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Abstract. Nonuniqueness of semidirect decompositions of
groups is an insufficiently studied question in contrast to direct
decompositions. We obtain some results about semidirect decom-
positions for semidirect products with factors which are nontrivial
direct products. We deal with a special case of semidirect product
when the twisting homomorphism acts diagonally on a direct pro-
duct, as well as with the case when the extending group is a direct
product. We give applications of these results in the case of genera-
lized dihedral groups and classic dihedral groups D2n. For D2n we
give a complete description of semidirect decompositions and values
of minimal permutation degrees.

1. Introduction

1.1. Background

The aim of this article is to study semidirect decompositions of groups
both in general and special cases.

By the Krull-Remak-Schmidt theorem the multiset of isomorphism
types of indecomposable direct factors for groups satisfying ascending
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and descending chain conditions on normal subgroups does not depend
on the order of factors. Thus direct decompositions of such groups, e.g.
finite groups, may be considered understood.

Few results of this type are known for semidirect and Zappa-Szep
decompositions. One can mention the Schur-Zassenhaus theorem as an
example.

We consider cases when the base group or the extending group is a
direct product. We present a general result which allows to characterize
some semidirect decompositions in the case when the base group is a direct
product and the twisting homomorphism acts diagonally, Proposition 1.
We obtain a nonuniqueness result of semidirect decomposition in the case
when the extending group is a direct product, Proposition 2. We give
applications of some of these results in the case of finite dihedral groups,
both classic and generalized.

We use traditional multiplicative notation for general groups and
additive notation for abelian groups. In this article the dihedral group
of order m = 2n is denoted by Dm: Dm = 〈a, x|an = e, x2 = e, xax =
a−1〉. For any m|n we usually identify Zm with the corresponding sub-
group of Zn. Qm denotes the dicyclic group of order m = 4k: Qm =
〈a, x|a2k = e, x2 = ak, x−1ax = a−1〉.

The cyclic group of order m is denoted by Zm, in additive notation
we assume that Zm = 〈1〉. In this article we identify elements of Zm and
corresponding minimal nonnegative integers. We use this identification
for powers of group elements. For example, if r ∈ Z3 and r ≡ 2(mod 3),
then ar = a2 for any group element a.

1.2. Basic facts about semidirect products

We remind the reader that an external semidirect product of groups N
(base group) and H (extending group) is the group N ⋊ϕ H = (N × H, ·)
where the group product is defined on the Cartesian product N ×H using
a group homomorphism (twisting homomorphism) ϕ ∈ Hom(H, Aut(N))
as follows: (n1, h1) · (n2, h2) = (n1ϕ(h1)(n2), h1h2). Sets Ñ = N × {eH}
and H̃ = {eN } × H are subgroups in N × H.

A group G is an internal semidirect product of its subgroups N and
H if N is a normal subgroup, G = NH and N ∩ H = {e}. If a group G is
finite then for G to be an internal semidirect product N ⋊H is equivalent
to 1) N being normal in G, 2) |N | · |H| = |G| and 3) N ∩ H = {e}. In
the internal case the twisting homomorphism H → Aut(N) is given by
the map h 7→ (n → hnh−1), for any n ∈ N , h ∈ H.
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Both expressions will be called semidirect decompositions of G. If the
twisting homomorphism is not discussed, we omit it and use the notation ⋊.
We consider direct product to be a special case of semidirect product
with the twisting homomorphism being trivial. For relevant treatment
see [5], [6].

A nontrivial semidirect product may admit more than one semidirect
decomposition. Examples are abundant starting from groups of order 8.

Example 1. Twisting homomorphisms are not given in these examples.

D8 ≃ Z4 ⋊ Z2 ≃ Z2
2 ⋊ Z2, Σ4 ≃ A4 ⋊ Z2 ≃ Z2

2 ⋊ Σ3.

