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Ideally finite Leibniz algebras

L. A. Kurdachenko and I. Ya. Subbotin

Abstract. The aim of this paper is to consider Leibniz

algebras, whose principal ideals are őnite dimensional. We prove

that the derived ideal of L has őnite dimension if every principal

ideal of a Leibniz algebra L has dimension at most b, where b is a

őxed positive integer.

Let L be an algebra over a őeld F with the binary operations + and
[−,−]. Then L is called a left Leibniz algebra if it satisőes the left Leibniz
identity

[[a, b], c] = [a, [b, c]]− [b, [a, c]]

for all a, b, c ∈ L. We will also use another form of this identity:

[a, [b, c]] = [[a, b], c] + [b, [a, c]].

Leibniz algebras őrst appeared in the paper of A. Bloh [3], but the term
“Leibniz algebra" appears in the book of J. L. Loday [11] and in the article
of J. L. Loday [12]. In [13], J. Loday and T. Pirashvili began the in-depth
study of the properties of Leibniz algebras. The theory of Leibniz algebras
has developed signiőcantly in many different directions. Some of the results
of this theory were presented in the book [1]. Note that Lie algebras are a
partial case of Leibniz algebras. Conversely, if L is a Leibniz algebra in
which [a, a] = 0 for every element a ∈ L, then it is a Lie algebra. Thus,
Lie algebras can be characterized as anticommutative Leibniz algebras.
As for Lie algebras, the theory of őnite-dimensional Leibniz algebras is far
more developed than the theory of inőnite-dimensional Leibniz algebras.
However, even when considering Leibniz algebras of small dimensions,
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signiőcant differences in of Lie algebras become noticeable. Therefore, a
natural step is to consider Leibniz algebras that are, in one sense or another,
close to őnite-dimensional ones. The corresponding topic in the theory of
Lie algebras turned out to be very fruitful and rich in interesting results
(see, for example, the book [2]). One of these algebras, which retained
quite a few properties of őnite-dimensional algebras, turned out to be
the ideally őnite Lie algebras. The book of I. Stewart [14] was devoted
to these algebras. In this paper, we begin the study of the ideally őnite
Leibniz algebras.

Let L be a Leibniz algebra over a őeld F . If M is a non-empty subset
of L, then ⟨M⟩ denotes the subalgebra of L generated by M , and ⟨M⟩L

denotes the ideal generated by M . As usual, an ideal generated by one
single element is called a principal ideal .

If A,B are subspaces of L, then denote by [A,B] a subspace generated
by all elements [a, b], where a ∈ A, b ∈ B.

The Leibniz algebra L is called ideally őnite if its every principal ideal
has őnite dimension.

The Leibniz algebra L is called boundedly-ideally őnite if there exists
a positive integer b such that dimF (⟨a⟩

L) ⩽ b for every element a ∈ L. In
this case, we will also say that L is b-ideally őnite.

The őrst main result of this paper gives the description of the bound-
edly-ideally őnite Leibniz algebras.

Theorem A. Let L be a b-ideally őnite Leibniz algebra over a őeld F .

Then the derived ideal of L has a őnite dimension at most (1/6)b(b +
1)(2b2 + b+ 3).

Let L be a Leibniz algebra over a őeld F,M be non-empty subset of
L, and H be a subalgebra of L. Put

AnnleftH (M) = {a ∈ H|[a,M ] = 0},Annright
H (M) = {a ∈ H|[M,a] = 0}.

The subset AnnleftH (M) is called the left annihilator or the left centralizer of

M in subalgebra H . The subset AnnrightH (M) is called the right annihilator

or the right centralizer of M in subalgebra H. The intersection

AnnH(M) = AnnleftH (M)∩AnnrightH (M) = {a ∈ H|[a,M ] = ⟨0⟩ = [M,a]}

is called the annihilator or the centralizer of M in subalgebra H.
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It is not hard to see that all of these subsets are subalgebras of L.
Moreover, if M is a left ideal of L, then AnnleftL (M) is an ideal of L. If M
is an ideal of L, then AnnL(M) is an ideal of L.

Let L be a Leibniz algebra and a be an element of L. Then the number
dimF (A/AnnL(a)) = br(a) is called a breadth of an element a in algebra L.

