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Overlaps in field generated circular planar

nearrings
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Abstract. We investigate circular planar nearrings con-

structed from őnite őelds as well the complex number őeld using a

multiplicative subgroup of order k, and characterize the overlaps of

the basic graphs which arise in the associated 2-designs.

1. Introduction

Planar nearrings were deőned to connect nearrings and geometry.
The őrst three examples of planar nearrings were obtained by twisting the
multiplication of the complex number őeld, C. These examples provide
many ideas for deriving geometrical and combinatorial objects from planar
nearrings. One example even inspires the notion of circularity in planar
nearrings (see [2] for details). In a circular planar nearring, “circlesž are
formed and one can discuss the radii and centers of these circles just
as one would with circles in a complex plane. Understanding circular
planar nearrings also enables the creation of more circular planar nearring
structures in C.

One direction of research on circular planar nearrings involves selecting
equivalence classes, Erc , of circles with radius r and centers on another
circle which has radius c and center on 0. Each Erc has an associated
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graph, G(Erc ), which is naturally derived. This graph is sometimes the
union of spanning subgraphs called “basic graphsž. In other words, the
“overlappingž of some basic graphs produces the graph G(Erc ). In [5], it
is shown that if a circular planar nearring N is derived from a ring and
r is őxed, then the total number of basic graphs that appear in G(Erc ),
where c ∈ N∗ = N \ {0}, is a function of k only, even if the nearring N is
changed to a different one. Since several basic graphs can exist in a graph
G(Erc ), the total number of the graphs G(Erc ), where c ∈ N∗, varies from
one circular planar nearring to another.

In this work, we continue to study Erc ’s for circular planar nearrings
constructed from őnite őelds as well the complex number őeld using a
multiplicative subgroup of order k. We begin with a brief review of circular
planar nearrings derived from őelds, including some results in [5]. We
then deőne the overlaps of basic graphs and show that for each k, there
exists a őnite set of primes, Qk, such that if F = GF(q) is a Galois őeld of
order q with charF ̸∈ Qk such that k | (q− 1), and N is a planar nearring
constructed from F using the multiplicative subgroup of order k in F ,
then the overlapping of the basic graphs that occur in N is exactly the
same as that in C when the regular polygon Ck = {z ∈ C | zk = 1} is
used.

In section 4, we discuss the normalized form for overlaps which provide
us the base to compare. In sections 5 and 6, with the help of a theorem by
Conway and Jones (Theorem 6.3), we classify all overlaps of basic graphs
in C. In the last two sections, we classify all triple overlaps of basic graphs
in C, and conclude that no further overlaps can be found.

The results we obtained in [5] have found applications (see [6ś8]). An
application of the results obtained in this paper to the number of solutions
of equations axm + bym − czm = 1 over a őnite őeld is in preparation.

2. Preliminaries

On a (left) nearring (N,+, ·), the relation =m on N given by a =m b
if ax = bx for all x ∈ N is an equivalence relation. When N/=m has
at least three distinct classes and if ax = bx + c has a unique solution
x ∈ N for all a, b, c ∈ N with a ≠m b, we say that N is planar. Let N be
a planar nearring. For each a ∈ N , denote la the map from N to N given
by la(x) = ax for all x ∈ N . Then the set Φ = {la | a ∈ N , a ≠m 0} is a
őxed point free automorphism group of the additive group (N,+). The
pair (N,Φ) is called the Ferrero pair associated to N .
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Conversely, start with a Ferrero pair (N,Φ), where (N,+) is a group
and Φ a őxed point free automorphism group ofN , one can construct planar
nearrings (N,+, ·). For example, if we take a őeld F and a multiplicative
subgroup A of F with |A| ⩾ 3, then Φ = {la | a ∈ A} is a őxed point free
automorphism group of (F,+) and so (F,Φ) is a Ferrero pair. We simply
identify Φ with the set A in this case. Any planar nearring obtained from
this Ferrero pair is referred to as a őeld generated planar nearring (see [1]
and [2]).

Each planar nearring N gives rise to certain combinatorial structures.
The one that concerns us here is an incidence structure. Let (N,Φ) be the
Ferrero associated to N . For any r, c ∈ N , denote Φr + c = {φ(r) + c |
φ ∈ Φ}. With BΦ = {Φr + c | r, c ∈ N, r ̸= 0}, (N,BΦ) is an incidence
structure. If N is őnite, then (N,BΦ) is actually a 2-design (balanced
incomplete block design).

In what follows, let k ⩾ 3 be a őxed integer and N a őeld generated
planar nearring with associated Ferrero (F,Φ) where (F,+, ·) is a őeld
and Φ a multiplicative subgroup of F of order k. Let φ be a generator of
Φ. We will assume that

∣∣(Φa+ b) ∩ Φc| ⩽ 2 for all a, b, c ∈ F ∗. (2.1)

If this holds, N , as well as the Ferrero pair (F,Φ), is called circular.

