Nonuniqueness of semidirect decompositions for semidirect products with directly decomposable factors and applications for dihedral groups

Peteris Daugulis

Communicated by I. Ya. Subbotin

Abstract. Nonuniqueness of semidirect decompositions of groups is an insufficiently studied question in contrast to direct decompositions. We obtain some results about semidirect decompositions for semidirect products with factors which are nontrivial direct products. We deal with a special case of semidirect product when the twisting homomorphism acts diagonally on a direct product, as well as with the case when the extending group is a direct product. We give applications of these results in the case of generalized dihedral groups and classic dihedral groups $D_{2 n}$. For $D_{2 n}$ we give a complete description of semidirect decompositions and values of minimal permutation degrees.

1. Introduction

1.1. Background

The aim of this article is to study semidirect decompositions of groups both in general and special cases.

By the Krull-Remak-Schmidt theorem the multiset of isomorphism types of indecomposable direct factors for groups satisfying ascending

2010 MSC: 20E22, 20D40.
Key words and phrases: semidirect product, direct product, diagonal action, generalized dihedral group.
and descending chain conditions on normal subgroups does not depend on the order of factors. Thus direct decompositions of such groups, e.g. finite groups, may be considered understood.

Few results of this type are known for semidirect and Zappa-Szep decompositions. One can mention the Schur-Zassenhaus theorem as an example.

We consider cases when the base group or the extending group is a direct product. We present a general result which allows to characterize some semidirect decompositions in the case when the base group is a direct product and the twisting homomorphism acts diagonally, Proposition 1. We obtain a nonuniqueness result of semidirect decomposition in the case when the extending group is a direct product, Proposition 2. We give applications of some of these results in the case of finite dihedral groups, both classic and generalized.

We use traditional multiplicative notation for general groups and additive notation for abelian groups. In this article the dihedral group of order $m=2 n$ is denoted by $D_{m}: D_{m}=\langle a, x| a^{n}=e, x^{2}=e, x a x=$ $\left.a^{-1}\right\rangle$. For any $m \mid n$ we usually identify \mathbb{Z}_{m} with the corresponding subgroup of $\mathbb{Z}_{n} . Q_{m}$ denotes the dicyclic group of order $m=4 k: Q_{m}=$ $\left\langle a, x \mid a^{2 k}=e, x^{2}=a^{k}, x^{-1} a x=a^{-1}\right\rangle$.

The cyclic group of order m is denoted by \mathbb{Z}_{m}, in additive notation we assume that $\mathbb{Z}_{m}=\langle 1\rangle$. In this article we identify elements of \mathbb{Z}_{m} and corresponding minimal nonnegative integers. We use this identification for powers of group elements. For example, if $r \in \mathbb{Z}_{3}$ and $r \equiv 2(\bmod 3)$, then $a^{r}=a^{2}$ for any group element a.

1.2. Basic facts about semidirect products

We remind the reader that an external semidirect product of groups N (base group) and H (extending group) is the group $N \rtimes_{\varphi} H=(N \times H, \cdot)$ where the group product is defined on the Cartesian product $N \times H$ using a group homomorphism (twisting homomorphism) $\varphi \in \operatorname{Hom}(H, \operatorname{Aut}(N))$ as follows: $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \varphi\left(h_{1}\right)\left(n_{2}\right), h_{1} h_{2}\right)$. Sets $\widetilde{N}=N \times\left\{e_{H}\right\}$ and $\widetilde{H}=\left\{e_{N}\right\} \times H$ are subgroups in $N \times H$.

A group G is an internal semidirect product of its subgroups N and H if N is a normal subgroup, $G=N H$ and $N \cap H=\{e\}$. If a group G is finite then for G to be an internal semidirect product $N \rtimes H$ is equivalent to 1) N being normal in G, 2) $|N| \cdot|H|=|G|$ and 3) $N \cap H=\{e\}$. In the internal case the twisting homomorphism $H \rightarrow \operatorname{Aut}(N)$ is given by the map $h \mapsto\left(n \rightarrow h n h^{-1}\right)$, for any $n \in N, h \in H$.

Both expressions will be called semidirect decompositions of G. If the twisting homomorphism is not discussed, we omit it and use the notation \rtimes. We consider direct product to be a special case of semidirect product with the twisting homomorphism being trivial. For relevant treatment see [5], [6].

A nontrivial semidirect product may admit more than one semidirect decomposition. Examples are abundant starting from groups of order 8.

Example 1. Twisting homomorphisms are not given in these examples.

$$
D_{8} \simeq \mathbb{Z}_{4} \rtimes \mathbb{Z}_{2} \simeq \mathbb{Z}_{2}^{2} \rtimes \mathbb{Z}_{2}, \quad \Sigma_{4} \simeq A_{4} \rtimes \mathbb{Z}_{2} \simeq \mathbb{Z}_{2}^{2} \rtimes \Sigma_{3}
$$

There are semidirect products such that $\mathbb{Z}_{3} \rtimes Q_{8} \simeq Q_{24}$, but $Q_{8} \rtimes \mathbb{Z}_{3} \simeq$ $S L\left(2, \mathbb{F}_{3}\right)$. On the other hand, there is a group G_{32} of order 32 , such that $G_{32} \simeq D_{8} \rtimes \mathbb{Z}_{2}^{2} \simeq \mathbb{Z}_{2}^{2} \rtimes D_{8}$.

