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Algebraic connections between Menger algebras
and Menger hyperalgebras via regularity

A. Nongmanee and S. Leeratanavalee∗

Communicated by A. V. Zhuchok

Abstract. Menger hyperalgebras of rank n, where n is a fixed
integer, can be regarded as a natural generalization of arbitrary
semihypergroups. Based on this knowledge, an interesting ques-
tion arises: what a generalization of regular semihypergroups is.
In the article, we establish the notion of v-regular Menger hyperal-
gebras of rank n, which can be considered as an extension of regular
semihypergroups. Furthermore, we study regularity of Menger hy-
peralgebras of rank n which are induced by some subsets of Menger
algebras of rank n. In particular, we obtain sufficient conditions so
that the Menger hyperalgebras of rank n are v-regular.

1. Introduction

Based on the concept of unary functions (mappings on a nonempty set),
the concept of multiplace functions (which were also called functions of
many elements or functions of many variables) was developed. In 1946,
K. Menger [8] investigated the algebraic property of the composition of
multiplace functions, the so-called a superassociative law. Hence, the
algebraic structure of multiplace functions was established. Nowadays,
such an algebraic structure has been called as a Menger algebras of rank
n, where n is a fixed natural number. The algebraic structure of Menger
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algebras of rank n consists of a nonempty set and an (n + 1)-ary oper-
ation defined on the set satisfying the superassociative law. By setting
the natural number n, Menger algebras can be immediately reduced to
semigroups if n = 1. So, the concept of Menger algebras of rank n has
been considered as one of the suitable generalizations of semigroups. For
other generalizations of semigroups see, e.g., [10, 11].

The theories of Menger algebras of rank n and some of its applications
are developed by W.A. Dudek and V.S. Trokhimenko who introduced
various types of congruences on Menger algebras of rank n which can be
considered as generalizations of principal right and left congruences on
semigroups, see [3]. In 2012, they studied the concept of subtraction of
Menger algebras of rank n, see [6]. Moreover, they also investigated some
algebraic properties related to Menger algebras of rank n, see [5]. In ad-
dition, V.S. Trokhimenko [9] established the so-called v-regular Menger
algebras. Furthermore, v-regular Menger algebras of rank n can be re-
duced to regular semigroups.

In this article, we aim to investigate algebraic connections between
Menger algebras of rank n and Menger hyperalgebras of rank n via the
concept of regularity. In order to achieve the main aim, we start with re-
calling some basic results on Menger algebras and Menger hyperalgebras.
After that, we introduce the notion of v-regular Menger hyperalgebras of
rank n which is an extension of regular semihypergroups. Then, we con-
struct Menger hyperalgebras of rank n by using subsets and (n+ 1)-ary
operations of Menger algebras of rank n. In particular, we also obtain
some specific conditions on the Menger hyperalgebras of rank n to be
v-regular Menger hyperalgebras of rank n.

2. Preliminaries

In order to obtain the main aim, we recall some basic definitions and
results on Menger algebras of rank n and Menger hyperalgebras of rank
n.

Let H be a nonempty set of elements and • : Hn+1 −→ H be an
(n + 1)-ary operation on H. A Menger algebra of rank n is an alge-
braic structure of (H, •) such that the (n+1)-ary operation satisfies the
superassociative law as follows: for each x, yi, zi ∈ H, i = 1, . . . , n,

•(•(x, y1, . . . , yn),z1, . . . , zn)
= •(x, •(y1, z1, . . . , zn), . . . , •(yn, z1, . . . , zn)).

(1)
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According to the superassociative law defined as in (1), it is easy to
see that it can be reduced to the usual associative law on semigroups by
setting n = 1, and hence a Menger algebra (H, •) is immediately reduced
to a semigroup.

Let (H, •) be a Menger algebra of rank n. For convenience, from now
on, a symbol x[ȳ] stands for •(x, y1, . . . , yn). In case, y1 = . . . = yn = y,
we write x[yn] instead of •(x, y1, . . . , yn). So, the superassociatibe law
given in (1) can be simply written as:

x[ȳ][z̄] = x[y1[z̄] . . . yn[z̄]].