Put k = {1, 2, . . . , k − 1} and k0 = {0, 1, 2, . . . , k − 1}, and set

I = {(i, j, s, t) ∈ k4 | (i, j) ̸= (s, t) and (i, s) ̸= (j, t)}.

Characterizations of circularity of (F,Φ) are given in [9] (see also [2, ğ5.3]).

Theorem 2.1 ([9, Theorem 4]). The pair (F,Φ) is circular if and only

(φi−1)(φt−1)−(φj−1)(φs−1) ̸= 0 for all (i, j, s, t) ∈ I. This is equivalent

to that (α− 1)(β − 1)− (γ − 1)(δ − 1) ̸= 0 for all α, β, γ, δ ∈ Φ \ {1} with

(α, β) ̸= (γ, δ) and (α, γ) ̸= (β, δ).

Theorem 2.2 ([9, Theorem 8]). For each integer k > 2 there exists a

őnite set of primes Pk such that for all őnite őelds F and multiplicative

subgroup Φ of F ∗ of order k, (F,Φ) is circular if and only if charF ̸∈ Pk.

The proof of Theorem 2.2 shows that Pk is the union of the prime
divisors of k and those of the resultants Res(gk, fi,j,s,t), where gk = xk − 1
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and

fi,j,s,t = (1− xi)(1− xt)− (1− xj)(1− xs), (i, j, s, t) ∈ I. (2.2)

Now Φ acts on BΦ naturally: λ · (Φr + c) = Φr + λc for all λ ∈ Φ
and Φr + c ∈ BΦ. For r, c ∈ F ∗, denote by Erc = {Φr + λc | λ ∈ Φ} the
Φ-orbit of Φr + c in BΦ. Then |Erc | = |Φ| = k. It is known that for any
r, r′, c, c′ ∈ F ∗, Erc = Er

′

c′ if and only if Φr′ = Φr and c′ = λc for some
λ ∈ Φ (see [5, (4.2)]). As (F,Φ) is circular, Φr + c, r, c ∈ F ∗ is regarded
as a “circlež with radius r centered at c, and hence Erc is the family of
circles of radius r centered at the points of the circle Φc = {λc | λ ∈ Φ}.

To visualize Erc consider (C, U) where U = {z ∈ C | zk = 1}, the
regular k-gon inscribed in the unit circle C = {z ∈ C | |z| = 1}. Thus,
BU is the collection of all regular k-gons in the complex plane, and for
r, c ∈ C∗, Erc is the collection of the k regular k-gons with radius |r|,
centered at λc, λ ∈ U .

Figure 2.1(a) shows two Erc ’s with k = 6. So each of them have 6
hexagons with centers (crosses) on another hexagon.
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Figure 2.1. (a) Two Er
c ’s and (b) the corresponding graphs
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Two circles in an Erc may be disjoint, or intersect at one or two
points. To make out such relations between the circles in Erc , a graph
G(Erc ) = (V, E) can be used. Here the vertex set V is simply Φ and the edge
set is E = {(λ, µ) | (Φr+λc)∩ (Φr+µc) ̸= ∅}. For example, Figure 2.1(b)
are the two graphs corresponding to the two Erc ’s on the left. In case
that (λ, µ) ∈ E , the fact that |(Φr + λc) ∩ (Φr + µc)| = 1 or 2 is realized
by coloring: an edge (λ, µ) ∈ E is even if |(Φr + λc) ∩ (Φr + µc)| = 2
and odd if |(Φr + λc) ∩ (Φr + µc)| = 1. For j ∈ {1, 2, . . . , k − 1}, let
ej = |(Φr+ c)∩ (Φr+φjc)|. Then the sequence e(r, c) = (ϵ1, ϵ2, . . . , ϵk−1)
describes completely the edge structure of Erc . (See [5, (3.2)].)

Abstractly, a sequence e = (ϵ1, ϵ2, . . . , ϵk−1) with values 0, 1 and 2
satisfying ϵj = ϵk−j for j = 1, 2, . . . , k − 1 gives rise to a colored graph
G(e). Here G(e) has the vertex set {v0, v2, . . . , vk−1} and edge set

{(vi, vi+t) | 0 ⩽ i ⩽ k − 1, 1 ⩽ t ⩽ k/2, ϵt ̸= 0}.

An edge (vi, vi+t) is even if ϵt = 2 and odd if ϵt = 1. This way, one gets
G(Erc ) = G(e(r, c)). With such abstraction, basic graphs can be deőned.
Let j ∈ k = {1, . . . , k − 1}. For the sequence e = (ϵ1, ϵ2, . . . , ϵk−1) with
ϵi = 0 if i ̸∈ {j, k − j} and ϵj = ϵk−j = 1, the graph Γ kj = G(e) is called
the jth odd basic k-graph. For the sequence e = (ϵ1, ϵ2, . . . , ϵk−1) with
ϵi = 0 if i ̸∈ {j, k − j} and ϵj = ϵk−j = 2, the graph Πk

j = G(e) is called

the jth even basic k-graph. Speciőcally, if ∆ ∈ {Γ kj , Πk
j }, then the edge

set E(∆) is {(vi, vi+j) | i ∈ k0} and i+ j is carried out modulo k.