If a Leibniz algebra L is ideally őnite, then the breadth of its every
element is őnite. In fact, if a is an arbitrary element of L, then an ideal
A generated by a has a őnite dimension k. Using Proposition 3.2 of
paper [9], we obtain that factor-algebra L/AnnL(A) is isomorphic to
some subalgebra of the algebra of derivations of A. Since dimF (A) = k,
dimF (L/AnnL(A)) ⩽ k2.

The obvious inclusion AnnL(A) ⩽ AnnL(a) shows that an element a
has a breadth at most k2.

The Leibniz algebra L is called an FB-algebra if its every element has
a őnite breadth.

A converse question naturally appears: Is a Leibniz algebra L, in which
every element has őnite breadth, ideally őnite?

The second main result of this paper is as follows.

Theorem B. Let L be a Leibniz algebra over a őeld F, a1, . . . , an be the

elements of L such that br(aj) = kj is őnite, 1 ⩽ j ⩽ n. Let A be an ideal

of L, generated by the elements a1, . . . , an, C = AnnL ({a1, . . . , an}), and

let e1 + C, . . . , et + C be the basis of L/C. Suppose that br(em) = sm is

őnite, 1 ⩽ m ⩽ t. Then dimF (A) is őnite, and moreover,

dimF (A) ⩽ (k1 + . . .+ kn + s1 + . . .+ st)
2 + n+ t.

We obtain the following corollary:

Corollary. Let L be a Leibniz algebra over a őeld F . Then L is ideally

őnite if and only if every element of L has a őnite breadth.

Note that this topic is not speciőc to only Lie algebras and Leibniz
algebras. It is inherent in other algebraic structures as well. It originated
in group theory, where a large array of articles is devoted to it (see, for
example, the instead of a survey [7]); this topic was also developed in the
theory of modules over the group rings [5], [6], [8].

1. Structure of Leibniz algebras whose principal ideals

have bounded őnite dimensions

A Leibniz algebra L has one speciőc ideal. Denote by Leib(L) the
subspace generated by the elements [a, a], a ∈ L.
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It is possible to show that Leib(L) is an ideal of L, and if H is an ideal
of L such that L/H is a Lie algebra, then Leib(L) ∈ H.

The ideal Leib(L) is called the Leibniz kernel of algebra L.
We also note the following important property of a Leibniz kernel:

[[a, a], x] = 0 for arbitrary elements a, x ∈ L.

The left (respectively, right) center ζ left(L) (respectively, ζright (L))
of a Leibniz algebra L is deőned by the rule

ζ left(L) = {x ∈ L|[x, y] = 0 for each element y ∈ L}.

(respectively,

ζright(L) = {x ∈ L|[y, x] = 0 for each element y ∈ L}).

It is not hard to prove that the left center of L is an ideal. Moreover,
Leib(L) ⩽ ζ left(L) and L/ζ left are Lie algebras. In general, the left and
the right centers are different. Moreover, the left center is an ideal, but
such is not true for the right center (one can őnd a corresponding example
in [9]).

The center ζ(L) of L is deőned by the rule

ζ(L) = {x ∈ L|[x, y] = 0 = [y, x] for each element y ∈ L}.

The center is an ideal of L. We can say the same about the factor-algebra
L/ζ(L), in particular.

We note the following elementary properties:

Lemma 1.1. Let L be a b-ideally őnite Leibniz algebra over a őeld F .

(i) If K is a subalgebra of L, then K is a k-ideally őnite Leibniz algebra

for some positive integer k ⩽ b.
(ii) If K is an ideal of L, then L/K is a k-ideally őnite Leibniz algebra

for some positive integer k ⩽ b.
(iii) If K is a subalgebra of L and A is an ideal of K, then the section

K/A is a k-ideally őnite Leibniz algebra for some positive integer

k ⩽ b.

The following result will play an essential role in describing boundedly-
ideally őnite Leibniz algebras.