Here, x[ȳ][z̄] stands for (x[ȳ])[z̄]. An element (a1, . . . , an) ∈ Hn of a
Menger algebra (H, •) of rank n is said to be a v-regular element if the
following equalities:

ai = ai[x
n][ā], i = 1, . . . , n

hold for some x ∈ H. Moreover, if each element (a1, . . . , an) ∈ Hn is
v-regular, then (H, •) is called a v-regular Menger algebra of rank n.

Example 1. (i) An (n+1)-ary groupoid (H, •) together with an (n+1)-
ary operation • : Hn −→ H defined as follows:

x[ȳ] = x for all x, yi ∈ H, i = 1, . . . , n,

forms a v-regular Menger algebra of rank n.

(ii) Let R+ be the set of all positive real numbers. Define an (n+1)-
ary operation • on R by

x[ȳ] = x× n
√
y1 × . . .× yn for all x, yi ∈ H, i = 1, . . . , n.

Then, the pair (R+, •) forms a Menger algebra of rank n.

Now, let H be a nonempty set and · : Hn+1 −→ P ∗(H) be an (n+1)-
ary hyperoperation on H, where P ∗(H) is the family of all nonempty
subsets of H. For any nonempty subsets X,Yi, i = 1, . . . , n of H, we
define

·(X,Y1, . . . , Yn) = ∪{·(x, y1, . . . , yn) | x ∈ X, yi ∈ Yi, i = 1, . . . , n}.

Definition 1. An (n+1)-ary hypergroupoid (H, ·) is said to be a Menger
hyperalgebra of rank n if its (n + 1)-ary hyperoperation · satisfies the
superassociative law defined as in (1).
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According to an algebraic hyperstructure of Menger algebras of rank
n, we can construct a new semihypergroup such that its algebraic hyper-
structure is induced by the hyperstructure of a Menger hyperalgebra of
rank n as the following proposition.

Proposition 1. [7]. Let (H, ·) be a Menger hyperalgebra of rank n.
Define a binary hyperoperation ◦ on H by:

◦(x, y) = x[yn] for all x, y ∈ H. (2)

Then, the binary hypergroupoid (H, ◦) forms a semihypergroup.

On a Menger algebra (H, ·) of rank n, the semihypergroup which was
defined as in Proposition 1 is called a diagonal semihypergroup of (H, ·).

Definition 2. [2]. Let (H, ·) be a Menger algebra of rank n. A nonempty
subset I of H is said to be:

(i) an s-ideal, if for every x, yi ∈ H, i = 1, . . . , n

x ∈ I =⇒ ·(x, y1, . . . , yn) ∈ I;

(ii) a v-ideal, if for every xi, y ∈ H, i = 1, . . . , n

x1, . . . , xn ∈ I =⇒ ·(y, x1, . . . , xn) ∈ I.

Now, we can see that s-ideals (resp. v-ideals) in a Menger algebra
(H, ·) of rank n defined as in Definition 2 and right ideals (resp. left
ideals) on a semigroup are the same, if n = 1.

Next, we introduce some special elements of Menger algebras of rank
n as follows:

Definition 3. [2]. Let (H, ·) be a Menger algebra of rank n. An element
e ∈ H is said to be:

(i) a left diagonal unit if x = ·(e, xn) for all x ∈ H;

(ii) a right diagonal unit if x = ·(x, en) for all x ∈ H;

(iii) a diagonal unit if x = ·(e, xn) = ·(x, en) for all x ∈ H,

where xn is a sequence x, x, . . . , x︸ ︷︷ ︸
n times

.
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Let (H, ·) be a Menger algebra of rank n containing a diagonal unit e.
For x ∈ H, if there is y ∈ H (z ∈ H) such that ·(y, xn) = e (resp.
·(x, zn) = e), then the element x is said to be a left (right) invertible
element of (H, ·).