It turns out that each non-null graph G(Erc ) is the union of spanning
subgraphs, each of them is an even basic k-graph, or an odd basic k-graph
[5, (4.1)]. Figure 2.2 shows such a decomposition of the second graph in
Figure 2.1(b) into three basic graphs, two even ones (with solid-line edges)
and an odd one (with dotted-line edges).
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Figure 2.2. An G(Er
c ) and the spanning basic graphs

Furthermore, an ith basic graph ∆ ∈ {Γ ki , Πk
i } is a spanning subgraph

of G(Erc ) if and only if c is in Φ(φi − 1)−1(φj − 1) for some j ∈ k
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[5, (4.3)]. Thus, the set Mr of Erc ’s with G(Erc ) non-null is given by
Mr = {Erci,j | i, j ∈ k}, where each ci,j = (φi − 1)−1(φj − 1).

Finally, for i ∈ k, set γi(r) = |{Erc ∈ Mr | Γ ki ≺ G(Erc )}| and
πi(r) = |{Erc ∈ Mr | Πk

i ≺ G(Erc )}|, where “≺ž means “is a spanning
subgraph ofž. It was shown in [5, (4.7), (4.9), (4.10)] that

1) if k is even, then γi(r) = 1 and πi(r) = k/2− 1, and
2) if k is odd, then γi(r) = k − 1 and πi(r) = 0.

A natural question to ask now is what is the number of distinct graphs
in {G(Erc ) | Erc ∈ Mr}? This amounts to learn when two or more basic
graphs are at the same time the spanning subgraphs of some graph G(Erc ).
In such a case, we say that these two or more basic graphs overlap, and
that an overlap occurs inside G(Erc ).

From [5, (4.3)], one has

Theorem 2.3. An overlap occurs inside G(Erc ) for some r, c ∈ F ∗ if and

only if there exist w ∈ k0, i, j, s, t ∈ k, i ̸= s, such that

(φi − 1)−1(φj − 1) = φw(φs − 1)−1(φt − 1). (2.3)

Remark 2.4. The situation i = s and j = k − t in the theorem gives the

same ith basic graph, and so actually no overlap occurs. The situation

i = j and s = t in the theorem describes the overlap of the ith and the sth

basic graphs in G(Err ). Therefore, the graph G(Err ) is in fact a complete

graph. Thus, there is always an overlap with ⌊k2⌋ edges. In fact, this is the

only overlap with ⌊k2⌋ edges. The number ⌊k2⌋ comes from the fact that

the edges (v0, vi) and (v0, vk−i) are the same for all i ∈ k, as we have seen

above. For obvious reasons, we’ll later refer to these overlaps as trivial.

Our aim is to show in which situations overlaps can occur in (F,Φ).
The following two lemmas from [7] will be needed.

Lemma 2.5 ([7, Lemma 9]). Let (F,Φ) be circular, and let χ = (ψ −
1)−1(λ− 1) where λ, ψ ∈ Φ \ {1}. If χ ∈ Φ, then

either χ = 1 and ψ = λ, or χ = −λ and ψ = λ−1.

The second case implies either p = 2, or that |Φ| is even.
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Lemma 2.6 ([7, Lemma 10]). Let (p, k) be circular. For i, j, t ∈ k we

have

1) if k is even, then ci,j ∈ Φci,t ⇐⇒ j = t or i = k − t, and

2) if k is odd, then ci,j ∈ Φci,t ⇐⇒ j = t or, in case p = 2, i = k − t.

3. Overlaps

We shall őx r ∈ F ∗ and for c ∈ F ∗ denote Γc = G(Erc ). Based on
Theorem 2.3, we make the following deőnition.

Deőnition 3.1. We say that the quadruple (i, j | s, t), where i, j, s, t ∈ k,

i ̸= s, forms an overlap (with respect to (F,Φ), or (q, k)) if ci,j ∈ Φcs,t. In

this case, we also say that ci,j is involved in an overlap.

We őrst collect some trivial cases, namely, an overlap (i, j | s, t) with
j = i, j = t or s = k − i.

If j = i, then ci,j = 1, which puts cs,t into Φ = Φcj,i. By Lemma 2.5,
if t ̸= s, then either 2 | k and t = k − s, or p = 2 and t = k − s.

If j = t, then

φj − 1

φi − 1
∈ Φ

φj − 1

φs − 1
⇐⇒ φs − 1

φi − 1
= ci,s ∈ Φ = Φcj,j

so Lemma 2.5 applies again, and we have either 2 | k and s = k − i where
i ̸= k

2 , or p = 2 and s = k − i with i ̸= s.

If s = k − i, then we have ci,j ∈ Φck−i,t = Φci,k−t as well. Lemma 2.6
says that if t ̸= k − j, then either 2 | k and t = j, or p = 2 and t = j.