Finally, there is a group G_{24} of order 24 which can be decomposed in 5 different ways:

$$
G_{24} \simeq \mathbb{Z}_{3} \rtimes D_{8} \simeq \mathbb{Z}_{2}^{2} \rtimes \mathbb{Z}_{3} \simeq D_{12} \rtimes \mathbb{Z}_{2} \simeq\left(\mathbb{Z}_{3} \times \mathbb{Z}_{2}^{2}\right) \rtimes \mathbb{Z}_{2} \simeq Q_{12} \rtimes \mathbb{Z}_{2}
$$

2. Main results

2.1. Diagonal semidirect products

Automorphisms of direct products. We introduce a linear algebra style notation for direct products of groups.

Let $G=G_{1} \times G_{2}$. Encode the element $\left(g_{1}, g_{2}\right)$ as a column $\left[\frac{g_{1}}{g_{2}}\right]$. If $\varphi \in \operatorname{Aut}(G)$, then

$$
\varphi\left(\left[\frac{g_{1}}{g_{2}}\right]\right)=\left[\frac{\varphi_{1}\left(g_{1}, g_{2}\right)}{\varphi_{2}\left(g_{1}, g_{2}\right)}\right]
$$

One can check, that for all relevant parameter values φ_{i} satisfy the following properties:

1) $\varphi_{i}(a b, e)=\varphi_{i}(a, e) \varphi_{i}(b, e)$,
2) $\varphi_{i}(e, a b)=\varphi_{i}(e, a) \varphi_{i}(e, b)$,
3) $\varphi_{i}(a, b)=\varphi_{i}(a, e) \varphi_{i}(e, b)=\varphi_{i}(e, b) \varphi_{i}(a, e)$,

Define $\varphi_{11}\left(g_{1}\right)=\varphi_{1}\left(g_{1}, e\right), \varphi_{12}\left(g_{2}\right)=\varphi_{1}\left(e, g_{2}\right), \varphi_{21}\left(g_{1}\right)=\varphi_{2}\left(g_{1}, e\right)$, $\varphi_{22}\left(g_{2}\right)=\varphi_{2}\left(e, g_{2}\right)$, for all $g_{i} \in G_{i}$. All functions $\varphi_{i j}$ are group homomorphisms. Thus $\varphi_{i}\left(g_{1}, g_{2}\right)=\varphi_{i}\left(g_{1}, e\right) \varphi_{i}\left(e, g_{2}\right)=\varphi_{i 1}\left(g_{1}\right) \varphi_{i 2}\left(g_{2}\right)$.

We can encode action of φ as follows:

$$
\varphi\left(\left[\begin{array}{l}
g_{1} \\
\hline g_{2}
\end{array}\right]\right)=\left[\begin{array}{l|l}
\varphi_{11}\left(g_{1}\right) & \varphi_{12}\left(g_{2}\right) \\
\hline \varphi_{21}\left(g_{1}\right) & \varphi_{22}\left(g_{2}\right)
\end{array}\right]
$$

Thus an automorphism $\varphi \in \operatorname{Aut}\left(G_{1} \times G_{2}\right)$ is determined by 4 group homomorphisms $\varphi_{i j}: G_{j} \rightarrow G_{i}$.

Definition 1. We call $\varphi \in \operatorname{Aut}\left(G_{1} \times G_{2}\right), G_{1} \neq\{e\}, G_{2} \neq\{e\}$, a diagonal automorphism if φ_{12} and φ_{21} are trivial homomorphisms.

Definition 2. We call $\left(G_{1} \times G_{2}\right) \rtimes_{\varphi} H$ a diagonal semidirect product if $\varphi(h)$ is a diagonal $G_{1} \times G_{2}$-automorphism for any $h \in H$. Explicitly, there are group homomorphisms $\varphi_{i i}(h): G_{i} \rightarrow G_{i}$ such that $\varphi(h)\left(g_{1}, g_{2}\right)=$ $\left(\varphi_{11}(h)\left(g_{1}\right), \varphi_{22}(h)\left(g_{2}\right)\right)$.

Remark 1. Note that G_{i} may not be indecomposable as direct factors. Described encodings and diagonal semidirect products can be generalized to cases when the base groups splits into an arbitrary finite number of direct factors. Similar encodings can be used considering internal semidirect products.

Semidirect decompositions of diagonal semidirect products. We present a proposition showing nonuniqueness of semidirect decomposition for diagonal semidirect products. Vaguely speaking, any direct factor of the base group which is invariant with respect to the initial twisting homomorphism can be moved to the extending group (nonnormal semidirect factor) to enlarge it. The new twisting homomorphism is such that the moved direct factor acts trivially on the remaining part of the base group.

Proposition 1. Let N_{1}, N_{2}, H be groups. Let $G=\left(N_{1} \times N_{2}\right) \rtimes_{\varphi} H$ be a diagonal semidirect product, $\varphi(h)\left(g_{1}, g_{2}\right)=\left(\varphi_{11}(h)\left(g_{1}\right), \varphi_{22}(h)\left(g_{2}\right)\right)$. Then the following statements hold.

1. $G \simeq N_{1} \rtimes_{\Phi_{11}}\left(N_{2} \rtimes_{\varphi_{22}} H\right)$, for some $\Phi_{11} \in \operatorname{Hom}\left(N_{2} \rtimes_{\varphi_{22}} H\right.$, $\left.\operatorname{Aut}\left(N_{1}\right)\right)$.
2. $\operatorname{Ker}\left(\Phi_{11}\right)=\widetilde{N_{2}} \widehat{\operatorname{Ker}\left(\varphi_{11}\right)}$.
3. If $\varphi_{11}(h)=i d_{N_{1}}$, for any $h \in H$, i.e.

$$
\varphi(h)\left(\left[\begin{array}{l}
g_{1} \\
\hline g_{2}
\end{array}\right]\right)=\left[\begin{array}{c|c}
g_{1} & e \\
\hline e & \varphi_{22}(h)\left(g_{2}\right)
\end{array}\right]
$$

then $G \simeq N_{1} \times\left(N_{2} \rtimes_{\varphi_{22}} H\right)$.