Proposition 1.2. Let L be a b-ideally őnite Leibniz algebra over a őeld

F . Let d be an element of L such that dimF (⟨d⟩
L) = b > 1. If D is an

ideal of L, generated by an element d, and K = AnnL(D), then dimF (⟨a+
D⟩(K+D)/D) ⩽ b− 1.
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Proof. Suppose the contrary. Let c be an element of L such that the
ideal ⟨c + D⟩(K+D)/D, generated by the coset c + D in the subalgebra
(K +D)/D, has dimension b. Since

dimF (⟨c+D⟩(K+D)/D) ⩽ dimF (⟨c+D⟩L/D) and dimF (⟨c+D⟩L/D) ⩽ b,

by Lemma 1.1, we have dimF (⟨c+D⟩(K+D)/D) = dimF (⟨c+D⟩L/D) =
b. Denote by C the ideal generated in L by element c. Then clearly,
(C+D)/D = ⟨c+D⟩L/D, so that dimF ((C+D)/D) = b. It is obvious that
dimF ((C+D)/D) ⩽ dimF (C) ⩽ b. It follows that dimF (C) = b. We have
dimF (C+D) ⩽ dimF (C)+dimF (D) = 2b. Suppose that dimF (C+D) <
2b. Then dimF ((C +D)/D) = dimF (C +D)− dimF (D) < 2b− b, and we
obtain a contradiction. This contradiction shows that dimF (C +D) = 2b.
On the other hand,

dimF (C +D) = dimF (C) + dimF (D)− dimF (C ∩D),

so that dimF (C ∩D) = 0, and hence C ∩D = ⟨0⟩.
Let x+D ∈ AnnL/D(c+D). Then

D = [x+D, c+D] = [x, c] +D, and similarly, [c, x] +D = D.

It follows that [x, c], [x, c] ∈ D. On the other hand, c belongs to the ideal
C of L, and therefore [x, c], [c, x] ∈ C. Thus, we obtain that [x, c], [c, x] ∈
D∩C = ⟨0⟩ (i.e., [x, c] = 0 = [c, x]). Now, taking into account the obvious
inclusion AnnL(c) ⩽ AnnL(c + D), we obtain the equation AnnL(c) =
AnnL(c+D).

Let z ∈ AnnL(c+ d). Then

[z +D, c+D] = [z +D, c+ d+D] = [z, c+ d] +D = D,

and similarly,
[c+D, z +D] = D.

It follows that z ∈ AnnL(c+D). From what has been proven above,
it follows that z ∈ AnnL(c) (i.e., AnnL(c+ d) ⩽ AnnL(c)). Furthermore,
0 = [z, c + d] = [z, c] + [z, d] = [z, d], and similarly, 0 = [d, z]. Thus, we
obtain that z ∈ AnnL(c) ∩ AnnL(d). In other words, AnnL(c + d) ⩽

AnnL(c) ∩AnnL(d).
Put e = c+ d and denote by E the ideal generated by an element e

in L. We have:

(E + C)/C = ⟨e+ C⟩L/C = ⟨c+ d+ C⟩L/C = ⟨d+ C⟩L/D

= (⟨d⟩L + C)/C = (D + C)/C.
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As we have seen above, D ∩ C = ⟨0⟩. It follows that

(E + C)/C = (D + C)/C ∼= D/(D ∩ C) ∼= D.

Now, we obtain that dimF ((E + C)/C) = dimF (D) = b, and therefore

dimF (E) ⩾ dimF ((E + C)/C) = b.

On the other hand, dimF (E) = dimF (⟨e⟩
L) ⩽ b. It follows that dimF (E)

= b. It is only possible if E ∩ C = ⟨0⟩. Using the arguments above, we
obtain the equation AnnL(e) = AnnL(e+ C). However,

e+ C = c+ d+ C = d+ C.

The equality D∩C = ⟨0⟩ implies that AnnL(d) = AnnL(d+C). All these
equalities imply that AnnL(e) = AnnL(d+c) = AnnL(d). As we have seen
above, AnnL(c+d) ⩽ AnnL(c) ∩AnnL(d), hence AnnL(d) ⩽ AnnL(c). An
obvious inclusion AnnL(D) ⩽ AnnL(d) implies that AnnL(D) ⩽ AnnL(c).
In other words, ⟨c⟩K = Fc, and therefore ⟨c+D⟩(K+D)/D = ⟨c⟩K +D =
{c+D}. This contradicts that a subalgebra dimF (⟨c+D⟩(K+D)/D) = b.
This contradiction proves the result.

