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Combinatorial properties of non-serial posets
with positive Tits quadratic form

V. M. Bondarenko and M. V. Styopochkina

Communicated by A. P. Petravchuk

Abstract. We study properties of partially ordered sets with
the positive Tits quadratics forms, associated with the calculation
of their transitivity coefficients. Such posets, which were classified
by the authors earlier, are analogs of Dynkin diagrams in the set
of all finite posets.

Introduction

The Tits quadratic forms play an important role in the modern rep-
resentation theory and its applications. They were first introduced by
P. Gabriel [1] for finite quivers (directed graphs) in connection with the
introduction of the concept of their representations. He also proved that
a quiver is of finite representation type over a field if and only if its Tits
quadratic form is positive. On the other hand, simple calculations show
that the positivity condition for a connected quiver holds if and only if
its underlying undirected graph is a (simply faced) Dynkin diagram.

In the case of posets, the representations of which were introduce by
L. A. Nazarova and A. V. Roiter [2], we have a different situation. The
set of all finite posets of finite representation type form a “boundless
set”, which on a combinatorial language can only be characterized with
the help of critical posets (i.e. those of infinite type with all proper full
subposets to be of finite type). The critical posets were described by
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M. M. Kleiner in [3]; they are self-dual and their number is 5 (up to
isomorphism). The Tits quadratic forms for posets first appeared in the
paper [4] in which Yu. A. Drozd proved that a poset is of finite represen-
tation type if and only if its Tits quadratic form is weakly positive (i.e.
positive for all nonzero vectors with non-negative coordinates). And so
the Kleiner’s posets are also critical with respect to weakly positivity of
the Tits form.

In contrast to the quivers, the sets of posets with weakly positive and
with positive Tits quadratic forms do not coincide. Therefore the inves-
tigations (from different perspectives) of posets with positive Tits form
as analogs of the Dynkin diagrams are natural. They were studied by the
authors in many papers (see e.g. [5] – [9]). In particular, the classifica-
tion of posets with positive Tits quadratic form was first obtained in [5]
(for width 2 in [6]); see also below Section 4. If one talks about critical
posets with respect to positivity of the Tits quadratic form (which were
first classified in [5]), their number is much more than those with respect
to weakly positivity, namely 75 up to isomorphism and duality; see also
Tables 1 and 2 in [7].

This paper is devoted to study of combinatorial properties of posets
with positive Tits quadratic forms (which clarify and generalize some
calculations in a partial case [10]).

1. Main results

We consider only finite posets (without elements denoted as 0). For a
poset S = (A,≺) we will not write the set A and keep to the following
conventions: by a subset S′ of S we mean a subset A′ of A together with
the induced order relation (also denoted by the symbol ≺), and we write
x ∈ S instead of x ∈ A, etc. By Sop we denote the poset dual to S (i.e.
Sop = S as usual sets and x ≺ y in Sop if and only if x ≻ y in S).

Linear ordered sets of order n are also called chains of length n, and
the maximum length h(S) of a chain of a poset S is called its height.
Posets of order n with pairwise incomparable elements are called an-
tichains of length n, and the maximum length w(S) of an antichain of
S is called its width. By Dilworth’s theorem, a poset of width w has a
partition into w chains.

We call a poset S positive if so is its Tits quadratic form

qS(z) = z20 +
∑
i∈S

z2i +
∑

i<j,i,j∈S

zizj − z0
∑
i∈S

zi.
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A positive S is called serial positive if there is an infinite increasing
sequence S ⊂ S(1) ⊂ S(2) ⊂ . . . with positive terms, and non-serial if
otherwise. A minimal poset S with non-positive qS(z) is called P -cri-
tical. Obviously, S and Sop simultaneously satisfy or do not satisfy the
specified properties (defined by the authors in [5].

Let S be a poset and S2
≺ := {(x, y) |x, y ∈ S, x ≺ y}. Elements x and

y are called neighboring if (x, y) ∈ S2
< and there no z satisfying x ≺ z ≺ y.

