)+2)+

+µ(n,m)(µ(n,m)− 1)(n− δ(n,m) + 3)+

+µ(n,m)(δ(n,m)− µ(n,m)− 2)(2n− 2δ(n,m) + 5).

Currently, we are investigating the upper bound on the volume of
the first component of the canonical defining pair for any graph. The
largest such estimate we have found so far is for a flower graph. We have
developed the software prototypes of the algorithms proposed in this
paper. These prototypes investigate whether the pair {C,L}(x′), which
is explicitly specified or automatically generated according to certain
rules, is correct. If the pair {C,L}(x′) is correct, then is constructing the
graph G({C,L}(x′)) and is finding all the metric characteristics of the

O. S. Senchenko, M. I. Prytula 241

canonical defining pair of the graph G({C,L}(x′)) given in the paper.
The tests did not deny the hypothesis that the largest upper bound on
the volume of the first component of the canonical defining pair is that
of the flower graph.

Conclusion

The paper proposes the presentation of D-graphs and SD-graphs by a
defining pair of words. We present an algorithm which, given an arbitrary
pair of sets satisfying some conditions, either constructs a D-graph for
which this pair is defining, or reports that it is impossible. We give a
criterion by which this graph will be a SD-graph. We also present an
algorithm that constructs a canonical defining pair for a D-graph and find
some numerical estimates of it. The given representation of D-graphs and
SD-graphs can be useful for solving various problems, including applied
ones, among which the authors emphasize the following:

1) Finding relationships between the graph G and its reduction [G].

2) Solving the problem of the pair characterization: for a given
D-graph and a given pair, determine whether this pair is defining for
the graph without directly constructing a graph from the pair.

3) Finding the necessary and sufficient conditions for the sets C and
L, under which the pair {C,L}(x′) is correct.

4) An optimal choice of the root vertex, according to which the met-
ric properties of the components of the canonical defining pair will be
minimal.

5) An efficient construction of the shortest paths between two arbi-
trary vertices of the graph G by {ΣG,ΛG}.

References

[1] U. Knauer, M. Nieporte, Endomorphisms of graphs I. The monoid of
strong endomorphisms, Archiv der Mathematik, 52, 1989, pp. 607–614.
DOI: 10.1007/BF01237575.

[2] Y. V. Zhuchok, The monoid of endomorphisms of disconnected hypergraphs, Al-
gebra and Discrete Mathematics, 16 (1), 2013, pp. 134–150. https://admjournal.
luguniv.edu.ua/index.php/adm/article/view/763/292.

[3] J.-L. Loday, M. O. Ronco, Trialgebras and families of polytopes, Contemporary
Mathematics, 346, 2004, pp. 369–398. DOI: 10.48550/arXiv.math/0205043.

[4] A. V. Zhuchok, Yul. V. Zhuchok, Y. V. Zhuchok, Certain congruences on free tri-
oids, Communications in Algebra, 47 (12), 2019, pp. 5471–5481. DOI: 10.1080/00
927872.2019.1631322.

https://doi.org/10.1007/BF01237575
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/763/292
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/763/292
https://doi.org/10.48550/arXiv.math/0205043
https://doi.org/10.1080/00927872.2019.1631322
https://doi.org/10.1080/00927872.2019.1631322

242 The presentation of D-graphs and SD-graphs

[5] Y. V. Zhuchok, J. Koppitz, Representations of ordered doppelsemigroups by bi-
nary relations, Algebra and Discrete Mathematics, 27 (1), 2019, pp. 144–154.
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1294/pdf.

[6] I. S. Grunskii, A. S. Senchenko, Properties of systems of defining relations for
automata, Discrete Mathematics and Applications, 14 (6), 2004, pp. 593–601.
DOI: 10.1515/1569392043272458.

[7] I. Grunskii, I. Mikhaylova, S. Sapunov, Domination on the vertices of la-
beled graphs, Algebra and Discrete Mathematics, 14 (2), 2012, pp. 174–184.
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/719/251.

[8] R. Gorrieri, Process Algebras for Petri Nets. The Alphabetization of Distributed
Systems, Springer, 2017. DOI: 10.1016/C2015-0-04158-2.

[9] M. Droste, W. Kuich, H. Vogler, Handbook of Weighted Automata, Springer, 2009.
DOI: 10.1007/978-3-642-01492-5.

[10] G. Dudek, M. Jenkin, Computational Principles of Mobile Robotics, 2nd ed.,
Cambridge Univ. Press, 2010. DOI: 10.1017/CBO9780511780929.

[11] C. Baier, J.-P. Katoen, Principle of Model Checking, MIT Press, 2008.
DOI: 10.5555/1373322.

[12] S. V. Sapunov, A. S. Senchenko, Linguistic representation of vertex-labeled graphs,
Reports of the National Academy of Sciences of Ukraine, 11, 2019, pp. 17–24.
DOI: 10.15407/dopovidi2019.11.017.

[13] R. Diestel, Graph Theory. Fifth Edition, Springer, 2017. DOI: 10.1007/978-3-662-
53622-3.

Contact information

Oleksii S.
Senchenko

Institute of Applied Mathematics and
Mechanics of the National Academy of
Sciences of Ukraine
E-Mail: senchenko.a76@gmail.com

URL:

Mykola I.
Prytula

Institute of Applied Mathematics and
Mechanics of the National Academy of
Sciences of Ukraine
E-Mail: elanir358@gmail.com

URL:

Received by the editors: 12.09.2023
and in final form 17.12.2023.

https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1294/pdf
https://doi.org/10.1515/1569392043272458
https://admjournal.luguniv.edu.ua/index.php/adm/article/view/719/251
https://doi.org/10.1007/978-3-319-55559-1
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1017/CBO9780511780929
https://dl.acm.org/doi/10.5555/1373322
http://dx.doi.org/10.15407/dopovidi2019.11.017
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

	O. S. Senchenko and M. I. Prytula