Proof. 1. Consider $N_{1} \rtimes_{\Phi_{11}}\left(N_{2} \rtimes_{\varphi_{22}} H\right)$ where $\Phi_{11}\left(n_{2}, h\right)=\varphi_{11}(h)$. It is directly checked that $\Phi_{11} \in \operatorname{Hom}\left(N_{2} \rtimes H, \operatorname{Aut}\left(N_{1}\right)\right)$. We will prove that

$$
\left(N_{1} \times N_{2}\right) \rtimes_{\varphi} H \simeq N_{1} \rtimes_{\Phi_{11}}\left(N_{2} \rtimes_{\varphi_{22}} H\right)
$$

Define a bijective map $f:\left(N_{1} \times N_{2}\right) \rtimes_{\varphi} H \rightarrow N_{1} \rtimes_{\Phi_{11}}\left(N_{2} \rtimes_{\varphi_{22}} H\right)$ by $f\left(\left(n_{1}, n_{2}\right), h\right)=\left(n_{1},\left(n_{2}, h\right)\right)$, for all $n_{i} \in N_{i}, h \in H$. We prove that f is a group homomorphism.

Let $a, a^{\prime} \in N_{1}, b, b^{\prime} \in N_{2}, h, h^{\prime} \in H$. We have that

$$
\begin{aligned}
((a, b), h) \cdot\left(\left(a^{\prime}, b^{\prime}\right), h^{\prime}\right) & =\left((a, b) \varphi(h)\left(a^{\prime}, b^{\prime}\right), h h^{\prime}\right) \\
& =\left((a, b)\left(\varphi_{11}(h)\left(a^{\prime}\right), \varphi_{22}(h)\left(b^{\prime}\right)\right), h h^{\prime}\right) \\
& =\left(\left(a \varphi_{11}(h)\left(a^{\prime}\right), b \varphi_{22}(h)\left(b^{\prime}\right)\right), h h^{\prime}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(a,(b, h)) \cdot\left(a^{\prime},\left(b^{\prime}, h^{\prime}\right)\right) & =\left(a \Phi_{11}(b, h)\left(a^{\prime}\right),(b, h) \cdot\left(b^{\prime}, h^{\prime}\right)\right) \\
& =\left(a \varphi_{11}(h)\left(a^{\prime}\right),\left(b \varphi_{22}(h)\left(b^{\prime}\right), h h^{\prime}\right)\right)
\end{aligned}
$$

We see that f is a group isomorphism.
2. $\operatorname{Ker}\left(\Phi_{11}\right)=\left\{\left(n_{2}, h\right) \mid h \in \operatorname{Ker}\left(\varphi_{11}\right)\right\}=\widetilde{N_{2}} \widetilde{\operatorname{Ker}\left(\varphi_{11}\right)}$.
3. In notations given above, $\varphi_{11}(h)=i d_{N_{1}}$ implies $\Phi_{11}\left(n_{2}, h\right)=i d_{N_{1}}$, for any $n_{2} \in N_{2}, h \in H$. Thus it is the direct product.

Example 2. Let $G=\left(\mathbb{Z}_{7} \times \mathbb{Z}_{9}\right) \rtimes_{\varphi} \mathbb{Z}_{3}$, where $\varphi(1)\left(\left[\begin{array}{c}g_{1} \\ \hline g_{2}\end{array}\right]\right)=\left[\begin{array}{c|c}g_{1}^{2} & e \\ \hline e & g_{2}^{4}\end{array}\right]$. In additive notation this can be simplified as follows

$$
\varphi(1)\left(\left[\begin{array}{l}
g_{1} \\
\hline g_{2}
\end{array}\right]\right)=\left[\begin{array}{c|c}
2 g_{1} & 0 \\
\hline 0 & 4 g_{2}
\end{array}\right]=\left[\begin{array}{c|c}
2 & 0 \\
\hline 0 & 4
\end{array}\right]\left[\begin{array}{l}
g_{1} \\
\hline g_{2}
\end{array}\right] .
$$

G can be defined as the subgroup of Σ_{16} generated by three permutations:
a) $(1, \ldots, 7)$ (generating \mathbb{Z}_{7}),
b) $(8, \ldots, 16)$ (generating $\left.\mathbb{Z}_{9}\right)$ and
c) $\underbrace{(1,2,4)(3,6,5)}_{\mathbb{Z}_{7}} \underbrace{(8,11,14)(9,15,12)}_{\mathbb{Z}_{9}}$
(generating action of \mathbb{Z}_{3} on $\mathbb{Z}_{7} \times \mathbb{Z}_{9}$).
We have that $G \simeq \mathbb{Z}_{7} \rtimes\left(\mathbb{Z}_{9} \rtimes_{4} \mathbb{Z}_{3}\right) \simeq \mathbb{Z}_{9} \rtimes\left(\mathbb{Z}_{7} \rtimes_{2} \mathbb{Z}_{3}\right)$.

2.2. Directly decomposable extending groups

We show that a direct factor of the extending group can be transferred to the base group.