Denote by nw = nw(S) the order of the set S2
≺ and by ne = ne(S) the

number of pairs (x, y) of neighboring elements of S. On the language
of the Hasse diagram H(S) of S (that represents S in the plane), ne

is equal to the number of all its edges and nw to the number of all its
ways, up to parallelity, going bottom-up (two ways are called parallel if
they start and terminate at the same vertices). The ratio kt = kt(S) of
the numbers nw − ne and nw, which is the probability that comparable
elements of S are not neighboring, is called the coefficient of transitivity
of S; for nw = 0, one assumes that kt = 0 [11]. Obviously, dual posets
have the same coefficient of transitivity.

Theorem 1. Let S and T be non-serial positive posets. Then

(1) kt(T ) > kt(S) if h(T ) > h(S) + 1;

(2) kt(T ) > kt(S)− 1
20 if h(T ) = h(S) + 1.

Theorem 2. Let S and T be non-serial positive posets. Then

(3) kt(T ) ≥ kt(S) if w(T ) = w(S) = 3 and h(T ) > h(S);

(4) kt(T ) ≥ kt(S) if w(T ) = w(S) = 2, h(T ) > h(S)
and the Hasse diagram of T is not a cycle.

An analog of Theorem 1 for P -critical posets (with 1/10 instead of
1/20) is formulated and proved in [12]. We prove our theorems here using
the same scheme. In particular, we calculate the transitivity coefficients
of all non-serial positive posets, what is interesting in itself.

2. Classification of non-critical positive posets

For subsets X,Y of a poset S, we denote by X ⊔ Y their direct sum (i.e.
such union that elements from the different subposets are incomparable).
From Dilworth’s theorem it follows that any poset can be represented in
the form ⊔m

i=1Xi withXi being chains and additional relations y < z for y
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and z belonging to different components. As, Bs, Cs denote, respectively,
the chains a1 < . . . < as, b1 < . . . < bs, c1 < . . . < cs.

The positive non-serial posets were classified by the authors in [5]
in the terms of their Hasse diagrams. We will indicate these diagrams
below in Section 4, sorting them by their order (which can be only equal
to 5, 6 or 7). The next three theorems are a set-theoretic reformulation
of our classification (m in parentheses means the corresponding number
from [5] and mop means that one must takes the poset dual to that with
number m).

Theorem 3. The non-serial posets of order 5 are exhausted, up to iso-
morphism and duality, by the following 10 posets:

NSP5.1(3) A2 ⊔B3, a1 ≺ b2;
NSP5.2(4) A2 ⊔B3, a2 ≺ b3;
NSP5.3(5) A2 ⊔B3, a1 ≺ b2, a2 ≺ b3;
NSP5.4(1) A1 ⊔B4, a1 ≺ b3;
NSP5.5(2) A2 ⊔B3, a1 ≺ b1, a2 ≺ b3;
NSP5.6(46) A1 ⊔B2 ⊔ C2;
NSP5.7(48) A1 ⊔B2 ⊔ C2, b1 ≺ c2;
NSP5.8(49) A1 ⊔B2 ⊔ C2, a1 ≺ b2, b1 ≺ c2;
NSP5.9(47) A1 ⊔B1 ⊔ C3, b1 ≺ c3;

NSP5.10(50) A1 ⊔B3 ⊔ C1, a1 ≺ b3, b1 ≺ c1;

Theorem 4. The non-serial posets of order 6 are exhausted, up to iso-
morphism and duality, by the following 32 posets:

NSP6.1(12) A3 ⊔B3, a1 ≺ b2;
NSP6.2(20) A3 ⊔B3, a1 ≺ b2, a2 ≺ b3;
NSP6.3(10) A2 ⊔B4, a1 ≺ b2;
NSP6.4(11) A2 ⊔B4, a1 ≺ b3;
NSP6.5(13) A2 ⊔B4, a2 ≺ b4;
NSP6.6(14) A2 ⊔B4, a1 ≺ b2, a2 ≺ b3;
NSP6.7(16) A2 ⊔B4, a1 ≺ b2, a2 ≺ b4;
NSP6.8(18) A2 ⊔B4, a1 ≺ b3, a2 ≺ b4;
NSP6.9(19op) A3 ⊔B3, a1 ≺ b2, a3 ≺ b3;
NSP6.10(14op) A3 ⊔B3, a2 ≺ b2, a3 ≺ b3;
NSP6.11(15) A3 ⊔B3, a1 ≺ b1, a2 ≺ b2, a3 ≺ b3;
NSP6.12(6) A1 ⊔B5, a1 ≺ b3;
NSP6.13(8) A1 ⊔B5, a1 ≺ b4;
NSP6.14(7) A2 ⊔B4, a1 ≺ b1, a2 ≺ b3;
NSP6.15(9) A2 ⊔B4, a1 ≺ b1, a2 ≺ b4;
NSP6.16(58) A2 ⊔B2 ⊔ C2, b1 ≺ c2;
NSP6.17(66) A2 ⊔B2 ⊔ C2, a1 ≺ b2, b1 ≺ c2;
NSP6.18(51) A1 ⊔B2 ⊔ C3;
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NSP6.19(55) A1 ⊔B2 ⊔ C3, b1 ≺ c2;
NSP6.20(56) A1 ⊔B2 ⊔ C3, b1 ≺ c3;
NSP6.21(57) A2 ⊔B1 ⊔ C3, b1 ≺ c3;
NSP6.22(60) A1 ⊔B2 ⊔ C3, a1 ≺ b2, b1 ≺ c2;
NSP6.23(61) A1 ⊔B2 ⊔ C3, a1 ≺ b2, b1 ≺ c3;
NSP6.24(62) A1 ⊔B3 ⊔ C2, a1 ≺ b3, b1 ≺ c1;
NSP6.25(63) A1 ⊔B3 ⊔ C2, a1 ≺ b3, b1 ≺ c2;
NSP6.26(59) A1 ⊔B2 ⊔ C3, b1 ≺ c2, b2 ≺ c3;
NSP6.27(67) A1 ⊔B3 ⊔ C2, a1 ≺ b3, b1 ≺ c1, b2 ≺ c2;
NSP6.28(52) A1 ⊔B1 ⊔ C4, b1 ≺ c3;
NSP6.29(54) A1 ⊔B1 ⊔ C4, b1 ≺ c4;
NSP6.30(64) A1 ⊔B4 ⊔ C1, a1 ≺ b3, b1 ≺ c1;
NSP6.31(65) A1 ⊔B4 ⊔ C1, a1 ≺ b4, b1 ≺ c1;

NSP6.32(53) A1 ⊔B2 ⊔ C3, b1 ≺ c1, b2 ≺ c3;

Theorem 5. The non-serial posets of order 7 are exhausted, up to iso-
morphism and duality, by the following 66 posets:

NSP7.1(29) A3 ⊔B4, a1 ≺ b3;
NSP7.2(30) A3 ⊔B4, a2 ≺ b4;
NSP7.3(42) A3 ⊔B4, a1 ≺ b2, a2 ≺ b4;
NSP7.4(43) A3 ⊔B4, a1 ≺ b3, a2 ≺ b4;
NSP7.5(44) A3 ⊔B4, a1 ≺ b3, a3 ≺ b4;
NSP7.6(45) A3 ⊔B4, a1 ≺ b2, a2 ≺ b3, a3 ≺ b4;
NSP7.7(26) A2 ⊔B5, a1 ≺ b2;
NSP7.8(27) A2 ⊔B5, a1 ≺ b4;
NSP7.9(28) A2 ⊔B5, a2 ≺ b5;
NSP7.10(31) A2 ⊔B5, a1 ≺ b2, a2 ≺ b3;
NSP7.11(33) A2 ⊔B5, a1 ≺ b2, a2 ≺ b4;
NSP7.12(36) A2 ⊔B5, a1 ≺ b2, a2 ≺ b5;
NSP7.13(38) A2 ⊔B5, a1 ≺ b3, a2 ≺ b5;
NSP7.14(40) A2 ⊔B5, a1 ≺ b4, a2 ≺ b5;
NSP7.15(35op) A3 ⊔B4, a2 ≺ b2, a3 ≺ b3;
NSP7.16(41op) A4 ⊔B3, a1 ≺ b2, a4 ≺ b3;
NSP7.17(39op) A4 ⊔B3, a2 ≺ b2, a4 ≺ b3;
NSP7.18(37op) A4 ⊔B3, a3 ≺ b2, a4 ≺ b3;
NSP7.19(32) A3 ⊔B4, a1 ≺ b1, a2 ≺ b2, a3 ≺ b3;
NSP7.20(34) A3 ⊔B4, a1 ≺ b1, a2 ≺ b2, a3 ≺ b4;
NSP7.21(21) A1 ⊔B6, a1 ≺ b3;
NSP7.22(24) A1 ⊔B6, a1 ≺ b5;
NSP7.23(22) A2 ⊔B5, a1 ≺ b1, a2 ≺ b3;
NSP7.24(25) A2 ⊔B5, a1 ≺ b1, a2 ≺ b5;
NSP7.25(23) A3 ⊔B4, a2 ≺ b1, a3 ≺ b3;
NSP7.26(75) A1 ⊔B3 ⊔ C3, b1 ≺ c3;
NSP7.27(78) A2 ⊔B2 ⊔ C3, b1 ≺ c2;
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NSP7.28(79) A3 ⊔B1 ⊔ C3, b1 ≺ c3;