There are semidirect products such that Z3⋊Q8 ≃ Q24, but Q8⋊Z3 ≃
SL(2,F3). On the other hand, there is a group G32 of order 32, such that
G32 ≃ D8 ⋊ Z2

2 ≃ Z2
2 ⋊ D8.

Finally, there is a group G24 of order 24 which can be decomposed in
5 different ways:

G24 ≃ Z3 ⋊ D8 ≃ Z2
2 ⋊ Z3 ≃ D12 ⋊ Z2 ≃ (Z3 × Z2

2) ⋊ Z2 ≃ Q12 ⋊ Z2.

2. Main results

2.1. Diagonal semidirect products

Automorphisms of direct products. We introduce a linear algebra style
notation for direct products of groups.

Let G = G1 × G2. Encode the element (g1, g2) as a column

[
g1

g2

]
. If

ϕ ∈ Aut(G), then

ϕ

([
g1

g2

])
=

[
ϕ1(g1, g2)

ϕ2(g1, g2)

]
.

One can check, that for all relevant parameter values ϕi satisfy the follo-
wing properties:

1) ϕi(ab, e) = ϕi(a, e)ϕi(b, e),
2) ϕi(e, ab) = ϕi(e, a)ϕi(e, b),
3) ϕi(a, b) = ϕi(a, e)ϕi(e, b) = ϕi(e, b)ϕi(a, e),

Define ϕ11(g1) = ϕ1(g1, e), ϕ12(g2) = ϕ1(e, g2), ϕ21(g1) = ϕ2(g1, e),
ϕ22(g2) = ϕ2(e, g2), for all gi ∈ Gi. All functions ϕij are group homomor-
phisms. Thus ϕi(g1, g2) = ϕi(g1, e)ϕi(e, g2) = ϕi1(g1)ϕi2(g2).
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We can encode action of ϕ as follows:

ϕ

([
g1

g2

])
=

[
ϕ11(g1) ϕ12(g2)

ϕ21(g1) ϕ22(g2)

]
.

Thus an automorphism ϕ ∈ Aut(G1 × G2) is determined by 4 group
homomorphisms ϕij : Gj → Gi.

Definition 1. We call ϕ ∈ Aut(G1×G2), G1 6= {e}, G2 6= {e}, a diagonal

automorphism if ϕ12 and ϕ21 are trivial homomorphisms.

Definition 2. We call (G1 × G2) ⋊ϕ H a diagonal semidirect product if
ϕ(h) is a diagonal G1 ×G2-automorphism for any h ∈ H. Explicitly, there
are group homomorphisms ϕii(h) : Gi → Gi such that ϕ(h)(g1, g2) =
(ϕ11(h)(g1), ϕ22(h)(g2)).

Remark 1. Note that Gi may not be indecomposable as direct factors.
Described encodings and diagonal semidirect products can be generalized
to cases when the base groups splits into an arbitrary finite number
of direct factors. Similar encodings can be used considering internal
semidirect products.

Semidirect decompositions of diagonal semidirect products. We present
a proposition showing nonuniqueness of semidirect decomposition for
diagonal semidirect products. Vaguely speaking, any direct factor of the
base group which is invariant with respect to the initial twisting homo-
morphism can be moved to the extending group (nonnormal semidirect
factor) to enlarge it. The new twisting homomorphism is such that the
moved direct factor acts trivially on the remaining part of the base group.

Proposition 1. Let N1, N2, H be groups. Let G = (N1 × N2) ⋊ϕ H be a

diagonal semidirect product, ϕ(h)(g1, g2) = (ϕ11(h)(g1), ϕ22(h)(g2)). Then

the following statements hold.

1. G ≃ N1⋊Φ11
(N2⋊ϕ22

H), for some Φ11 ∈ Hom(N2⋊ϕ22
H, Aut(N1)).