Example 2. Let p be a fixed positive integer. Define an (n + 1)-ary
hyperoperation · on the set H = {2, 4, . . . , 2p} by

·(x, y1, . . . , yn) = {z ∈ H | z ≤ max{x, y1, . . . , yn}},

for all x, yi ∈ H, i = 1, . . . , n. Hence, (H, ·) is a Menger hyperalgebra of
rank n.

For more results on Menger hyperalgebras of rank n, we refer the
reader to [7].

3. Regularity of Menger hyperalgebras

In this section, we first establish the so-called v-regular Menger hyperal-
gebras of rank n, which may be regarded as a generalization of arbitrary
semihypergroups. Moreover, we investigate regularity of a Menger hy-
peralgebra of rank n which is induced by some nonempty subsets of the
based set of a Menger algebra of rank n.

Definition 4. Let (H, ·) be a Menger hyperalgebra of rank n. An element
(a1, ..., an) ∈ Hn is said to be:

(i) idempotent if ai ∈ ·(ai, a1, . . . , an) for all i = 1, . . . , n;

(ii) v-regular if there is x ∈ H such that

ai ∈ ·(·(ai, xn), a1, . . . , an) for all i = 1, . . . , n.

A Menger hyperalgebra of rank n is called v-regular if every element
(a1, ..., an) ∈ Hn is v-regular.

According to Definition 4, we see that a v-regular Menger hyperal-
gebra of rank n is immediately reduced to a regular semihypergroup, if
n = 1. It means that the algebraic structure of v-regular Menger hy-
peralgebras of rank n can be considered as a generalization of regular
semihypergroups.

Example 3. (i) The Menger hyperalgebra (H, ·) of rank n in Example
2 forms a v-regular Menger hyperalgebra of rank n.

(ii) Consider the set R of all real numbers under an (n + 1)-ary
hyperoperation · on R given as follows:



66 Menger algebras and Menger hyperalgebras

·(x, y1, . . . , yn) = {z ∈ R | z ≤ min{x, y1, . . . , yn}},

for all x, yi ∈ R, i = 1, . . . , n. Then (R, ·) is a v-regular Menger hyper-
algebra of rank n, because for every element (r1, . . . , rn) ∈ Rn, there is
x = max{r1, . . . , rn} ∈ R such that

ri ∈ ·(·(ri, xn), r1, . . . , rn) for all i = 1, . . . , n.

Proposition 2. Let (H, ·) be a v-regular Menger hyperalgebra of rank n.
Then a diagonal semihypergroup (H, ◦) of (H, ·) forms a regular semi-
hypergroup, i. e., for each a ∈ H there exists x ∈ H such that a ∈
◦(◦(a, x), a).

Proof. The proof is strengthforward.

Now, let (H, •) be a Menger algebra of rank n. If an element
(a1, . . . , an) ∈ Hn is v-regular, then we set

Vā = {x ∈ H | ai = ai[x
n][ā] for all i = 1, . . . , n}.

For every nonempty subset P of H, we denote

P̂ = {(p, . . . , p) ∈ Pn | p ∈ P} and x[P̂ ] = {x[pn] ∈ H | x ∈ H, p ∈ P}.

Proposition 3. Let (H, •) be a Menger algebra of rank n and P a
nonempty subset of H. Define an (n + 1)-ary hyperoperation •P on H
as follows:

•P (x, y1, . . . , yn) = x[P̂ ][ȳ] for all x, yi ∈ H, i = 1, . . . , n. (3)

That is, •P (x, y1, . . . , yn) = {x[pn][ȳ] ∈ H | x, yi ∈ H, p ∈ P, i =
1, . . . , n}. Then (H, •P ) forms a Menger hyperalgebra of rank n.