When describing or applying overlaps later, we mostly exclude the
instances above by referring to them as trivial overlaps. They are presented
in compact form in Table 3.1, where the őrst row shows the forms of trivial
overlaps and the second row (if present) shows the extra conditions for
the trivial overlaps to occur.

Table 3.1. All trivial overlaps (i, j, s ∈ k, i ̸= s)

(i, i | s, s) (i, i | s, k − s) (i, j | k − i, j) (i, j | k − i, k − j)
2 | k ∨ p = 2 (2 | k ∨ p = 2) ∧ j ̸= k

2 i ̸= k

2
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Our aim is to determine the set of all nontrivial overlaps, namely,

O = O(F, k) =
{
(i, j | s, t)

∣∣∣∣ Φ
φj − 1

φi − 1
= Φ

φt − 1

φs − 1
, (i, j, s, t) ∈ I

}
.

As s = t would create a trivial overlap (see Lemma 2.6), we have added the
condition s ≠ t to the above deőnition of O for symmetry. Also, we could
have used the notation O(F,Φ) instead of O(F, k), since Φ is uniquely
determined by k. As we will also consider the complex number őeld C,
this notation comes in handy. Actually, the biggest part of this chapter
will be occupied by the case when F = C.

After clearing denominators and expanding (2.3), we őnd

φω+j+s + φω − φω+s − φω+j − φt+i + φt + φi − 1 = 0, with i ̸= s. (3.1)

For i, j, s, t ∈ k, i ̸= s, and ω ∈ k0 deőne polynomials over F

fi,j,s,t,ω(x) = xω+j+s + xω − xω+s − xω+j − xt+i + xt + xi − 1 (3.2)

= xω(xj − 1)(xs − 1)− (xi − 1)(xt − 1). (3.3)

Obviously, when i ̸= s, then we have (i, j | s, t) is an overlap if and only if
there exists some ω ∈ k0 such that fi,j,s,t,ω(φ) = 0.

A direct consequence of this is

Lemma 3.2. Let (F,Φ) be circular, and let K be an extension őeld of F .

Then (K, k) is circular and O(K, k) = O(F, k).

Proof. The statement about circularity comes directly from Theorem 2.1.

The second statement is clear.

This means that we can reduce our discussions to the smallest subőeld
of F containing a k-th root of unity. In particular, if F is őnite, the set
O(F, k) only depends on the characteristic p. We therefore sometimes
simply write O(p, k) for O(F, k).

3.1. The complex numbers

We now set the stage for C. Let ϕ = exp(2πi/k) be a primitive k-th
root of unity in C where i2 = −1, and let U = Uk = ⟨ϕ⟩. Notice that
(C, U) is circular for all k as U is a subset of the unit circle. We will prove
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Theorem 3.3. Let p be a prime. Then O(C, k) ⊆ O(p, k). Moreover,

for k ⩾ 3, the set Qk = {p prime | p divides k or O(C, k) ̸= O(p, k)} is

őnite.

To prepare the proof we őrst show a proposition. All information on
cyclotomic őelds needed for this can be found in [4, Ch. 13, ğ2].

Proposition 3.4. Let p be a prime, k ∈ N, k ⩾ 3, and F a őeld of

characteristic p which contains an element of order k in F ∗. Let ϕ be a

primitive k-th root of unity over Q and let N : Q(ϕ)→ Q, be the Galois

norm. Let g be a polynomial in Z[x].

1) There exists an element φ of order k in F ∗ such that g(φ) = 0 if

and only if p | N (g(ϕ)).
2) In case g(ϕ) = 0 (which is equivalent to N (g(ϕ)) = 0), we have

g(ψ) = 0 for all elements ψ of order k in F ∗.

Proof. There is no loss in generality to assume that F is the smallest

őeld with the given properties. As Z[ϕ] is the ring of integers inside the

kth cyclotomic őeld Q(ϕ), there exists a ring-epimorphism θ : Z[ϕ] →
F ;u 7→ uθ mapping ϕ to some primitive k-th roots of unity, i.e., an

element of order k, inside F . (If F where not smallest, the image of θ

would be this smallest őeld.) We note that the kernel P of θ is a prime

ideal containing p, and the map θ extends naturally to a ring-epimorphism

of the polynomial rings Z[ϕ][x]→ F [x], which is also denoted by θ. Let

g ∈ Z[x] be a polynomial and let G be the Galois group of [Q(ϕ):Q]. As

norms of elements of Z[ϕ] are all in Z, we have that N (g(ϕ)) ∈ Z. Thus

we őnd

p | N (g(ϕ)) ⇐⇒ N (g(ϕ)) =
∏

σ∈G

(g(ϕ))σ =
∏

σ∈G

g (ϕσ) ∈ P

⇐⇒ g (ϕσ0) ∈ P for some σ0 ∈ G

⇐⇒
(
g
(
ϕd
))θ

= 0 for some d ∈ Z×
k

since P is a prime ideal, and the group G is naturally isomorphic to the

group of units Z×
k of the ring Zk. (Indeed, if σ0 and d correspond under

this isomorphism, then ϕσ0 = ϕd.)
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Now, assume that p | N (g(ϕ)). Then there exists a d ∈ Z×
k such that

φ =
(
ϕd
)θ

is a root of g. Conversely, assume that φ exists. Then there

exists a preimage of φ under θ, which is a primitive k-th roots of unity

in Q(ϕ). As G is transitive on the primitive k-th roots of unity, there

exists d ∈ Z× with φ =
(
ϕd
)θ
. Therefore,

(
g
(
ϕd
))θ

= g(φ) = 0, and so

p | N (g(ϕ)). This proves (1).