Proposition 2. Let N, H_{1}, H_{2} be groups Then

$$
N \rtimes_{\varphi}\left(H_{1} \times H_{2}\right) \simeq\left(N \rtimes_{\varphi_{1}} H_{1}\right) \rtimes_{\varphi_{2}} H_{2},
$$

where $\varphi_{1}\left(h_{1}\right)(n)=\varphi\left(h_{1}, e_{H_{2}}\right)(n)$ and $\varphi_{2}\left(h_{2}\right)\left(n, h_{1}\right)=\left(\varphi\left(e_{H_{1}}, h_{2}\right)(n), h_{1}\right)$, for all $n \in N, h_{i} \in H_{i}$.

Proof. It is checked that φ_{i} are group homomorphisms.
We prove that the map $f: N \rtimes\left(H_{1} \times H_{2}\right) \longrightarrow\left(N \rtimes H_{1}\right) \rtimes H_{2}$ given by $f\left(n,\left(h_{1}, h_{2}\right)\right)=\left(\left(n, h_{1}\right), h_{2}\right)$ is a group homomorphism.

Let $n, n^{\prime} \in N, h_{i}, h_{i}^{\prime} \in H_{i}$.
Consider the product $\left(n,\left(h_{1}, h_{2}\right)\right) \cdot\left(n^{\prime},\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\right)$ in $N \rtimes_{\varphi}\left(H_{1} \times H_{2}\right)$:

$$
\left(n,\left(h_{1}, h_{2}\right)\right) \cdot\left(n^{\prime},\left(h_{1}^{\prime}, h_{2}^{\prime}\right)\right)=\left(n \varphi\left(h_{1}, h_{2}\right)\left(n^{\prime}\right),\left(h_{1} h_{1}^{\prime}, h_{2} h_{2}^{\prime}\right)\right)
$$

Consider the product $\left(\left(n, h_{1}\right), h_{2}\right) \cdot\left(\left(n^{\prime}, h_{1}^{\prime}\right), h_{2}^{\prime}\right)$ in $\left(N \rtimes H_{1}\right) \rtimes H_{2}$:

$$
\begin{aligned}
\left(\left(n, h_{1}\right), h_{2}\right) \cdot\left(\left(n^{\prime}, h_{1}^{\prime}\right), h_{2}^{\prime}\right) & =\left(\left(\left(n, h_{1}\right) \varphi_{2}\left(h_{2}\right)\left(n^{\prime}, h_{1}^{\prime}\right)\right), h_{2} h_{2}^{\prime}\right) \\
& =\left(\left(\left(n, h_{1}\right)\left(\varphi\left(e, h_{2}\right)\left(n^{\prime}\right), h_{1}^{\prime}\right)\right), h_{2} h_{2}^{\prime}\right) \\
& =\left(\left(n \varphi_{1}\left(h_{1}\right)\left(\varphi\left(e, h_{2}\right)\left(n^{\prime}\right)\right), h_{1} h_{1}^{\prime}\right), h_{2} h_{2}^{\prime}\right) \\
& =\left(\left(n \varphi\left(h_{1}, h_{2}\right)\left(n^{\prime}\right), h_{1} h_{1}^{\prime}\right), h_{2} h_{2}^{\prime}\right) .
\end{aligned}
$$

We see that both products have equal corresponding components and thus f is a group isomorphism.

Example 3. Let $G=\mathbb{Z}_{7} \rtimes_{\varphi}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right)$ where $\varphi(x, y)(1) \equiv(-1)^{x} 2^{y}(\bmod 7)$. G can be defined as the subgroup of Σ_{7} generated by three permutations:
a) $(1, \ldots, 7)$ (generating \mathbb{Z}_{7}),
b) $(1,6)(2,5)(3,4)$ (generating action of \mathbb{Z}_{2} on $\left.\mathbb{Z}_{7}\right)$ and
c) $(1,2,4)(3,6,5)$ (generating action of \mathbb{Z}_{3} on \mathbb{Z}_{7}).

Then $G \simeq D_{2.7} \rtimes \mathbb{Z}_{3} \simeq\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \rtimes \mathbb{Z}_{2}$.

3. Applications

3.1. Generalized dihedral groups

We remind the reader that an external semidirect product $D(A)=$ $A \rtimes_{\varphi} \mathbb{Z}_{2}$ is called generalized dihedral group provided 1) A is abelian and
2) $\varphi(1)(g)=-g$ for any $g \in A$, in additive notation. We can also denote $D(A)$ by $A \rtimes_{-1} \mathbb{Z}_{2}$.

Using the classification of finite abelian groups we can assume that $A=\bigoplus_{i=1}^{n} \mathbb{Z}_{m_{i}}$. We use linear algebra style encoding - we encode $\left(g_{1}, \ldots, g_{n}\right) \in A$ as a column vector $\left[\frac{g_{1}}{\frac{\ldots}{g_{n}}}\right]$. Notations introduced in section 2.1 are modified for additive group notation. The action of the twisting homomorphism is given by scalar or matrix multiplication:
$\varphi(1)\left(\left[\begin{array}{c}g_{1} \\ \hline \cdots \\ \hline g_{n}\end{array}\right]\right)=\left[\begin{array}{c|c|c}\left(-g_{1}\right) & 0 & 0 \\ \hline 0 & \cdots & 0 \\ \hline 0 & 0 & \left(-g_{n}\right)\end{array}\right]=-\left[\begin{array}{c}g_{1} \\ \hline \cdots \\ \hline g_{n}\end{array}\right]=\left(-\mathbf{E}_{n}\right) \cdot\left[\begin{array}{c}g_{1} \\ \hline \cdots \\ \hline g_{n}\end{array}\right]$,
where \mathbf{E}_{n} is the $n \times n$ identity matrix.
Remark 2. Generalized dihedral groups are diagonal semidirect products with an injective twisting homomorphism.
Proposition 3. Let $A=\bigoplus_{i=1}^{n} \mathbb{Z}_{m_{i}}$, let $A=A_{1} \oplus A_{2}$, where $A_{1}=$ $\bigoplus_{i=1}^{n_{1}} \mathbb{Z}_{m_{i}}, A_{2}=\bigoplus_{i=n_{1}+1}^{n} \mathbb{Z}_{m_{i}}$. Then