Proof. By using the superassociative law on the (n+ 1)-ary operation •
on H, we have

•P ( •P (x, y1, . . . , yn), z1, . . . zn) = x[P̂ ][ȳ][P̂ ][z̄]

= {x[pn][ȳ][qn][z̄] | x, yi, zi ∈ H, p, q ∈ P, i = 1, . . . , n}
= {x[pn][y1[qn] . . . yn[qn]][z̄] | x, yi, zi ∈ H, p, q ∈ P, i = 1, . . . , n}
= {x[pn][y1[qn][z̄] . . . yn[qn][z̄]] | x, yi, zi ∈ H, p, q ∈ P, i = 1, . . . , n}

= x[P̂ ][y1[P̂ ][z̄] . . . yn[P̂ ][z̄]]

= •P (x, •P (y1, z1, . . . , zn), . . . , •P (yn, z1, . . . , zn)),

for each x, yi, zi ∈ H, i = 1, . . . , n. It implies that •P satisfies the su-
perassociative law. Consequently, (H, •P ) is a Menger hyperalgebra of
rank n.
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For every Menger algebra (H, •) of rank n and a nonempty subset P
of H, the Menger hyperalgebra (H, •P ) of rank n, where an (n+ 1)-ary
hyperoperation •P is defined as in (3), is called a Menger hyperalgebra
of rank n induced by a subset P of a Menger algebra (H, •) of rank n.

Lemma 1. Let (H, •) be a Menger algebra of rank n. An element
(a1, . . . , an) ∈ Hn is v-regular in a Menger hyperalgebra (H, •P ) of rank
n if and only if the element (a1, . . . , an) ∈ Hn is v-regular in (H, •) and
Vā ∩ P [Ĥ][P̂ ] ̸= ∅.

Proof. (=⇒) Assume that an element (a1, . . . , an) ∈ Hn is v-regular in
a Menger hyperalgebra (H, •P ) of rank n. Then there exists x ∈ H such
that

ai ∈ •P (•P (ai, xn), a1, . . . , an) for all i = 1, . . . , n.

It means that ai ∈ •P (•P (ai, xn), a1, . . . , an) = ai[P̂ ][xn][P̂ ][ā] for all
i = 1, . . . , n. Hence, there are p, q ∈ P such that

ai = ai[p
n][xn][qn][ā]

= ai[p[x
n] . . . p[xn]][qn][ā]

= ai[p[x
n][qn] . . . p[xn][qn]][ā]

= ai[y
n][ā],

where y = p[xn][qn] ∈ H. So, the element (a1, . . . , an) is v-regular in
(H, •). Moreover, y = p[xn][qn] ∈ Vā∩P [Ĥ][P̂ ], and hence Vā∩P [Ĥ][P̂ ] ̸=
∅.

(⇐=) Assume that an element (a1, . . . , an) ∈ Hn is v-regular in a
Menger algebra (H, •) of rank n and Vā ∩ P [Ĥ][P̂ ] ̸= ∅. Then there
exists x ∈ H such that x ∈ Vā ∩ P [Ĥ][P̂ ]. That is, ai = ai[x

n][ā] for all
i = 1, . . . , n and x = p[yn][qn] for some y ∈ H, p, q ∈ P . It follows that

ai = ai[x
n][ā]

= ai[p[y
n][qn] . . . p[yn][qn]][ā]

= ai[p[y
n] . . . p[yn]][qn][ā]

= ai[p
n][yn][qn][ā]

∈ ai[P̂ ][yn][P̂ ][ā]

= •P (•P (ai, yn), a1, . . . , an).

Consequently, the element (a1, . . . , an) ∈ Hn is v-regular in a Menger
hyperalgebra (H, •P ) of rank n.



68 Menger algebras and Menger hyperalgebras

Corollary 1. Let (H, •) be a Menger algebra of rank n. If an element
(a1, . . . , an) ∈ Hn is v-regular in a Menger hyperalgebra (H, •P ) of rank
n, then the element (a1, . . . , an) ∈ Hn is v-regular in (H, •).

Proof. The proof follows from Lemma 1.

Corollary 2. Let (H, •) be a Menger algebra of rank n. If a Menger hy-
peralgebra (H, •P ) of rank n is v-regular, then the Menger algebra (H, •)
of rank n is v-regular.