2. Ker(Φ11) = Ñ2
˜Ker(ϕ11).

3. If ϕ11(h) = idN1
, for any h ∈ H, i.e.

ϕ(h)

([
g1

g2

])
=

[
g1 e

e ϕ22(h)(g2)

]
,

then G ≃ N1 × (N2 ⋊ϕ22
H).
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Proof. 1. Consider N1 ⋊Φ11
(N2 ⋊ϕ22

H) where Φ11(n2, h) = ϕ11(h). It is
directly checked that Φ11 ∈ Hom(N2 ⋊ H, Aut(N1)). We will prove that

(N1 × N2) ⋊ϕ H ≃ N1 ⋊Φ11
(N2 ⋊ϕ22

H).

Define a bijective map f : (N1 × N2) ⋊ϕ H → N1 ⋊Φ11
(N2 ⋊ϕ22

H) by
f((n1, n2), h) = (n1, (n2, h)), for all ni ∈ Ni, h ∈ H. We prove that f is a
group homomorphism.

Let a, a′ ∈ N1, b, b′ ∈ N2, h, h′ ∈ H. We have that

((a, b), h) · ((a′, b′), h′) = ((a, b)ϕ(h)(a′, b′), hh′)

= ((a, b)(ϕ11(h)(a′), ϕ22(h)(b′)), hh′)

= ((aϕ11(h)(a′), bϕ22(h)(b′)), hh′).

On the other hand,

(a, (b, h)) · (a′, (b′, h′)) = (aΦ11(b, h)(a′), (b, h) · (b′, h′))

= (aϕ11(h)(a′), (bϕ22(h)(b′), hh′)).

We see that f is a group isomorphism.

2. Ker(Φ11) = {(n2, h)|h ∈ Ker(ϕ11)} = Ñ2
˜Ker(ϕ11).

3. In notations given above, ϕ11(h) = idN1
implies Φ11(n2, h) = idN1

,
for any n2 ∈ N2, h ∈ H. Thus it is the direct product.

Example 2. Let G = (Z7×Z9)⋊ϕZ3, where ϕ(1)

([
g1

g2

])
=

[
g2

1 e

e g4
2

]
.

In additive notation this can be simplified as follows

ϕ(1)

([
g1

g2

])
=

[
2g1 0

0 4g2

]
=

[
2 0

0 4

] [
g1

g2

]
.

G can be defined as the subgroup of Σ16 generated by three permutations:

a) (1, . . . , 7) (generating Z7),
b) (8, . . . , 16) (generating Z9) and
c) (1, 2, 4)(3, 6, 5)︸ ︷︷ ︸

Z7

(8, 11, 14)(9, 15, 12)︸ ︷︷ ︸
Z9

(generating action of Z3 on Z7 × Z9).

We have that G ≃ Z7 ⋊ (Z9 ⋊4 Z3) ≃ Z9 ⋊ (Z7 ⋊2 Z3).
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2.2. Directly decomposable extending groups

We show that a direct factor of the extending group can be transferred
to the base group.

Proposition 2. Let N, H1, H2 be groups Then

N ⋊ϕ (H1 × H2) ≃ (N ⋊ϕ1
H1) ⋊ϕ2

H2,

where ϕ1(h1)(n) = ϕ(h1, eH2
)(n) and ϕ2(h2)(n, h1) = (ϕ(eH1

, h2)(n), h1),
for all n ∈ N , hi ∈ Hi.

Proof. It is checked that ϕi are group homomorphisms.
We prove that the map f : N ⋊ (H1 × H2) −→ (N ⋊ H1) ⋊ H2 given

by f(n, (h1, h2)) = ((n, h1), h2) is a group homomorphism.
Let n, n′ ∈ N , hi, h′

i ∈ Hi.
Consider the product (n, (h1, h2)) · (n′, (h′

1, h′

2)) in N ⋊ϕ (H1 × H2):

(n, (h1, h2)) · (n′, (h′

1, h′

2)) = (nϕ(h1, h2)(n′), (h1h′

1, h2h′

2)).