$$
D(A) \simeq A_{1} \rtimes\left(A_{2} \rtimes{ }_{-1} \mathbb{Z}_{2}\right)=A_{1} \rtimes D\left(A_{2}\right) \simeq A_{1} \rtimes D\left(A / A_{1}\right)
$$

Proof. $D(A)=\left(A_{1} \oplus A_{2}\right) \rtimes_{\varphi} \mathbb{Z}_{2}$, where $\varphi(1)(g)=-g$, for any $g \in A$. Thus $\varphi\left(g_{1}, g_{2}\right)=\left(-g_{1},-g_{2}\right)$, for any $g_{i} \in G_{i}$. It follows that $D(A)$ is a diagonal semidirect product with respect to $A_{1} \oplus A_{2}$ decomposition. According to Proposition 1 we have that $D(A) \simeq A_{1} \rtimes_{\Phi_{11}}\left(A_{2} \rtimes_{\varphi_{22}} \mathbb{Z}_{2}\right)=A_{1} \rtimes D\left(A_{2}\right)$, where $\Phi_{11}\left(g_{2}, 1\right)\left(g_{1}\right)=\varphi_{11}(1)\left(g_{1}\right)=-g_{1}$.

Example 4. Let $G=D\left(\mathbb{Z}_{3} \oplus \mathbb{Z}_{5}\right)$. G can be defined as a subgroup of Σ_{8} generated by permutations $(1,2,3),(4,5,6,7,8)$ and $(1,2)(4,7)(5,6)$. Then $G \simeq \mathbb{Z}_{3} \rtimes D_{2 \cdot 5} \simeq \mathbb{Z}_{5} \rtimes D_{2 \cdot 3}$.

3.2. Dihedral groups

Classic dihedral groups are special cases of generalized dihedral groups when the base group is a cyclic group. We give a complete description of semidirect decompositions of $D_{2 n}$ using both Proposition 1 and ad hoc computations.

We use a classical presentation of dihedral groups:

$$
D_{2 n}=\left\langle a, x \mid a^{n}=e, x^{2}=e, x a x=a^{n-1}\right\rangle=\langle a\rangle \cup\langle a\rangle x
$$

We note that $D_{2} \simeq \mathbb{Z}_{2}$ and $D_{4} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, in all other cases $D_{2 n}$ is nonabelian.

Subgroups. Let $n \in \mathbb{N}, n \geqslant 3, d \in \mathbb{N}, d \mid n, m=\frac{n}{d}$. It is known that $D_{2 n}$ has the following subgroups, see [2].

1. For each $m \in \mathbb{N}$ such that $m \mid n$ there is a subgroup

$$
A_{m}=\left\langle a^{\frac{n}{m}}\right\rangle=\left\langle a^{d}\right\rangle=\left\{e, a^{d}, a^{2 d}, \ldots, a^{(m-1) d}\right\} \simeq \mathbb{Z}_{m}
$$

$A_{m} \unlhd D_{2 n}$ for all m. The number of such subgroups is $d(n)$ (the number of natural n-divisors).
2. For each $m \in \mathbb{N}$ such that $m \mid n$ and each $r \in \mathbb{Z}_{\frac{n}{m}}=\mathbb{Z}_{d}$ there is a subgroup

$$
B_{2 m, r}=\left\langle a^{\frac{n}{m}}, a^{r} x\right\rangle=\left\langle a^{d}, a^{r} x\right\rangle=\left\langle A_{m}, A_{m}\left(a^{r} x\right)\right\rangle \simeq D_{2 m} .
$$

Note that $r \in \mathbb{Z}_{\frac{n}{m}}$ is identified with an integer as described in the introduction.

The number of such subgroups is $\sigma(n)$ (the sum of natural n-divisors).
If $2 \mid n$ then $B_{n, r} \unlhd D_{2 n}$. In all other cases, if $1<m<n$ then $B_{2 m, r} \nsubseteq D_{2 n}$.

Classical decompositions. It known that $D_{2 n} \simeq \mathbb{Z}_{n} \rtimes_{\varphi} \mathbb{Z}_{2}$ where the twisting homomorphism is $\varphi(1)(g)=-g$. In internal terms, $D_{2 n}=$ $A_{n} \rtimes B_{2, r}$, for all $r \in \mathbb{Z}_{n}$. If $2 \mid n$ and $4 \nmid n$, then $D_{2 n} \simeq D_{n} \times \mathbb{Z}_{2}$, or, in internal terms, $D_{2 n}=B_{n, r} \times A_{2}$. where $r \in \mathbb{Z}_{2}$. Again, note that second indices of B-type subgroups can be interpreted as both integers and residues.

External semidirect decompositions of $D_{2 n}$. Using Proposition 1 we get an exaustive description of external semidirect decompositions of $D_{2 n}$.