Next, suppose that g(ϕ) = 0. We have g(ϕd) = 0 for all d ∈ Z×
k .

Therefore,

0 = g(ϕd)θ = g((ϕθ)d).

Here, (ϕθ)d, d ∈ Z×
k , are exactly the elements of order k inside F ∗. This

is (2).

Remark 3.5. In the above proof, N (g(ϕ)) = 0 implies that there exists

a conjugate ϕd0 of ϕ such that g(ϕd0) = 0. But then, by the action of G,

g(ϕd) = 0 for all d ∈ Z×, and thus g(φ) = 0 for all elements φ ∈ F of

order k.

Proof of Theorem 3.3. We shall use the Galois norm N as introduced in

Proposition 3.4.

For (i, j | s, t) ∈ O(C, k) there exists ω ∈ k0 such that fi,j,s,t,ω(ϕ) = 0.

Then (i, j, s, t) ∈ I and N (fi,j,s,t,ω(ϕ)) = 0, thus (i, j | s, t) ∈ O(p, k) by

Proposition 3.4.

Suppose that p ∈ Qk and p ∤ k. Thus there exists (i, j | s, t) ∈
O(p, k) \ O(C, k) with a corresponding ω. By Proposition 3.4 again,

N (fi,j,s,t,ω(ϕ)) ̸= 0 and p | N (fi,j,s,t,ω(ϕ)). There are only őnitely many

polynomials fi,j,s,t,ω and each integerN (fi,j,s,t,ω(ϕ)) has only őnitely many

prime divisors. Thus the set Qk is őnite as well.

Remark 3.6. fi,j,s,t,ω(ϕ) is a sum of 8 roots of unity. Let e be the number

of elements in k coprime to k. To form N (g(ϕ)), we multiply e such

sums. After expansion, we have a total of 8e summands, each of which

is a product of roots of unity and has absolute value 1. This yields the

inequality |N (g(ϕ))| ⩽ 8e. Thus for every prime p ∈ Qk we have p < 8e.
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Note that this is a very crude bound as our data show, and is suggested

from the proof, too.

For every k ⩾ 3, the set Qk is referred to as the set of exceptional
primes.

Corollary 3.7. It holds that Pk ⊆ Qk. Consequently, if (p, k) is a Ferrero

pair with p ̸∈ Qk, then (p, k) is circular.

Proof. We notice that the polynomials (2.2) used for getting Pk are all

of the form fi,j,s,t,0(x), (i, j, s, t) ∈ I. As (C, U) is circular, fi,j,s,t,0(ϕ) ̸= 0

for all (i, j, s, t) ∈ I by Lemma 2.1. From Proposition 3.4, it follows

immediately that Pk consists exactly the prime divisors of N (fi,j,s,t,0(ϕ)),

(i, j, s, t) ∈ I. Thus, in both Qk and Pk, we are determining primes

dividing N (fi,j,s,t,ω(ϕ)) wherever N (fi,j,s,t,ω(ϕ)) ̸= 0 for (i, j, s, t) ∈ I: in

the case of Qk, ω ∈ k0 and in the case of Pk, ω = 0. Therefore, we have

Pk ⊆ Qk.

We provide some examples of Qk with elements of Pk underlined in
Table 3.2. The algorithm to őnd the elements is based on the above proof.

Table 3.2. Exceptional primes; elements from Pk underlined

Q4 = {2, 3, 5},

Q5 = {5, 11},

Q6 = {2, 3, 5, 7, 13, 19, 31, 37},

Q7 = {2, 7, 13, 29, 43, 71},

Q8 = {2, 3, 5, 7, 13, 17, 41, 73, 89, 97, 113},

Q9 = {2, 3, 17, 19, 37, 73, 109, 127, 163, 181, 199, 271, 397, 541},

Q10 = {2, 3, 5, 11, 19, 29, 31, 41, 61, 71, 101, 131, 151, 181, 191, 211, 241,
251, 271, 281, 311, 331, 401, 421, 541, 641, 761, 881, 941},

Q11 = {3, 11, 23, 43, 67, 89, 109, 199, 331, 353, 397, 419, 463, 617, 661,
683, 727, 859, 881, 947, 991, 1277, 1453, 2069, 2311, 2399},

Q12 = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 61, 73, 97, 109, 157, 181,
193, 229, 241, 277, 313, 337, 349, 373, 397, 409, 421, 433, 541, 601,
661, 769, 1009}.
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The following examples from [5] are some nontrivial overlaps for Ferrero
pairs (q, k). Note that these are universal in the sense that they do not
depend on q (or p), but only on the shape of k.