Consider the product ((n, h1), h2) · ((n′, h′

1), h′

2) in (N ⋊ H1) ⋊ H2:

((n, h1), h2) · ((n′, h′

1), h′

2) = (((n, h1)ϕ2(h2)(n′, h′

1)), h2h′

2)

= (((n, h1)(ϕ(e, h2)(n′), h′

1)), h2h′

2)

= ((nϕ1(h1)(ϕ(e, h2)(n′)), h1h′

1), h2h′

2)

= ((nϕ(h1, h2)(n′), h1h′

1), h2h′

2).

We see that both products have equal corresponding components and
thus f is a group isomorphism.

Example 3. Let G = Z7⋊ϕ(Z2×Z3) where ϕ(x, y)(1) ≡ (−1)x2y(mod 7).
G can be defined as the subgroup of Σ7 generated by three permutations:

a) (1, . . . , 7) (generating Z7),
b) (1, 6)(2, 5)(3, 4) (generating action of Z2 on Z7) and
c) (1, 2, 4)(3, 6, 5) (generating action of Z3 on Z7).
Then G ≃ D2·7 ⋊ Z3 ≃ (Z7 ⋊ Z3) ⋊ Z2.

3. Applications

3.1. Generalized dihedral groups

We remind the reader that an external semidirect product D(A) =
A⋊ϕ Z2 is called generalized dihedral group provided 1) A is abelian and
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2) ϕ(1)(g) = −g for any g ∈ A, in additive notation. We can also denote
D(A) by A ⋊−1 Z2.

Using the classification of finite abelian groups we can assume that
A =

⊕n
i=1 Zmi

. We use linear algebra style encoding — we encode

(g1, . . . , gn) ∈ A as a column vector




g1

. . .

gn


. Notations introduced in

section 2.1 are modified for additive group notation. The action of the
twisting homomorphism is given by scalar or matrix multiplication:

ϕ(1)

(


g1

. . .

gn



)

=




(−g1) 0 0

0 . . . 0

0 0 (−gn)


=−




g1

. . .

gn


 = (−En) ·




g1

. . .

gn


 ,

where En is the n × n identity matrix.

Remark 2. Generalized dihedral groups are diagonal semidirect products
with an injective twisting homomorphism.

Proposition 3. Let A =
⊕n

i=1 Zmi
, let A = A1 ⊕ A2, where A1 =⊕n1

i=1 Zmi
, A2 =

⊕n
i=n1+1 Zmi

. Then

D(A) ≃ A1 ⋊ (A2 ⋊−1 Z2) = A1 ⋊ D(A2) ≃ A1 ⋊ D(A/A1).

Proof. D(A) = (A1 ⊕A2)⋊ϕZ2, where ϕ(1)(g) = −g, for any g ∈ A. Thus
ϕ(g1, g2) = (−g1, −g2), for any gi ∈ Gi. It follows that D(A) is a diagonal
semidirect product with respect to A1 ⊕ A2 decomposition. According to
Proposition 1 we have that D(A) ≃ A1 ⋊Φ11

(A2 ⋊ϕ22
Z2) = A1 ⋊ D(A2),

where Φ11(g2, 1)(g1) = ϕ11(1)(g1) = −g1.

Example 4. Let G = D(Z3 ⊕ Z5). G can be defined as a subgroup of
Σ8 generated by permutations (1, 2, 3), (4, 5, 6, 7, 8) and (1, 2)(4, 7)(5, 6).
Then G ≃ Z3 ⋊ D2·5 ≃ Z5 ⋊ D2·3.

3.2. Dihedral groups

Classic dihedral groups are special cases of generalized dihedral groups
when the base group is a cyclic group. We give a complete description of
semidirect decompositions of D2n using both Proposition 1 and ad hoc
computations.

We use a classical presentation of dihedral groups:

D2n = 〈a, x|an = e, x2 = e, xax = an−1〉 = 〈a〉 ∪ 〈a〉x.