NSP7.29(80) A3 ⊔B2 ⊔ C2, b1 ≺ c2;

NSP7.30(89) A1 ⊔B3 ⊔ C3, a1 ≺ b2, b1 ≺ c3;

NSP7.31(91) A1 ⊔B3 ⊔ C3, a1 ≺ b3, b1 ≺ c2;

NSP7.32(92) A1 ⊔B3 ⊔ C3, a1 ≺ b3, b1 ≺ c3;

NSP7.33(99) A2 ⊔B2 ⊔ C3, a1 ≺ b2, b1 ≺ c2;

NSP7.34(100) A2 ⊔B2 ⊔ C3, a1 ≺ b2, b1 ≺ c3;

NSP7.35(101) A2 ⊔B3 ⊔ C2, a1 ≺ b3, b1 ≺ c2;

NSP7.36(102) A2 ⊔B3 ⊔ C2, a2 ≺ b3, b1 ≺ c1;

NSP7.37(85) A1 ⊔B3 ⊔ C3, b1 ≺ c2, b2 ≺ c3;

NSP7.38(86) A2 ⊔B2 ⊔ C3, b1 ≺ c2, b2 ≺ c3;

NSP7.39(108) A2 ⊔B3 ⊔ C2, a2 ≺ b3, b1 ≺ c1, b2 ≺ c2;

NSP7.40(108op) A2 ⊔B3 ⊔ C2, a1 ≺ b2, a2 ≺ b3, b1 ≺ c2;

NSP7.41(68) A1 ⊔B2 ⊔ C4;

NSP7.42(72) A1 ⊔B2 ⊔ C4, b1 ≺ c2;

NSP7.43(73) A1 ⊔B2 ⊔ C4, b1 ≺ c3;

NSP7.44(74) A1 ⊔B2 ⊔ C4, b1 ≺ c4;

NSP7.45(76) A2 ⊔B1 ⊔ C4, b1 ≺ c3;

NSP7.46(87) A1 ⊔B2 ⊔ C4, a1 ≺ b2, b1 ≺ c2;

NSP7.47(88) A1 ⊔B2 ⊔ C4, a1 ≺ b2, b1 ≺ c4;

NSP7.48(90) A1 ⊔B3 ⊔ C3, a1 ≺ b3, b1 ≺ c1;

NSP7.49(93) A1 ⊔B4 ⊔ C2, a1 ≺ b3, b1 ≺ c1;

NSP7.50(94) A1 ⊔B4 ⊔ C2, a1 ≺ b3, b1 ≺ c2;

NSP7.51(95) A1 ⊔B4 ⊔ C2, a1 ≺ b4, b1 ≺ c2;

NSP7.52(81) A1 ⊔B2 ⊔ C4, b1 ≺ c2, b2 ≺ c3;

NSP7.53(83) A1 ⊔B2 ⊔ C4, b1 ≺ c2, b2 ≺ c4;

NSP7.54(84op) A1 ⊔B3 ⊔ C3, b2 ≺ c2, b3 ≺ c3;

NSP7.55(77) A2 ⊔B2 ⊔ C3, b1 ≺ c1, b2 ≺ c3;

NSP7.56(103) A1 ⊔B3 ⊔ C3, a1 ≺ b3, b1 ≺ c1, b2 ≺ c2;

NSP7.57(104) A1 ⊔B3 ⊔ C3, a1 ≺ b3, b1 ≺ c1, b2 ≺ c3;