Example 3.8. If k = 6ℓ, ℓ ∈ N, then φℓ is a sixth root of unity, and

φ3ℓ = −1 = φ2ℓ − φℓ. Therefore

φℓ
φℓ − 1

φi − 1
=
−1

φi − 1
and

φi
φ3ℓ−i − 1

φ2i − 1
=

φ3ℓ − φi
(φi − 1)(φi + 1)

=
−1− φi

(φi − 1)(φi + 1)
=
−1

φi − 1
.

This yields c2i,3ℓ−i = φℓ−ici,ℓ for all 1 ⩽ i ⩽ k/4. To put it short, we have

that (i, ℓ | 2i, 3ℓ− i) forms an overlap for every i ∈ {1, . . . , ⌊k/4⌋}.
Notice that the case i = ℓ is trivial, but all other cases are not. Thus

nontrivial examples of this kind start with k = 12.

As we represent overlaps by the exponents with respect to a őxed
generator, the actual quadruples will depend on this generator. We give
examples for this in Examples 3.13 and 3.14.

The main concern of this paper is the determination of O(C, k) and
thus by Theorem 3.3 that of O(F, k) for all őnite őelds with characteristic
not in Qk. We will now show that the set does not really depend on
the generator in this case. In other words: a problem occurs only for
exceptional primes.

Lemma 3.9. Let k ⩾ 3 and let F be a őeld of characteristic p /∈ Qk such

that F ∗ contains a subgroup Φ of order k, or F = C. Then the set O(F, k)
is independent of the choice of the generator for Φ. Speciőcally, let ψ and

χ be generators of Φ, and let (i, j | s, t) ∈ O(F, k), i.e. there exists w ∈ k0

such that

ψw · ψ
j − 1

ψi − 1
=
ψs − 1

ψt − 1
⇐⇒ χw · χ

j − 1

χi − 1
=
χs − 1

χt − 1
.

Proof. We őrst treat the complex case. We can restrict to the kth cyclo-

tomic őeld F = Q(ψ). There exists an automorphism σ of F such that
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ψσ = χ. The őrst equation implies fi,j,s,t,ω(ψ) = 0, then also

0 = fi,j,s,t,ω(ψ)
σ = fi,j,s,t,ω (ψ

σ) = fi,j,s,t,ω(χ).

Now, the őnite case follows directly with Proposition 3.4.

3.2. The reduced form

To reduce complexity of the set O(F, k) we use some group actions on
O(F, k). We consider the mappings κℓ : k

4 → k4, ℓ ∈ {1, 2, 3, 4}, which
transforms the ℓ-th entry uℓ of a quadruple to k−uℓ. These four mappings
generate an elementary abelian 2-group K0 of order 16. The subgroup
K1 = ⟨κ1κ4, κ2κ4, κ3κ4⟩ generated by products of two such generators has
index 2 in K0.

Let (F, k) be a circular Ferrero pair, then K1 acts on O(F, k). If k is

even, then K0 acts on O(F, k) since −1 = φ
k
2 ∈ Φ.

If o := (i, j | s, t) ∈ O(F, k) is an overlap then the following permuta-
tions of the entries of o give more identities as in (2.3)

(i, t), (j, s), (i, t)(j, s), (i, s)(j, t), (i, j)(s, t), (i, j, t, s), (i, s, t, j). (3.4)

These together with the identity map form a dihedral group D4 acting on
O(F, k), too. It is easy to see that D4 normalizes K1 (and also K0). Thus
the semidirect product of D4 together with K1, or K0 form groups G1, or
G0, respectively.

Lemma 3.10. Let (F, k) be a circular Ferrero pair. If k is odd, then G1
acts on O(F, k), and if k is even, then G0 acts on O(F, k).

Occasionally, we will write o ∼ o′ if two overlaps o, o′ ∈ O(F, k) are
related by the group action of Lemma 3.10. Clearly, ∼ is an equivalence
relation on the set of all overlaps. To describe this set it suffices to
give a representative for each class. We will now describe a “reducedž
representative for each class. Whenever situation allows, we will choose a
reduced representative in our exposition.

Let (i, j | s, t) ∈ O(F, k) be a nontrivial overlap. By applying elements
from K1, we can pass to an equivalent quadruple which has at most one
entry greater than k

2 . If k is even, we can even pass to an equivalent

quadruple which has all of its entries less than or equal to k
2 .

By applying the permutations (i, t) if necessary, we can assume that
i ⩽ t. Applying (j, s) and/or (i, j)(s, t) we may assume that i is the smallest
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of the values among i, j, s, t. Now, applying (j, s), again, if necessary, we
can assume with no loss of generality that

i < j ⩽ s and j ⩽
k

2
. (3.5)

An element (i, j | s, t) ∈ O(F, k) is called reduced if it satisőes the condi-
tions in (3.5) and has at most one entry greater than k

2 .