Proof. The proof follows from Corollary 1.

The following example is given to show that the converse of Corollary
1 need not be true, i.e., there is a subset P of H such that an element
(a1, . . . , an) ∈ Hn is not v-regular in a Menger hyperalgebra (H, •P ) of
rank n, but it is v-regular in a Menger algebra (H, •) of rank n.

Example 4. Let N be the set of all natural numbers. Define an (n+1)-
ary operation • on N by

x[ȳ] = max{x, y1, . . . , yn} for all x, yi ∈ N, i = 1, . . . , n.

Then (N, •) is a Menger algebra of rank n in which each element
(x, . . . , x) ∈ Nn is v-regular. Now, let m ∈ N. Consider the set P =
{m + 1,m + 2, . . . ,m + n}. We see that an element (m, . . . ,m) ∈ Nn

is not v-regular in a Menger hyperalgebra (N, •P ) of rank n, i.e., there
is no x ∈ N such that m ∈ •P (•P (m,xn),mn). Moreover, V(m,...,m) =

{1, 2, . . . ,m} and V(m,...,m) ∩ P [N̂][P̂ ] = ∅.

Theorem 1. Let (H, •) be a Menger algebra of rank n. A Menger hy-
peralgebra (H, •P ) of rank n is v-regular if and only if (H, •) is v-regular
and Vā ∩ P [Ĥ][P̂ ] ̸= ∅.

Proof. The proof follows from Lemma 1.

Proposition 4. Let (H, •) be a Menger algebra of rank n and P,Q be
nonempty subsets of H such that P ⊆ Q. If an element (a1, . . . , an) ∈ Hn

is v-regular in a Menger hyperalgebra (H, •P ) of rank n, then the element
(a1, . . . , an) ∈ Hn is v-regular in a Menger hyperalgebra (H, •Q) of rank
n.

Proof. Let (a1, . . . , an) ∈ Hn be v-regular in a Menger hyperalgebra
(H, •P ) of rank n. By Lemma 1, the element (a1, . . . , an) ∈ Hn is v-
regular in a Menger algebra (H, •) of rank n and Vā ∩ P [Ĥ][P̂ ] ̸= ∅.
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Since P ⊆ Q, we have Vā ∩ Q[Ĥ][Q̂] ̸= ∅. Again, by Lemma 1, the
element (a1, . . . , an) ∈ Hn is v-regular in a Menger hyperalgebra (H, •Q)
of rank n.

Corollary 3. Let (H, •) be a Menger algebra of rank n and P,Q be
nonempty subsets of H such that P ⊆ Q. If a Menger hyperalgebra
(H, •P ) of rank n is v-regular, then a Menger hyperalgebra (H, •Q) of
rank n is v-regular.

Proof. The proof follows from Proposition 4.

Theorem 2. Let (H, •) be a v-regular Menger algebra of rank n with
a diagonal unit e. Then a Menger hyperalgebra (H, •P ) of rank n is
v-regular if and only if P contains a left invertible element and a right
invertible element of (H, •).

Proof. (=⇒) Assume that a Menger hyperalgebra (H, •P ) is v-regular.
Then an element (e, e, . . . , e) ∈ Hn is v-regular in (H, •P ). That means,
there is x ∈ H such that e ∈ •P (•P (e, xn), en) = e[P̂ ][xn][P̂ ][en], which
implies that

e = e[pn][xn][qn][en] = p[xn][qn][en]

= p[xn][q[en] . . . q[en]] = p[xn][qn]

= p[x[qn] . . . x[qn]]

for some p, q ∈ P . So, e = p[xn][qn] and e = p[x[qn] . . . x[qn]], which
means that the element p ∈ P is a right invertible element and the
element q ∈ P is a left invertible element of (H, •).

(⇐=) Let x and y be a left invertible element and a right invertible
element of a Menger algebra (H, •) of rank n, respectively. Then there
are s, t ∈ H such that e = s[xn] and e = y[tn]. Let (a1, . . . an) ∈ Hn.
Since (H, •) is v-regular, there is b ∈ H such that ai = ai[b

n][ā] for all
i = 1, . . . , n.