Proposition 4. 1. $D_{2 n} \simeq \mathbb{Z}_{m} \rtimes_{\varphi} D_{\frac{2 n}{m}}$, for any $m \in \mathbb{N}$, $m \mid n$, such that $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1 . \varphi$ is defined as follows: if $D_{\frac{2 n}{m}}=\langle a, x| a^{\frac{n}{m}}=e, x^{2}=e$, xax $\left.=a^{-1}\right\rangle$ then $\varphi(a)(1)=1$ and $\varphi(x)(1)=-1$.
2. $D_{2 n} \simeq D_{n} \not \rtimes_{\varphi} \mathbb{Z}_{2}$, if $n=2^{\alpha} q, \alpha \in \mathbb{N}$. φ is defined as follows: if $D_{n}=\left\langle a, x \left\lvert\, a^{\frac{n}{2}}=e\right., x^{2}=e, x a x=a^{-1}\right\rangle$ then $\varphi(1)(a)=a^{-1}$ and $\varphi(1)(x)=a x$.
3. If $2 \mid n$ and $4 \nmid n$ then

$$
D_{2 n} \simeq D_{n} \times \mathbb{Z}_{2}
$$

4. There are no other nontrivial external semidirect decompositions of $D_{2 n}$ in the following sense. If $D_{2 n} \simeq X \rtimes Y,|X|>1,|Y|>1$, then there are two possibilities:
a) $X=\mathbb{Z}_{m}$ and $Y=D_{\frac{2 n}{m}}$, where $m \mid n, \operatorname{GCD}\left(m, \frac{n}{m}\right)=1$ or
b) $X=D_{n}$ and $Y=\mathbb{Z}_{2}$, if $2 \mid n$.

Proof. Statements 1, 2 and 3 are proved by exhibiting a suitable internal semidirect decomposition.

1. We use the primary decomposition theorem for cyclic groups: if $n=$ $\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, then $\mathbb{Z}_{n} \simeq \bigoplus_{i=1}^{k} \mathbb{Z}_{p_{i}}{ }_{i}$. The statement follows from Proposition 1. Note that $\operatorname{Ker}(\varphi)=\langle a\rangle$.

Alternatively, we prove the same statement using the information about $D_{2 n}$-subgroups. We show that if $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1$ then $D_{2 n}=$ $A_{m} \rtimes B_{\frac{2 n}{m}, r}$.

We have that $A_{m} \unlhd D_{2 n}$ and $\left|A_{m}\right| \cdot\left|B_{\frac{2 n}{m}, r}\right|=2 n=\left|D_{2 n}\right| . A_{m} \cap B_{\frac{2 n}{m}} \leqslant$ $\left\langle a^{\frac{n}{m}}\right\rangle$. Considering subgroups of $\left\langle a^{\frac{n}{m}}\right\rangle$ it follows that $A_{m} \cap B_{\frac{2 n}{m}}=\{e\}$. Thus $D_{2 n}=A_{m} \rtimes B_{\frac{2 n}{m}, r} \simeq \mathbb{Z}_{m} \rtimes_{\varphi} D_{\frac{2 n}{m}}$. A direct computation shows that φ is as stated: $\left(a^{m}\right) a^{d}\left(a^{-m}\right)=a^{d},\left(a^{r} x\right) a^{d}\left(a^{r} x\right)=a^{-d}$.

Note that if $2 \mid n$ and $4 \wedge n$ then $A_{2} \cap B_{n, r}=\{e\}, r \in \mathbb{Z}_{2}$, hence $D_{2 n}=A_{2} \times B_{n, r} \simeq \mathbb{Z}_{2} \times D_{n}$. In this case there are no nontrivial semidirect decompositions of type $\mathbb{Z}_{2} \rtimes D_{n}$.
2. This case is not covered by Proposition 1, we show directly that $D_{2 n}=B_{n, 0} \rtimes B_{2,1}$.

If $2 \mid n$, then $B_{n, 0} \unlhd D_{2 n} \cdot\left|B_{n, 0}\right| \cdot\left|B_{2,1}\right|=\left|D_{2 n}\right|$. It can be checked that $B_{n, 0} \cap B_{2,1}=\{e\}: B_{n, 0}=\left\langle a^{2}, x\right\rangle, B_{2,1}=\langle a x\rangle$.

Thus $D_{2 n} \simeq D_{n} \rtimes \mathbb{Z}_{2}$. A direct computation shows that φ is as stated: $(a x) a^{2}(a x)=a^{-2}$ (the generator a^{2} gets inverted), $(a x) x(a x)=a^{2} x$ (the generator x gets multiplied by the other generator $\left.a^{2}\right)$.
3. Using Proposition 1 we see that $D_{2 n}=D\left(\mathbb{Z}_{n}\right)=\left(\mathbb{Z}_{2} \oplus \ldots\right) \rtimes \mathbb{Z}_{2} \simeq$ $\mathbb{Z}_{2} \times D\left(\mathbb{Z}_{n} / \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2} \times D_{n}$.

It can also be proved using the list of subgroups. We remind that $D_{2 n}=B_{n, 0} \times A_{2} \simeq D_{n} \times \mathbb{Z}_{2}$ for the following reasons. Both subgroups are normal. $\left|B_{n, 0}\right| \cdot\left|A_{2}\right|=\left|D_{2 n}\right| . B_{n, 0}=\left\langle a^{2}, x\right\rangle, A_{2}=\left\langle a^{\frac{n}{2}}\right\rangle, \frac{n}{2}$ is odd, therefore $B_{n, 0} \cap A_{2}=\{e\}$.
4. Consider all possible internal semidirect decompositions of $D_{2 n}$.