We note that D2 ≃ Z2 and D4 ≃ Z2 × Z2, in all other cases D2n is
nonabelian.
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Subgroups. Let n ∈ N, n > 3, d ∈ N, d|n, m = n
d
. It is known that D2n

has the following subgroups, see [2].
1. For each m ∈ N such that m|n there is a subgroup

Am = 〈a
n

m 〉 = 〈ad〉 = {e, ad, a2d, . . . , a(m−1)d} ≃ Zm.

Am E D2n for all m. The number of such subgroups is d(n) (the number
of natural n-divisors).

2. For each m ∈ N such that m|n and each r ∈ Z n

m

= Zd there is a
subgroup

B2m,r = 〈a
n

m , arx〉 = 〈ad, arx〉 = 〈Am, Am(arx)〉 ≃ D2m.

Note that r ∈ Z n

m

is identified with an integer as described in the
introduction.

The number of such subgroups is σ(n) (the sum of natural n-divisors).
If 2|n then Bn,r E D2n. In all other cases, if 1 < m < n then

B2m,r 6E D2n.

Classical decompositions. It known that D2n ≃ Zn ⋊ϕ Z2 where the
twisting homomorphism is ϕ(1)(g) = −g. In internal terms, D2n =
An ⋊ B2,r, for all r ∈ Zn. If 2|n and 4 6 |n, then D2n ≃ Dn × Z2, or, in
internal terms, D2n = Bn,r × A2. where r ∈ Z2. Again, note that second
indices of B-type subgroups can be interpreted as both integers and
residues.

External semidirect decompositions of D2n. Using Proposition 1 we get
an exaustive description of external semidirect decompositions of D2n.

Proposition 4. 1. D2n ≃ Zm ⋊ϕ D 2n

m

, for any m ∈ N, m|n, such that

GCD(m, n
m

) = 1. ϕ is defined as follows: if D 2n

m

= 〈a, x|a
n

m = e, x2 = e,

xax = a−1〉 then ϕ(a)(1) = 1 and ϕ(x)(1) = −1.

2. D2n ≃ Dn ⋊ϕ Z2, if n = 2αq, α ∈ N. ϕ is defined as follows:

if Dn = 〈a, x|a
n

2 = e, x2 = e, xax = a−1〉 then ϕ(1)(a) = a−1 and

ϕ(1)(x) = ax.

3. If 2|n and 4 6 |n then

D2n ≃ Dn × Z2.

4. There are no other nontrivial external semidirect decompositions

of D2n in the following sense. If D2n ≃ X ⋊ Y , |X| > 1, |Y | > 1, then

there are two possibilities:
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a) X = Zm and Y = D 2n

m

, where m|n, GCD(m, n
m

) = 1 or

b) X = Dn and Y = Z2, if 2|n.

Proof. Statements 1, 2 and 3 are proved by exhibiting a suitable internal
semidirect decomposition.

1. We use the primary decomposition theorem for cyclic groups: if n =∏k
i=1 pαi

i , then Zn ≃
⊕k

i=1 Zp
αi

i

. The statement follows from Proposition 1.

Note that Ker(ϕ) = 〈a〉.

Alternatively, we prove the same statement using the information
about D2n-subgroups. We show that if GCD(m, n

m
) = 1 then D2n =

Am ⋊ B 2n

m
,r.

We have that Am E D2n and |Am| · |B 2n

m
,r| = 2n = |D2n|. Am ∩B 2n

m

6

〈a
n

m 〉. Considering subgroups of 〈a
n

m 〉 it follows that Am ∩ B 2n

m

= {e}.

Thus D2n = Am ⋊B 2n

m
,r ≃ Zm ⋊ϕ D 2n

m

. A direct computation shows that

ϕ is as stated: (am)ad(a−m) = ad, (arx)ad(arx) = a−d.

Note that if 2|n and 4 6 |n then A2 ∩ Bn,r = {e}, r ∈ Z2, hence
D2n = A2 ×Bn,r ≃ Z2 ×Dn. In this case there are no nontrivial semidirect
decompositions of type Z2 ⋊ Dn.