Now, we have

ai = ai[b
n][ā] = ai[e

n][b[en] . . . b[en]][ā]

= ai[e
n][bn][en][ā] = ai[y[t

n] . . . y[tn]][bn][s[xn] . . . s[xn]][ā]

= ai[y
n][tn][bn][sn][xn][ā] = ai[y

n][t[bn] . . . t[bn]][sn][xn][ā]

= ai[y
n][t[bn][sn] . . . t[bn][sn]][xn][ā] ∈ ai[P̂ ][zn][P̂ ][ā]

= •P (•P (ai, zn), a1, . . . , an),
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where z = t[bn][sn] ∈ H. It means that the element (a1, . . . , an) ∈ Hn is
v-regular. Consequently, (H, •P ) forms a v-regular Menger hyperalgebra
of rank n.

Corollary 4. Let (H, •) be a v-regular Menger algebra of rank n with a
diagonal unit and every one-sided invertible element of (H, •) is invert-
ible. A Menger hyperalgebra (H, •P ) of rank n is v-regular if and only if
P has an invertible element of (H, •).

Proof. The proof follows from Theorem 2.

Theorem 3. Let P be a s-ideal and Q a v-ideal of a Menger algebra
(H, •) of rank n such that P ∩ Q ̸= ∅. If an element (a1, . . . , an) ∈ Hn

is v-regular in Menger hyperalgebra (H, •P ) and (H, •Q) of rank n, then
the element (a1, . . . , an) ∈ Hn is v-regular in a Menger hyperalgebra
(H, •P∩Q) of rank n.

Proof. Let (a1, . . . , an) ∈ Hn be v-regular in (H, •P ) and (H, •Q). Then
there are x, y ∈ H such that

ai ∈ •P (•P (ai, xn), a1, . . . , an) = ai[P̂ ][xn][P̂ ][ā] and

ai ∈ •Q(•Q(ai, yn), a1, . . . , an) = ai[Q̂][yn][Q̂][ā].

So, for each i = 1, . . . , n, we have ai = ai[k
n][xn][ln][ā] and ai =

ai[s
n][yn][tn][ā] for some k, l ∈ P, s, t ∈ Q. By the superassociative law

of the (n+ 1)-ary operation •, we obtain

ai = ai[k
n][xn][ln][ā]

= ai[k
n][xn][ln][a1[s

n][yn][tn][ā] . . . an[s
n][yn][tn][ā]]

= ai[k
n][xn][ln][ā][sn][yn][tn][ā]

= ai[k
n][xn][ln][ā][sn][yn][tn][a1[k

n][xn][ln][ā] . . . an[k
n][xn][ln][ā]]

= ai[k
n][xn][ln][ā][sn][yn][tn][ā][kn][xn][ln][ā]

= ai[k
n][xn][ln][ā][sn][yn][tn][ā][kn][xn][ln]

[a1[s
n][yn][tn][ā] . . . an[s

n][yn][tn][ā]]

= ai[k
n][xn][ln][ā][sn][yn][tn][ā][kn][xn][ln][ā][sn][yn][tn][ā]

= ai[(k[x
n][ln][ā][sn])n][(y[tn][ā][kn][xn])n[(l[ā][sn][yn][tn])n][ā].

Since P is a s-ideal and Q is a v-ideal of (H, •), we have

k[xn][ln][ā][sn] ∈ P ∩Q and l[ā][sn][yn][tn] ∈ P ∩Q.
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Now, we obtain

ai ∈ ai[P̂ ∩Q][(y[tn][ā][kn][xn])n][P̂ ∩Q][ā]

= •P∩Q(•P∩Q(ai, z
n), a1, . . . , an),

where z = y[tn][ā][kn][xn] ∈ H. It follows that the element (a1, . . . , an) ∈
Hn is v-regular in a Menger hyperalgebra (H, •P∩Q) of rank n.