NSP7.58(105) A1 ⊔B4 ⊔ C2, a1 ≺ b4, b1 ≺ c1, b2 ≺ c2;

NSP7.59(106) A1 ⊔B4 ⊔ C2, a1 ≺ b4, b2 ≺ c1, b3 ≺ c2;

NSP7.60(82) A1 ⊔B3 ⊔ C3, b1 ≺ c1, b2 ≺ c2, b3 ≺ c3;

NSP7.61(69) A1 ⊔B1 ⊔ C5, b1 ≺ c3;

NSP7.62(71) A1 ⊔B1 ⊔ C5, b1 ≺ c5;

NSP7.63(96) A1 ⊔B5 ⊔ C1, a1 ≺ b3, b1 ≺ c1;

NSP7.64(97) A1 ⊔B5 ⊔ C1, a1 ≺ b4, b1 ≺ c1;

NSP7.65(98) A1 ⊔B5 ⊔ C1, a1 ≺ b5, b1 ≺ c1;

NSP7.66(70) A1 ⊔B2 ⊔ C4, b1 ≺ c1, b2 ≺ c3.
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3. Calculation of the transitivity coefficients.
Proof of Theorems 1 and 2

We first calculate the coefficients of transitivity kt of the non-serial posi-
tive posets, which are indicated in Theorems 3 – 5. In all three tables be-
low the posets are ordered lexicographically with respect to their weights
w, heights h, transitivity coefficients kt and numbers N . Horizontal lines
are drawn in such a way that inside each block w and h are the same
(except for the 1st table, the converse is not true due to the last lines of
the left subtables).

The coefficients of transitivity kt are calculated up to the fifth de-
cimal place. If the number of decimal places is less than five, then the
decimal fraction is finite, and if it is five, then infinite. When two decimal
fractions are equal up to five digits, then they are generally equal.

Theorem 6. The following holds for the posets NSP5.1 – NSP5.10:

N w h ne nw kt
5.3 2 3 5 7 0, 28571
5.1 2 3 4 6 0, 33333
5.2 2 3 4 6 0, 33333

5.5 2 4 5 8 0, 375
5.4 2 4 4 8 0, 5

N w h ne nw kt
5.6 3 2 2 2 0
5.7 3 2 3 3 0
5.8 3 2 4 4 0

5.10 3 3 4 5 0, 2
5.9 3 3 3 4 0, 25

Theorem 7. The following holds for the posets NSP6.1 – NSP6.32:

N w h ne nw kt
6.2 2 3 6 9 0, 33333
6.1 2 3 5 8 0, 375

6.8 2 4 6 10 0, 4
6.9 2 4 6 10 0, 4
6.11 2 4 7 12 0, 41667
6.4 2 4 5 9 0, 44444
6.5 2 4 5 9 0, 44444
6.7 2 4 6 11 0, 45455
6.10 2 4 6 11 0, 45455
6.3 2 4 5 10 0, 5
6.6 2 4 6 12 0, 5

6.15 2 5 6 12 0, 5
6.14 2 5 6 13 0, 53846
6.13 2 5 5 12 0, 58333
6.12 2 5 5 13 0, 61538

6.16 3 2 4 4 0

N w h ne nw kt
6.17 3 2 5 5 0

6.23 3 3 5 6 0, 16667
6.25 3 3 5 6 0, 16667
6.20 3 3 4 5 0, 2
6.21 3 3 4 5 0, 2
6.18 3 3 3 4 0, 25
6.27 3 3 6 8 0, 25
6.22 3 3 5 7 0, 28571
6.24 3 3 5 7 0, 28571
6.26 3 3 5 7 0, 28571
6.19 3 3 4 6 0, 33333

6.31 3 4 5 8 0, 375
6.32 3 4 5 8 0, 375
6.29 3 4 4 7 0, 42857
6.30 3 4 5 9 0, 44444
6.28 3 4 4 8 0, 5
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Theorem 8. The following holds for the posets NSP7.1 – NSP7.66:

N w h ne nw kt
7.4 2 4 7 12 0, 41667
7.1 2 4 6 11 0, 45455
7.2 2 4 6 11 0, 45455
7.3 2 4 7 13 0, 46154
7.5 2 4 7 13 0, 46154
7.6 2 4 8 15 0, 46667