2. This case is not covered by Proposition 1, we show directly that
D2n = Bn,0 ⋊ B2,1.

If 2|n, then Bn,0 E D2n. |Bn,0| · |B2,1| = |D2n|. It can be checked that
Bn,0 ∩ B2,1 = {e}: Bn,0 = 〈a2, x〉, B2,1 = 〈ax〉.

Thus D2n ≃ Dn ⋊Z2. A direct computation shows that ϕ is as stated:
(ax)a2 (ax) = a−2 (the generator a2 gets inverted), (ax)x(ax) = a2x (the
generator x gets multiplied by the other generator a2).

3. Using Proposition 1 we see that D2n = D(Zn) = (Z2 ⊕ . . .) ⋊ Z2 ≃
Z2 × D(Zn/Z2) ≃ Z2 × Dn.

It can also be proved using the list of subgroups. We remind that
D2n = Bn,0 × A2 ≃ Dn × Z2 for the following reasons. Both subgroups
are normal. |Bn,0| · |A2| = |D2n|. Bn,0 = 〈a2, x〉, A2 = 〈a

n

2 〉, n
2 is odd,

therefore Bn,0 ∩ A2 = {e}.

4. Consider all possible internal semidirect decompositions of D2n.

If D2n = X ⋊ Y then X must be a normal subgroup of D2n therefore
X must be Am or Bn,r with 2|n.

If X = Am then Y must be Bm′,r ir order to generate D2n, with
m′ = 2n

m
. Am ∩ B 2n

m
,r = {e} iff GCD(n, n

m
) = 1.

Let X = Bn,r with 2|n, r ∈ Z2. There are n + 1 subgroups of D2n

having order 2: B2,r , r ∈ Zn and A2 = 〈a
n

2 〉. For any n such that 2|n
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this gives a semidirect decomposition of type Dn ⋊ Z2. If 4 6 |n then
A2 ∩ Bn,r = {e} which gives a direct decomposition Dn × Z2.

Remark 3. In terms of prime factorization the condition GCD(m, n
m

) = 1
is equivalent to the fact that m and n

m
are products of full prime powers of

the prime factorization of n. Existence of many members of this family also
follows from Schur-Zassenhaus theorem. If m|n and GCD(m, n

m
) = 1 then

GCD(|Am|, |D2n/Am|) = 1, D2n/Am ≃ D 2n

m

and, hence D2n ≃ Am⋊D 2n

m

.

Remark 4. Note that there are at most 2 external semidirect decompo-
sitions when n is a prime power:

1) if n = pα, p an odd prime, then there is only one (classical) external
semidirect decomposition: D2pα ≃ Zpα ⋊ Z2,

2) if n = 2α, α > 3, then there are two external semidirect decomposi-
tions: D2·2α ≃ Z2α ⋊ Z2 ≃ D2α ⋊ Z2.

Remark 5. The image of the twisting homomorphism in each case of a
proper semidirect product is isomorphic to Z2. If the extending group is
not Z2, then the twisting homomorphism is not injective.

Example 5. External semidirect decompositions of D2·30:

D60 ≃ Z30 ⋊ Z2 ≃ Z6 ⋊ D10 ≃ Z10 ⋊ D6 ≃ Z15 ⋊ D4

≃ Z3 ⋊ D20 ≃ Z5 ⋊ D12 ≃ D30 ⋊ Z2 ≃ D30 × Z2.

Internal semidirect decompositions of D2n. We now describe all internal
semidirect decompositions of D2n.

Proposition 5. Let n ∈ N.

1. If m ∈ N, m|n, is such that GCD(m, n
m

) = 1, then

D2n = Am ⋊ B 2n

m
,r,

for all r ∈ Zm.

2. If n = 2αq, α ∈ N, then

D2n = Bn,0 ⋊ B2,r1
= Bn,1 ⋊ B2,r0

where ri ∈ Zn, ri ≡ i(mod 2).