Lemma 3.11. In each equivalence class of O(F, k) there exists a reduced

element.

Remark 3.12. The reduced form is not unique. E.g., let k = 12. From

Example 3.8 we have an overlap o = (1, 2 | 2, 5), which clearly is reduced.

However, (1, 2 | 2, 7) ∼ o is also reduced; and so is (1, 2 | 10, 5) ∼ o.
We emphasis again that for a prime p ∈ Qk, the representation of

the overlaps as powers in the set O(F, k) depends on the choice of the
generator for Φ.

Example 3.13. For p = 13 and k = 7, we have 13 ∈ Q7 \ P7. Thus

(132, 7) is circular, but there exist exceptional overlaps such as (1, 2 |
2, 6) ∼ (1, 2 | 5, 1) both of which are reduced. This overlap works with

the element φ of order k in the quadratic extension of Zp with minimal

polynomial x2 + 3x+ 1.1 Indeed, a simple computation shows that

φ5φ
2 − 1

φ− 1
=
φ6 − 1

φ2 − 1
⇐⇒ (φ2 − 1)2φ−2 = (φ−1 − 1)(φ− 1)

⇐⇒ φ2 + φ−2 − 2 = 2− (φ−1 + φ).

The last equation holds since the trace of φ is −3 and that of φ2 is −6.
Another overlap which works with φ is (1, 2 | 5, 1). In the same way

we have (1, 3 | 3, 6) ∼ (1, 3 | 4, 1) working with φ2. Notice that, however,

(1, 3 | 3, 6) does not work with φ.

Example 3.14. For p = 11 and k = 12 we again have 11 ∈ Q12 \ P12.
Thus (112, 12) is circular. Besides the natural overlaps (1, 2 | 2, 5) and

1The minimal polynomial of the other generators are x2 + 5x + 1 (for ϕ±3) and
x2 + 6x+ 1 (for ϕ±2).
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(2, 3 | 3, 6) from Theorem 5.1 there exist exceptional overlaps such as

(2, 4 | 5, 3) which works with φ, a root of x2 + 5x + 1 (and ω = 4). On

the other hand, (1, 2 | 3, 4) works with φ5, which has minimal polynomial

x2 − 5x+ 1.

4. The normalized form

We will specialize to the realm of the complex numbers and consider
only nontrivial overlaps. It turns out, as we shall see later, that there can
be only trivial overlaps when k is odd. From now on, we shall assume that
k is even. We come back to the odd case only in Theorem 5.2. By abuse
of notation, we will write O = O(C, k).

As the group G0 acts on O for even k, we can assume that i, j, s, t ∈
{1, 2, . . . , k2}. Recall that ϕ = exp(2πi/k) is a primitive k-th root of unity
in C. We will use the polar decomposition of ϕr − 1, r ∈ R. This is easily

computed using the identity ϕr−1 =
(
ϕ

r
2 − ϕ− r

2

)
ϕ

r
2 and Euler’s formula.

Lemma 4.1. For r ∈ R, it holds that

ϕr − 1 = 2 sin
πr

k
· exp i

(π
2
+
πr

k

)
.

The following observations further reduces the overlap quadruples of
interest.

Lemma 4.2. Let (i, j | s, t) ∈ O with i, j, s, t ∈ {1, 2, . . . , k2}. Then

i < j ⇐⇒ s < t and i < s ⇐⇒ j < t.

Proof. By Lemma 4.1 and the monotonicity of sine on the interval [0, π2 ],

we have ∣∣∣∣
ϕj − 1

ϕi − 1

∣∣∣∣ =
sin πj

k

sin πi
k

> 1 ⇐⇒ i < j.

As the same holds for (s, t), the őrst statement of the lemma follows. By

exchanging the roles of j and s, the second statement follows immediately.

Therefore (3.5) implies s < t for a reduced quadruple (i, j | s, t),
i, j, s, t ∈ {1, 2, . . . , k2}. Summarizing we can assume

0 < i < j ⩽ s < t ⩽
k

2
. (4.1)
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An element (i, j | s, t) ∈ O is called normalized if it satisőes the conditions
in (4.1).

With these premises we őnd

Lemma 4.3. If (i, j | s, t) ∈ O is normalized, then j − i < t− s, and so

j + s < i+ t < k.

Proof. It suffices to compare the absolute values of the left and right hand

side of (2.3). This gives, by Lemma 4.1,

sin πj
k

sin πi
k

=
sin πt

k

sin πs
k

.

Set f(x, y) = sin(x+y)
sinx on the set {(x, y) | 0 < x < x + y ⩽

π
2 }. Simple

calculus analysis reveals that, keeping y őxed, f(x, y) strictly decreases

as x increases, and, keeping x őxed, it strictly increases as y increases.

Now, from

f
(π
k
s,
π

k
(j − i)

)
< f

(π
k
i,
π

k
(j − i)

)

=
sin πj

k

sin πi
k

=
sin πt

k

sin πs
k

= f
(π
k
s,
π

k
(t− s)

)

we infer that j − i < t− s.