7.14 2 5 7 14 0, 5
7.16 2 5 7 14 0, 5
7.20 2 5 8 17 0, 52941
7.13 2 5 7 15 0, 53333
7.17 2 5 7 15 0, 53333
7.8 2 5 6 13 0, 53846
7.9 2 5 6 13 0, 53846
7.19 2 5 8 18 0, 55556
7.12 2 5 7 16 0, 5625
7.18 2 5 7 16 0, 5625
7.11 2 5 7 17 0, 58824
7.15 2 5 7 17 0, 58824
7.7 2 5 6 15 0, 6
7.10 2 5 7 18 0, 61111
7.24 2 6 7 17 0, 58824
7.23 2 6 7 19 0, 63158
7.25 2 6 7 19 0, 63158
7.22 2 6 6 17 0, 64706
7.21 2 6 6 19 0, 68421

7.34 3 3 6 7 0, 14286
7.35 3 3 6 7 0, 14286
7.29 3 3 5 6 0, 16667
7.40 3 3 7 9 0, 22222
7.32 3 3 6 8 0, 25
7.33 3 3 6 8 0, 25
7.38 3 3 6 8 0, 25
7.26 3 3 5 7 0, 28571

N w h ne nw kt
7.27 3 3 5 7 0, 28571
7.28 3 3 5 7 0, 28571
7.39 3 3 7 10 0, 3
7.30 3 3 6 9 0, 33333
7.31 3 3 6 9 0, 33333
7.36 3 3 6 9 0, 33333
7.37 3 3 6 9 0, 33333

7.47 3 4 6 9 0, 33333
7.51 3 4 6 9 0, 33333
7.55 3 4 6 9 0, 33333
7.57 3 4 7 11 0, 36364
7.58 3 4 7 11 0, 36364
7.44 3 4 5 8 0, 375
7.48 3 4 6 10 0, 4
7.50 3 4 6 10 0, 4
7.56 3 4 7 12 0, 41667
7.60 3 4 7 12 0, 41667
7.41 3 4 4 7 0, 42857
7.43 3 4 5 9 0, 44444
7.45 3 4 5 9 0, 44444
7.46 3 4 6 11 0, 45455
7.49 3 4 6 11 0, 45455
7.53 3 4 6 11 0, 45455
7.54 3 4 6 11 0, 45455
7.59 3 4 7 13 0, 46154
7.42 3 4 5 10 0, 5
7.52 3 4 6 12 0, 5

7.65 3 5 6 12 0, 5
7.64 3 5 6 13 0, 53846
7.66 3 5 6 13 0, 53846
7.62 3 5 5 11 0, 54545
7.63 3 5 6 14 0, 57143
7.61 3 5 5 13 0, 61538

For proving Theorem 6 – 8 we need the following lemmas from [12].

Lemma 1. Let S = S1 ⊔ S2. Then
ne(S) = ne(S1) + ne(S2), nw(S) = nw(S1) + nw(S2).

Lemma 2. Let S = Am. Then
ne(S) = m− 1, nw(S) =

(m−1)m
2 .
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Lemma 3. Let S = {Am ⊔Bn, ai < bj}. Then
(a) ne(S) = m+ n− 1;

(b) nw(S) =
(m−1)m+(n−1)n

2 + i(n− j + 1).

Lemma 4. Let S = {Am ⊔ Bn, ai < bj , ai′ < bj′}, where i < i′, j < j′.
Then

(a) ne(S) = m+ n;

(b) nw(S) =
(m−1)m+(n−1)n

2 + i′(n− j′ + 1) + i(j′ − j).

Lemma 5. Let S = {Am⊔Bn⊔Cs, ai < bj , bj′ < ck, where j > j′. Then
(a) ne(S) = m+ n+ s− 1;

(b) nw(S) =
(m−1)m+(n−1)n+s(s−1)

2 + i(n− j + 1) + j′(s− k + 1).

Lemma 6. Let S = {Am ⊔Bn, ai < bj , ai+1 < bj+1, ai+2 < bj+2. Then
(a) ne(S) = m+ n+ 1;

(b) nw(S) =
(m−1)m+(n−1)n

2 + (i+ 2)n− i(j − 1)− (2j + 1).