If $D_{2 n}=X \rtimes Y$ then X must be a normal subgroup of $D_{2 n}$ therefore X must be A_{m} or $B_{n, r}$ with $2 \mid n$.

If $X=A_{m}$ then Y must be $B_{m^{\prime}, r}$ ir order to generate $D_{2 n}$, with $m^{\prime}=\frac{2 n}{m} . A_{m} \cap B_{\frac{2 n}{m}, r}=\{e\}$ iff $\operatorname{GCD}\left(n, \frac{n}{m}\right)=1$.

Let $X=B_{n, r}$ with $2 \mid n, r \in \mathbb{Z}_{2}$. There are $n+1$ subgroups of $D_{2 n}$ having order 2: $B_{2, r}, r \in \mathbb{Z}_{n}$ and $A_{2}=\left\langle a^{\frac{n}{2}}\right\rangle$. For any n such that $2 \mid n$
this gives a semidirect decomposition of type $D_{n} \rtimes \mathbb{Z}_{2}$. If $4 \wedge n$ then $A_{2} \cap B_{n, r}=\{e\}$ which gives a direct decomposition $D_{n} \times \mathbb{Z}_{2}$.

Remark 3. In terms of prime factorization the condition $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1$ is equivalent to the fact that m and $\frac{n}{m}$ are products of full prime powers of the prime factorization of n. Existence of many members of this family also follows from Schur-Zassenhaus theorem. If $m \mid n$ and $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1$ then $\operatorname{GCD}\left(\left|A_{m}\right|,\left|D_{2 n} / A_{m}\right|\right)=1, D_{2 n} / A_{m} \simeq D_{\frac{2 n}{m}}$ and, hence $D_{2 n} \simeq A_{m} \rtimes D_{\frac{2 n}{m}}$.

Remark 4. Note that there are at most 2 external semidirect decompositions when n is a prime power:

1) if $n=p^{\alpha}, p$ an odd prime, then there is only one (classical) external semidirect decomposition: $D_{2 p^{\alpha}} \simeq \mathbb{Z}_{p^{\alpha}} \rtimes \mathbb{Z}_{2}$,
2) if $n=2^{\alpha}, \alpha \geqslant 3$, then there are two external semidirect decompositions: $D_{2 \cdot 2^{\alpha}} \simeq \mathbb{Z}_{2^{\alpha}} \rtimes \mathbb{Z}_{2} \simeq D_{2^{\alpha}} \rtimes \mathbb{Z}_{2}$.

Remark 5. The image of the twisting homomorphism in each case of a proper semidirect product is isomorphic to \mathbb{Z}_{2}. If the extending group is not \mathbb{Z}_{2}, then the twisting homomorphism is not injective.

Example 5. External semidirect decompositions of $D_{2 \cdot 30}$:

$$
\begin{aligned}
D_{60} & \simeq \mathbb{Z}_{30} \rtimes \mathbb{Z}_{2} \simeq \mathbb{Z}_{6} \rtimes D_{10} \simeq \mathbb{Z}_{10} \rtimes D_{6} \simeq \mathbb{Z}_{15} \rtimes D_{4} \\
& \simeq \mathbb{Z}_{3} \rtimes D_{20} \simeq \mathbb{Z}_{5} \rtimes D_{12} \simeq D_{30} \rtimes \mathbb{Z}_{2} \simeq D_{30} \times \mathbb{Z}_{2}
\end{aligned}
$$

Internal semidirect decompositions of $D_{2 n}$. We now describe all internal semidirect decompositions of $D_{2 n}$.

Proposition 5. Let $n \in \mathbb{N}$.

1. If $m \in \mathbb{N}, m \mid n$, is such that $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1$, then

$$
D_{2 n}=A_{m} \rtimes B_{\frac{2 n}{m}, r},
$$

for all $r \in \mathbb{Z}_{m}$.
2. If $n=2^{\alpha} q, \alpha \in \mathbb{N}$, then

$$
D_{2 n}=B_{n, 0} \rtimes B_{2, r_{1}}=B_{n, 1} \rtimes B_{2, r_{0}}
$$

where $r_{i} \in \mathbb{Z}_{n}, r_{i} \equiv i(\bmod 2)$.
3. If $2 \mid n$ and 4 then $D_{2 n}=B_{n, 0} \times A_{2}$ and $D_{2 n}=B_{n, 1} \times A_{2}$.
4. There are no other internal semidirect decompositions of $D_{2 n}$.

Proof. 1. We look for internal semidirect decompositions of $D_{2 n}$ in form $A_{m} \rtimes B_{m^{\prime}, r}$. We must have $m^{\prime}=\frac{2 n}{m}$ and $r \in \mathbb{Z}_{m} . A_{m} \cap B_{\frac{2 n}{m}, r}=\{e\}$ iff $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1$. Thus $D_{2 n}=A_{m} \rtimes B_{\frac{2 n}{m}, r}$ for all m such that $\operatorname{GCD}\left(m, \frac{n}{m}\right)=1$ and all $r \in \mathbb{Z}_{m}$ are the only possible decompositions of this kind.
2. We look for internal semidirect decompositions of $D_{2 n}$ in form $B_{m, r} \rtimes B_{m^{\prime}, r^{\prime}}$. We must have $B_{m, r} \unlhd D_{2 n}$ therefore $2 \mid n, m=n$ and $r \in \mathbb{Z}_{2}$, thus we have two possible decomposition series: $B_{n, 0} \rtimes B_{2, r^{\prime}}$ and $B_{n, 1} \rtimes B_{2, r^{\prime \prime}}$. To ensure trivial intersections of semidirect factors we must have $r^{\prime} \equiv 1(\bmod 2)$ and $r^{\prime \prime} \equiv 0(\bmod 2)$.
3. If $2 \mid n$ and $4 \not \subset$ then $B_{n, 0} \cap A_{2}=B_{n, 1} \cap A_{2}=\{e\}$ where all subgroups are normal.
4. It follows from the previous arguments.