A Leibniz algebra is called strong extraspecial if [E,E] = ζ(E) is a
subalgebra of dimension 1 and [x, x] ̸= 0 for each element x /∈ ζ(E).

Leibniz algebras whose subalgebras are ideals have been described in
the paper [10]. Such algebra L has the following structure: L = E ⊕ Z,
where Z is a subalgebra of the center of L and E is a strong extraspecial
algebra.

Proof of Theorem A

If b = 1, then every subspace of L is an ideal. Such Leibniz algebras have
been described in the paper [10]. As we have noted above, such algebras
are either abelian or strong extraspecial. In any case, dimF (L) ⩽ 1.

Now, suppose that b > 1. In the Leibniz algebra L, choose the element
d1 such that the ideal D1 generated in L by an element d1 has dimension
b. Put K1 = AnnL(D1). Using Proposition 3.2 from [9], we obtain that
factor-algebra L/K1 is isomorphic to some subalgebra of the algebra of
derivations of D1. Since dimF (D1) = b, dimF (L/K1) ⩽ b2. Proposition
1.2 shows that an ideal generated by an arbitrary element of (K1+D1)/D1

has dimension at most b− 1.
In the section (K1 +D1)/D1, choose the element d2 +D1 such that

the ideal D2/D1, generated by d2+D1 in (K1+D1)/D1, has the greatest
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dimension k. Then, as we remarked above, k ⩽ b − 1. Put K2/D1 =
Ann(K1+D1)/D1

(D2/D1). Using Proposition 3.2 from [9] again, we obtain
that the section ((K1 +D1)/D1)/(K2/D1) has dimension at most k2 ⩽
(b−1)2. It follows that a subalgebra K2+D2 has, in K1+D1, codimension
at most (b − 1)2. Hence, subalgebra K2 +D2 has codimension at most
b2 +(b− 1)2 in L. Proposition 1.2 shows that the ideal generated by every
element of (K2 +D2)/D2 has dimension at most k − 1 ⩽ b− 2.

Repeating these arguments, we őnally construct the subalgebras A,S
such that S is an ideal of A, dimF (S) ⩽ b + (b − 1) + . . . + 2, every
subalgebra of A/S is an ideal, and A has codimension t in L where t ⩽
b2+(b−1)2+ . . .+22. As we have seen above, the derived subalgebra E/S
of A/S has dimension at most 1, so that dimF (E) ⩽ b+(b−1)+ . . .+2+1.

Let {a1 +A, . . . , at +A} be a basis of the factor-space L/A. Denote
by Aj the ideal generated by an element aj in L. Then dimF (Aj) ⩽ b, 1 ⩽

j ⩽ t. Put A1 + . . . + At = B. Then dimF (B) ⩽ bt and L = B + A. It
follows that the factor-algebra L/B is isomorphic to some section of A.
As we have noted above, the derived ideal of A has dimension at most
b+(b− 1)+ . . .+2+1, and therefore the derived ideal of L has dimension
at most

bt+ b+ (b− 1) + . . .+ 2 + 1

⩽ b(b2 + (b− 1)2 + . . .+ 22 + 1) +
1

2
b(b+ 1)

= (1/6)b2(b+ 1)(2b+ 1) +
1

2
b(b+ 1) = (1/6)b(b+ 1)(2b2 + b+ 3).

2. Structure of Leibniz algebras whose elements have

őnite breadth

Lemma 2.1. Let L be a Leibniz algebra over a őeld F , a be an el-

ement of L, and A be a subalgebra generated by a. Then AnnleftL (A) =

AnnleftL (a),AnnrightL (A) = AnnrightL (a), and therefore AnnL(A) = AnnL(a).

Proof. Put a1 = [a, a], a2 = [a, a1], an + 1 = [a, an], n ∈ N. Then the
subalgebra A is a subspace of L generated by elements a, an, n ∈ N [[4],

Corollary 2.2]. Since an ∈ Leib(L) ⩽ ζ left(L),AnnrightL (A) = AnnrightL (a).