Lemma 7. Let S = {Am⊔Bn⊔Cs, ai < bj , bj′ < ck, bj′+1 < ck+1, where
j > j′ + 1. Then

(a) ne(S) = m+ n+ s;

(b) nw(S) =
(m−1)m+(n−1)n+s(s−1)

2 + i(n− j+1)+(j′+1)(s−k)+ j′.

The data indicated in the tables of Theorems 6 – 8 for the posets
from Theorems 3 – 5 are verified by direct calculations using Lemmas
1, 2 for N = 5.6, 6.18, 7.41, Lemma 3 for N = 5.1, 5.2, 5.4, 6.1, 6.3 −
6.5, 6.12, 6.13, 7.1−7.2, 7.7−7.9, 7.21−7.22, Lemmas 1–3 for N = 5.7, 5.9,
6.16, 6.19− 6.21, 6.28− 6.29, 7.26− 7.29, 7.42− 7.45, 7.61− 7.62, Lemma
4 for N = 5.3, 5.5, 6.2, 6.6 − 6.10, 6.14, 6.15, 7.3 − 7.5, 7.10 − 7.18, 7.23 −
7.25, Lemmas 1, 2, 4 for N = 6.26, 6.32, 7.37 − 7.38, 7.52 − 7.55, 7.66,
Lemma 5 for N = 5.8, 5.10, 6.17, 6.22−6.25, 6.30−6.31, 7.30−7.36, 7.46−
7.51, 7.63− 7.65, Lemma 6 for N = 6.11, 7.6, 7.19− 7.20, Lemmas 1, 2, 6
for N = 7.60, Lemma 7 for N = 6.27, 7.39− 7.40, 7.56− 7.59.

Given the lexicographic notation in the tables, it is easy to check that
Theorems 1 and 2 follow from them.

4. The List of the non-serial positive posets (in terms of
Hasse diagrams)

We follow the paper [5]. Up to isomorphism and duality, there exists
108 non-serial positive posets. We sort them by their order (which can
be only equal to 5, 6 or 7), and three below tables, for convenience, are
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broken into blocks with respect to the value of w and h specified at the
beginning of these blocks.

Table 4.1. The non-serial positive posets of order 5
(up to isomorphism and duality):

w = 2

h = 3, 4 qq qq�

qNSP5.1

qq qq�
qNSP5.2

qq qq�

q
�

NSP5.3

q qqq�
�

qNSP5.4

qq q
�

q
�
�
qNSP5.5

sd

w = 3

h = 2, 3 q qq qq
NSP5.6

sd

q qq qq�

NSP5.7

sd

q qq qq��

NSP5.8

q q qqq�
�

NSP5.9

q qqq q
��

�

NSP5.10

sd

Table 4.2. The non-serial positive posets of order 6
(up to isomorphism and duality):

w = 2
h = 3, 4 qq qq�

qqNSP6.1

qq qq�

q
�
qNSP6.2

sd
qq qq�

qqNSP6.3

qq qq�
�
qqNSP6.4

qq q�
�qqNSP6.5

q

q qqq
�

q
�

qNSP6.6

q qqq
�

q
�
�
qNSP6.7

q qqq
�
�
q

�
�
qNSP6.8

qq q�q
�
�

qqNSP6.9

qq q�q
�

qqNSP6.10

qq q
�

q
�

qq�NSP6.11

sd

w = 2
h = 5 q qqq�

�

qqNSP6.12

q qqq�
�
��
qqNSP6.13

qq q
�

q
�
�
qqNSP6.14

qq q
�

q
�
�
��qqNSP6.15

sd

w = 3
h = 2, 3

q qq qq�
qNSP6.16

sd
q qq qq�
q
�

NSP6.17

sd
q qq qqq

NSP6.18

sd
q qq qq�

qNSP6.19

q qq qq�
�
qNSP6.20

q qq qq�
�
qNSP6.21

q qq qq�

q
�

NSP6.22

q qq qq�
�
q

�

NSP6.23

q qqq qq
��

�

NSP6.24

q qqq qq��
�

NSP6.25

q qq qq�

q
�

NSP6.26

q qqq qq
��

��

NSP6.27

w = 3
h = 4 q q qqq�

�

qNSP6.28

q q qqq�
�
��
qNSP6.29

q qqq
q q
��
�

NSP6.30

q qqq
q q
��

�
��

NSP6.31

sd
q qq q
�

q
�
�
qNSP6.32

sd



V. M. Bondarenko, M. V. Styopochkina 11

Table 4.3. The non-serial positive posets of order 7
(up to isomorphism and duality):