Finally, we complete this section by the theorem, which shows that
the regularity of Menger hyperalgebras of rank n induced by subsets
of Menger algebras of rank n can be preserved under the isomorphic
algebraic structures of the Menger algebras of rank n.

Theorem 4. Let ϕ be an isomorphism from a Menger algebra (G, ⋄)
of rank n onto a Menger algebra (H, •) of rank n. Then the following
assertions hold:

(i) a Menger hyperalgebra (G, ⋄P ) of rank n and a Menger hyperalgebra
(H, •ϕ(P )) of rank n are isomorphic for all nonempty subsets P of
G;

(ii) if an element (a1, . . . , an) ∈ Gn in a Menger hyperalgebra (G, ⋄P )
of rank n is v-regular, then an element (ϕ(ai), . . . , ϕ(an)) ∈ Hn in
a Menger hyperalgebra (H, •ϕ(P )) of rank n is v-regular,

where ϕ(P ) = {y ∈ H | ϕ(x) = y for some x ∈ P}.

Proof. (i) Assume that ϕ is an isomorphism from (G, ⋄) to (H, •). It
immediately implies that ϕ is a bijective function from G onto H, which
is the base sets of a Menger hyperalgebra (G, ⋄P ) and (H, •ϕ(P )) of rank
n.

Indeed, for each x, yi ∈ G, i = 1, . . . , n, we get

ϕ(⋄P (x, y1, . . . , yn)) = ϕ((⋄(x, P̂ ), y1 . . . , yn))

= {ϕ(⋄(⋄(x, pn), y1 . . . , yn)) ∈ H | p ∈ P}
= {•(•(ϕ(x), (ϕ(p))n), ϕ(y1), . . . , ϕ(yn)) ∈ H | ϕ(p) ∈ ϕ(P )}

= •(•(ϕ(x), ϕ̂(P )), ϕ(y1), . . . , ϕ(yn))

= •ϕ(P )(ϕ(x), ϕ(y1), . . . , ϕ(yn)).

So, ϕ is an isomorphism from (G, ⋄P ) to (H, •ϕ(P )), which also implies
that (G, ⋄P ) ∼= (H, •ϕ(P )).

(ii) Assume that an element (a1, . . . , an) ∈ Gn in a Menger hyperal-
gebra (G, ⋄P ) of rank n is v-regular. By our assumption, there is x ∈ G
such that
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ai ∈ ⋄P (⋄P (ai, (x)n), a1, . . . , an) = ⋄(⋄(⋄(⋄(ai, P̂ ), (x)n), P̂ ), a1, . . . , an)

for all i = 1, . . . , n. Then there are p, q ∈ P such that

ai = ⋄(⋄(⋄(⋄(ai, (p)n), (x)n), (q)n), a1, . . . , an).

Now, we have

ϕ(ai) = ϕ(⋄(⋄(⋄(⋄(ai, pn), xn), qn), a1, . . . , an))
= •(•(•(•(ϕ(ai), (ϕ(p))n), (ϕ(x))n), (ϕ(q))n), ϕ(a1), . . . , ϕ(an))

∈ •(•(•(•(ϕ(ai), ϕ̂(P )), (ϕ(x))n), ϕ̂(P )), ϕ(a1), . . . , ϕ(an))

= •ϕ(P )(•ϕ(P )(ϕ(ai), (ϕ(x))
n), ϕ(a1), . . . , ϕ(an)).

Thus, an element (ϕ(ai), . . . , ϕ(an)) ∈ Hn is v-regular in a Menger
hyperalgebra (H, •ϕ(P )) of rank n.

Corollary 5. Let (G, ⋄) and (H, •) be isomorphic Menger algebras of
rank n under an isomorphism ϕ. If a Menger hyperalgebra (G, ⋄P ) of
rank n is v-regular, then a Menger hyperalgebra (H, •ϕ(P )) of rank n is
v-regular.

Proof. The proof follows from Theorem 4 (ii).
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