Permutation representations of dihedral groups. Finally we find minimal degrees of faithful permutation representations of $D_{2 n}$. If n is not a prime power then these numbers are smaller than degrees of classical permutation representations of dihedral groups. This is a consequence of Proposition 4 and Karpilovsky bounds for finite abelian groups [4].

Let $\mu(G)$ be the minimal faithful permutation representation degree of G, i.e. the minimal $n \in \mathbb{N}$ such that there is an injective group homomorphism $G \rightarrow \Sigma_{n}$. It is known that for finite groups G, H and a group homomorphism $\varphi: H \rightarrow \operatorname{Aut}(G)$ we have that $\mu\left(G \rtimes_{\varphi} H\right) \leqslant|G|+\mu(H)$. If, additionally, φ is injective, then $\mu\left(G \rtimes_{\varphi} H\right) \leqslant|G|$.

Proposition 6. Let $n=\prod_{i} p_{i}^{\alpha_{i}}$ be the prime factorization of $n \in \mathbb{N}$. Then $\mu\left(D_{2 n}\right)=\sum_{i} p_{i}^{\alpha_{i}}$.

Proof. First we prove that

$$
\begin{equation*}
\mu\left(D_{2 n}\right) \leqslant \sum_{i} p_{i}^{\alpha_{i}} \tag{*}
\end{equation*}
$$

By statement 1 of Proposition 4 we have that $D_{2 n} \simeq \mathbb{Z}_{p_{1}^{\alpha_{1}}} \rtimes D_{2 n_{1}}$, where $n_{1}=\frac{n}{p_{1}^{\alpha_{1}}}$. Thus $\mu\left(D_{2 n}\right) \leqslant p_{1}^{\alpha_{1}}+\mu\left(D_{2 n_{1}}\right)$. $(*)$ follows by induction in i using injectivity of the twisting homomorphism at the last step.

To prove the opposite inequality and the statement, we remind that $\mathbb{Z}_{n} \leqslant D_{2 n}$. It implies $\mu\left(\mathbb{Z}_{n}\right) \leqslant \mu\left(D_{2 n}\right)$, therefore $\sum_{i} p_{i}^{\alpha_{i}} \leqslant \mu\left(D_{2 n}\right)$ by the Karpilovsky theorem for abelian groups [4].

Example 6. $\min _{n \in \mathbb{N}}\left\{n: \mu\left(D_{2 n}\right)<n\right\}=6: \mu\left(D_{2 \cdot 6}\right)=5, D_{2 \cdot 6}$ can be generated by $(1,2,3),(1,2),(4,5)$. If, additionally, $D_{2 n}$ is directly
indecomposable, then the minimum is $12: \mu\left(D_{2 \cdot 12}\right)=7, D_{2 \cdot 12}$ can be generated by $(1,2,3,4),(5,6,7),(1,3)(5,6)$.

4. Conclusion

We have obtained results showing possibility of various semidirect decompositions of a given semidirect product in two cases: 1) if the original twisting homomorphism is diagonal and the base group is directly decomposable and 2) if the extending group is directly decomposable. These results may stimulate further interest in looking for analogues of Krull-Remak-Schmidt theorem type results for semidirect and Zappa-Szep products.

We have presented semidirect decompositions of generalized dihedral groups and classical dihedral groups as an application. Apart from semidirect decompositions guarranteed by the general proposition 4 , for $D_{2 n}$ there are additional decompositions of external type $D_{n} \rtimes \mathbb{Z}_{2}$ if $2 \mid n$.

Semidirect decompositions of dihedral groups give the exact value of $\mu\left(D_{2 n}\right)$.

Computations were performed using the computational algebra system MAGMA, see Bosma et al. [1].

References

[1] Bosma W, Cannon J, and Playoust C (1997), The Magma algebra system. I. The user language, J. Symbolic Comput., 24, pp. 235-265.
[2] Conrad K (2015) Dihedral groups II http://www.math.uconn.edu/~kconrad/ blurbs/grouptheory/dihedral2.pdf.
[3] Hillar C, Rhea D (2007) Automorphisms of finite abelian groups American Mathematical Monthly, 114, no.10, pp. 917-923.
[4] Karpilovsky G.I. (1970) The least degree of a faithful representation of abelian groups Vestnik Khar’kov Gos. Univ., 53:107-115.
[5] Robinson D (1996) A course in the theory of groups. Springer-Verlag, New York.
[6] Rotman J (1995) An introduction to the theory of groups. Springer-Verlag, New York.

$$
\begin{array}{ll}
\text { P. Daugulis } & \text { Institute of Life Sciences and Technologies, } \\
\text { Daugavpils University, } \\
& \text { Daugavpils, LV-5400, Latvia } \\
& \text { E-Mail(s): peteris.daugulis@du.lv }
\end{array}
$$

Received by the editors: 08.05.2016
and in final form 16.08.2016.