3. If 2|n and 4 6 n then D2n = Bn,0 × A2 and D2n = Bn,1 × A2.

4. There are no other internal semidirect decompositions of D2n.
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Proof. 1. We look for internal semidirect decompositions of D2n in form
Am ⋊ Bm′,r. We must have m′ = 2n

m
and r ∈ Zm. Am ∩ B 2n

m
,r = {e}

iff GCD(m, n
m

) = 1. Thus D2n = Am ⋊ B 2n

m
,r for all m such that

GCD(m, n
m

) = 1 and all r ∈ Zm are the only possible decompositions of
this kind.

2. We look for internal semidirect decompositions of D2n in form
Bm,r ⋊ Bm′,r′ . We must have Bm,r E D2n therefore 2|n, m = n and
r ∈ Z2, thus we have two possible decomposition series: Bn,0 ⋊ B2,r′ and
Bn,1 ⋊ B2,r′′ . To ensure trivial intersections of semidirect factors we must
have r′ ≡ 1(mod 2) and r′′ ≡ 0(mod 2).

3. If 2|n and 4 6 n then Bn,0∩A2 = Bn,1∩A2 = {e} where all subgroups
are normal.

4. It follows from the previous arguments.

Permutation representations of dihedral groups. Finally we find minimal
degrees of faithful permutation representations of D2n. If n is not a
prime power then these numbers are smaller than degrees of classical
permutation representations of dihedral groups. This is a consequence of
Proposition 4 and Karpilovsky bounds for finite abelian groups [4].

Let µ(G) be the minimal faithful permutation representation degree
of G, i.e. the minimal n ∈ N such that there is an injective group homo-
morphism G → Σn. It is known that for finite groups G, H and a group
homomorphism ϕ : H → Aut(G) we have that µ(G ⋊ϕ H) 6 |G| + µ(H).
If, additionally, ϕ is injective, then µ(G ⋊ϕ H) 6 |G|.

Proposition 6. Let n =
∏

i pαi

i be the prime factorization of n ∈ N.

Then µ(D2n) =
∑

i pαi

i .

Proof. First we prove that

µ(D2n) 6
∑

i

pαi

i . (∗)

By statement 1 of Proposition 4 we have that D2n ≃ Zp
α1

1

⋊ D2n1
, where

n1 = n

p
α1

1

. Thus µ(D2n) 6 pα1

1 + µ(D2n1
). (∗) follows by induction in i

using injectivity of the twisting homomorphism at the last step.
To prove the opposite inequality and the statement, we remind that

Zn 6 D2n. It implies µ(Zn) 6 µ(D2n), therefore
∑

i pαi

i 6 µ(D2n) by the
Karpilovsky theorem for abelian groups [4].

Example 6. minn∈N{n : µ(D2n) < n} = 6: µ(D2·6) = 5, D2·6 can
be generated by (1, 2, 3), (1, 2), (4, 5). If, additionally, D2n is directly
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indecomposable, then the minimum is 12: µ(D2·12) = 7, D2·12 can be
generated by (1, 2, 3, 4), (5, 6, 7), (1, 3)(5, 6).

4. Conclusion

We have obtained results showing possibility of various semidirect
decompositions of a given semidirect product in two cases: 1) if the
original twisting homomorphism is diagonal and the base group is directly
decomposable and 2) if the extending group is directly decomposable.
These results may stimulate further interest in looking for analogues of
Krull-Remak-Schmidt theorem type results for semidirect and Zappa-Szep
products.

We have presented semidirect decompositions of generalized dihedral
groups and classical dihedral groups as an application. Apart from semi-
direct decompositions guarranteed by the general proposition 4, for D2n

there are additional decompositions of external type Dn ⋊ Z2 if 2|n.
Semidirect decompositions of dihedral groups give the exact value

of µ(D2n).

Computations were performed using the computational algebra system
MAGMA, see Bosma et al. [1].
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