Let z ∈ AnnleftL (a). We have:

[z, a1] = [z, [a, a]] = [[z, a], a] + [a, [z, a]] = 0.
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Suppose we have already proven that [z, a2] = . . . = [x, an] = 0, and
consider the element [z, an+1]. We have:

[z, an+1] = [z, [a, an]] = [[z, a], an] + [a, [z, an]] = 0.

It follows that z ∈ AnnleftL (A), so that AnnleftL (a) ⩽ AnnleftL (A). The
converse inclusion is obvious.

Lemma 2.2. Let L be a Leibniz algebra over a őeld F, a1, . . . , an be

elements of L, and A be a subalgebra generated by these elements. Then

AnnleftL (A) = AnnleftL ({a1, . . . , an}), Ann
right
L (A) = AnnrightL ({a1, . . . , an}),

and therefore AnnL(A) = AnnL({a1, . . . , an}).

Proof. Let

z ∈ AnnleftL ({a1, . . . , an}) (respectively, z ∈ AnnrightL ({a1, . . . , an})).

For the proof, we will use induction by the weight of commutators of
elements a1, . . . , an. We have:

[z, [aj , ak]] = [[z, aj ], ak]] + [aj , [z, ak]] = 0

(respectively, [[aj , ak], z] = [aj , [ak, z]]− [ak, [aj , z]] = 0).

Suppose that we have already proven that the element z left (respectively,
right) annihilates all commutators whose weight is at most m,m ⩾ 2. Let
b be a commutator of some elements of a1, . . . , an having weight m+ 1.
Then either b = [c, d] where c, d are commutators whose weights are at
most m− 1, or b = [aj , u] where u is a commutator having weight m, or
b = [v, ak] where v is a commutator having a weight m, 1 ⩽ j, k ⩽ n. We
have:

[z, [c, d]] = [[z, c], d]] + [c, [z, d]] = 0

(respectively, [[c, d], z] = [c, [d, z]]− [d, [c, z]] = 0),

[z, [aj , u]] = [[z, aj ], u] + [aj , [z, u]] = 0

(respectively, [[aj , u], z] = [aj , [u, z]]− [u, [aj , z]] = 0),

[z, [v, ak]] = [[z, v], ak] + [v, [z, ak]] = 0

(respectively, [[v, ak], z] = [v, [ak, z]]− [ak, [v, z]] = 0).

Since subalgebra A as a vector space is generated by all commutators
of elements a1, . . . , an, we obtain that AnnleftL (A) = AnnleftL (a1, . . . , an)

(respectively, AnnrightL (A) = AnnrightL (a1, . . . , an).
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Lemma 2.3. Let L be a Leibniz algebra over a őeld F, a1, . . . , an be

elements of L, and A be a subalgebra generated by these elements. Suppose

that an element aj has a breadth kj , 1 ⩽ j ⩽ n. Then subalgebra A has

őnite dimension at most (k1 + . . .+ kn)
2 + n.

Proof. The obvious inclusion

AnnL(a1) ∩ . . . ∩AnnL(an) ⩽ AnnL({a1, . . . , an})

implies that codimF (AnnL({a1, . . . , an})) ⩽ k1 + . . . + kn. Lemma 2.2
shows that AnnL({a1, . . . , an}) = AnnL(A). Clearly, A∩AnnL(A) ⩽ ζ(A).
It follows that A/ζ(A) has dimension at most k1 + . . . + kn. Then the
derived ideal [A,A] of a subalgebra A has dimension at most (k1+. . .+kn)

2

[[9]; Corollary B1]. The factor-algebra A/[A,A] is abelian and generated
by cosets a1 + [A,A], . . . , an + [A,A]. Then dimF (A/[A,A]) ⩽ n. Hence,
dimF (A) ⩽ n+ (k1 + . . .+ kn)2.

Let L be a Leibniz algebra, A be a subalgebra of L, and S be a non-
empty subset of L. We say that A is S-invariant if [a, s], [s, a] ∈ A for
every a ∈ A, s ∈ S.