w = 2
h = 4 qq qq�

�
qq qNSP7.1

qq qq�
�qq qNSP7.2

qq qq�
�qq q
�

NSP7.3

qq qq�
�qq q

�
�

NSP7.4

qq qq�qq q
�
�

NSP7.5

qq qq�
qq q

�

�

NSP7.6

w = 2
h = 5 qq qq�

qqq
NSP7.7

qq qq�
�
��qqq

NSP7.8

qq qq�
�
��qqq

NSP7.9

qq qq�

q
�

qqNSP7.10

qq qq�

q
�
�
qqNSP7.11

qq qq�

q
�
�
��qqNSP7.12

qq qq�
�
q

�
�
��qqNSP7.13

qq qq�
�
��q

�
�
��qqNSP7.14

qqq�q�
qqq

NSP7.15

qqqq
q q
�
�
��

�qqNSP7.16

qqqq
q q
�
�
�qq

NSP7.17

qqqq
q q�
�qq

NSP7.18

qqq�q�
qqq

�

NSP7.19

qqq�q�
�qqq
�

NSP7.20

w = 2
h = 6 q qqq�

�

qqq
NSP7.21

q qqq�
�
�
�qqq

NSP7.22

qq q
�

q
�
�
qqq

NSP7.23

qq q
�

q
�
�
�
�qqq

NSP7.24

sd
qqq�q�
�qqq

NSP7.25

sd

w = 3
h = 3 q qq qq�

�
qq

NSP7.26

sd

q qq qq�
q qNSP7.27

q qq qq�
�q qNSP7.28

q qq qq�
qqNSP7.29

sd
q qq qq�

�
q

�

qNSP7.30

q qqq qq��
�

qNSP7.31

q qqq qq�
�

�
�

qNSP7.32

q qq qq�
q
�

qNSP7.33

q qq qq�
�q

�

qNSP7.34

q qq qq�
q
�
�
qNSP7.35

sd
q qq qq

�
q�qNSP7.36

sd
q qq qq�

q
�
qNSP7.37

sd
q qq qq�

q
�qNSP7.38

q qqq qq
�

��q
NSP7.39

q qqq qq��
�q

NSP7.40

w = 3
h = 4 q qq qqq

qNSP7.41

sd
q qq qq�

qqNSP7.42

q qq qq�
�
qqNSP7.43
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q qq qq�
�
��qqNSP7.44

q qq qq�
�
qqNSP7.45

q qq qq�

q
�

qNSP7.46

q qq qq�
�
��q

�

qNSP7.47

q qqq qq
��
�

qNSP7.48

q qqq
q q
��

� q
NSP7.49

q qqq
q
q��

� q
NSP7.50

q qqq
q
q��

�
�� q

NSP7.51

q qq qq�

q
�

qNSP7.52

q qq qq�

q
�
�
qNSP7.53

q qq q�q
�

qqNSP7.54

q qq q
�

q
�
�
qq

NSP7.55

sd

q qqq qq
��
��

qNSP7.56

q qqq qq
��
��
�
qNSP7.57

q qqq qq
��

�
��
�

qNSP7.58

q qqq
qq�

�
�
��
�

qNSP7.59

q qq q
�

q
�

qq�NSP7.60

sd

w = 3
h = 5

q q qqq�
�

qqNSP7.61

q q qqq�
�
�
�qqNSP7.62

q qqq
q q
��

�

qNSP7.63

q qqq
q q
��

�
��

qNSP7.64

q qqq
q q
��

�
�
�
qNSP7.65

sd
q qq q
�

q
�
�
qqNSP7.66

In conclusion, we emphasize that the self-dual posets in the tables are
marked in the lower left corners by sd. If we add all the posets dual to
unmarked ones, we obtain the classification of the non-serial posets up
to isomorphism; their number is 193 (16 of order 5, 56 of order 6 and 121
of order 7).
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