Clearly, the zero subalgebra and the algebra L are S-invariant for
every non-empty subset S of L. Also, it is clear that the intersection
of S-invariant subalgebras is also S-invariant. It follows that for each
subalgebra K of L, there exists the least S-invariant subalgebra including
K. We will denote this subalgebra by KS . If S = L, then every S-invariant
subalgebra is an ideal of L and KL is an ideal generated by K in L (the
ideal closure of K in L).

Proposition 2.4. Let L be a Leibniz algebra over a őeld F,A be a sub-

algebra of L and S be a non-empty subset of L. Let A0 = A,A1 be a

subalgebra generated by [S,A0], [A0, S], An+1 be a subalgebra generated by

[S,An], and [An, S], n ∈ N. Then AS =
∑

n∈NAn.

Proof. Clearly, A ⩽ AS and An ⩽ AS for every n ∈ N, so that
∑

n∈NAn ⩽

AS . Conversely, let x ∈
∑

n∈NAn. Then x = u0 + u1 + . . .+ uk for some
positive integer k where uj ∈ Aj , 0 ⩽ j ⩽ k. For every element y ∈ S,
we have [y, uj ], [uj , y] ∈ Aj+1, 0 ⩽ j ⩽ k. Hence, [x, y], [y, x] ∈

∑
n∈NAn.

This means that subalgebra
∑

n∈NAn is S-invariant. Since it includes
A,AS ⩽

∑
n∈N.
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Proof of Theorem B

Let D be a subalgebra of L generated by elements a1, . . . , an, D0 =
D,D1 be a subalgebra generated by [L,D0], [D0, L], An+1 be a subalgebra
generated by [L,Dn], and [Dn, L], n ∈ N. Then Proposition 2.4 implies
that A = DL =

∑
n∈NDn.

By Lemma 2.2, AnnL(D) = AnnL({a1, . . . , an}) = C. If x is an
arbitrary element of L, then x = α1e1 + . . .+ αtet + z for some elements
α1, . . . , αt ∈ F and z ∈ C. For every element d ∈ D, we have

[d, x] = [d, α1e1 + . . .+ αtet + z] = [d, α1e1] + . . .+ [d, αtet] + [d, z]

= α1[d, e1] + αt[d, et]

and
[x, d] = α1[e1, d] + . . .+ αt[et, d].

Denote by E a subalgebra generated by the elements e1, . . . , et. Then we
can see that D1 ⩽ ⟨D,E⟩.

Now, consider the element [[d, em], x], 1 ⩽ m ⩽ t. We have:

[[d, ej ], x] = [[d, ej ], α1e1 + . . .+ αtet + z]

= α1[[d, ej ], e1] + . . .+ αt[[d, ej ], et] + [[d, ej ], z].

Further, [[d, ej ], z] = [d, [ej , z]] − [ej , [d, z] = [d, [ej , z]]. For the element
[ej , z], we have the following presentation: [ej , z] = β1e1 + . . .+ βtet + z1
for some elements β1, . . . , βt ∈ F and z1 ∈ C. Then

[d, [ej , z]] = [d, β1e−1+. . .+βtet+z1] = β1[d, e1]+. . .+βt[d, et] ∈ ⟨D,E⟩.

Hence, [[d, em], x] ∈ ⟨D,E⟩, 1 ⩽ m ⩽ t. It follows that [D1, L] ⩽ ⟨D,E⟩.
Similarly, [L,D1] ⩽ ⟨D,E⟩, so that D2 ⩽ ⟨D,E⟩.

Using similar arguments and ordinary induction, we obtain that Dn ⩽

⟨D,E⟩ for each positive integer n. Thus, A ⩽ ⟨D,E⟩, and therefore
dimF (A) ⩽ dimF (⟨D,E⟩. The subalgebra ⟨D,E⟩ is generated by the
elements a1, . . . , an, e1, . . . , et. Now, using Lemma 2.3, we obtain that
dimF (⟨D,E⟩ ⩽ (k1 + . . .+ kn + s1 + . . .+ st)

2 + n+ t.

Proof of the corollary of Theorem B

If a Leibniz algebra L is ideally őnite, then we have already noted that
the breadth of its every element is őnite. Conversely, if the breadth of its
every element is őnite, then Theorem 2.5 shows that every element of L
generates a őnite-dimensional ideal.
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