Remark 4.4. A reduced quadruple is not necessarily normalized, but the

converse is true. Over őnite őelds there do exist reduced quadruples which

cannot be normalized as Example 3.14 shows. This phenomenon can only

occurs if the characteristic of the őeld is an exceptional prime.

4.1. Beyond the normalized form

Not all permutations in D4 viewed as a subgroup of G0 give distinct
elements from O. Indeed
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Lemma 4.5. If o := (i, j | s, t) ∈ O is normalized then there are at most

four values modulo Φ derived from this by permutations, namely,

ϕj − 1

ϕi − 1
,
ϕs − 1

ϕi − 1
,
ϕi − 1

ϕj − 1
and

ϕi − 1

ϕs − 1
.

The action of K0 does not change the cosets.

Proof. Starting from the őrst value in the theorem, the őrst permutation

from (3.4) produces the last entry, the second and third produce the second

and third entry, respectively.

The permutation (i, s)(j, t) only interchanges the left hand side with

the right hand side of (2.3) up to an factor in Φ. Therefore the other three

permutations in (3.4) cannot give more solutions either.

5. The main theorem

Finally, in this section we reach our principal goal, the determination of
the setO = O(C, k) of nontrivial overlaps overC. For any őnite őeld F with
characteristic not in Qk this set coincides with O(F, k), cf. Theorem 3.3.

Later in Theorem 7.4 we also determine the triple overlaps and prove
that there are no quadruple overlaps. For the sake of easy reference, we
include the őndings of the triple overlaps in Theorem 7.4 into the following
theorem (the last column, marked with Tr).

Theorem 5.1. Let k be even and O nonempty, then there exists ℓ ∈ N

such that k = 6ℓ. Depending on the shape of k, O is a union of the

corresponding sets O1, O30, O42, and O60 described below. When we write

k = Nℓr for N ∈ {30, 42, 60}, we mean that k is divisible by N .

1) For k = 6ℓ, we have

ϕℓ−u · ϕ
ℓ − 1

ϕu − 1
=
ϕ3ℓ−u − 1

ϕ2u − 1

for 1 ⩽ u ⩽
⌊
k
4

⌋
with u ̸= k

6 = ℓ. Namely, O1 consists of those (i, j, s, t) ∼
(u, ℓ | 2u, 3ℓ− u), where 1 ⩽ u ⩽

⌊
k
4

⌋
and u ̸= k

6 = ℓ.
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2) For k = 30ℓ1, the normalized forms of the elements in O30 are

(ℓ1, 3ℓ1 | 3ℓ1, 11ℓ1) with ω = 3ℓ1,

(3ℓ1, 5ℓ1 | 5ℓ1, 9ℓ1) with ω = ℓ1, T1 : (3ℓ1, 5ℓ1 | 5ℓ1, 9ℓ1 | 6ℓ1, 12ℓ1),
(7ℓ1, 9ℓ1 | 9ℓ1, 13ℓ1) with ω = ℓ1,

(ℓ1, 2ℓ1 | 4ℓ1, 9ℓ1) with ω = 2ℓ1, T2 : (ℓ1, 2ℓ1 | 4ℓ1, 9ℓ1 | 5ℓ1, 14ℓ1),
(2ℓ1, 3ℓ1 | 5ℓ1, 8ℓ1) with ω = ℓ1, T3 : (2ℓ1, 3ℓ1 | 5ℓ1, 8ℓ1 | 7ℓ1, 14ℓ1),

T4 : (2ℓ1, 5ℓ1 | 3ℓ1, 8ℓ1 | 4ℓ1, 13ℓ1),
(8ℓ1, 9ℓ1 | 11ℓ1, 14ℓ1) with ω = ℓ1, T5 : (4ℓ1, 5ℓ1 | 8ℓ1, 11ℓ1 | 9ℓ1, 14ℓ1),
(2ℓ1, 3ℓ1 | 7ℓ1, 14ℓ1) with ω = 3ℓ1, T3 : (2ℓ1, 3ℓ1 | 5ℓ1, 8ℓ1 | 7ℓ1, 14ℓ1),
(3ℓ1, 4ℓ1 | 8ℓ1, 13ℓ1) with ω = 2ℓ1, T4 : (2ℓ1, 5ℓ1 | 3ℓ1, 8ℓ1 | 4ℓ1, 13ℓ1),
(4ℓ1, 5ℓ1 | 9ℓ1, 14ℓ1) with ω = 2ℓ1, T2 : (ℓ1, 2ℓ1 | 4ℓ1, 9ℓ1 | 5ℓ1, 14ℓ1),

T5 : (4ℓ1, 5ℓ1 | 8ℓ1, 11ℓ1 | 9ℓ1, 14ℓ1).

3) For k = 42ℓ2, the normalized forms of the elements in O42 are

(2ℓ2, 3ℓ2 | 9ℓ2, 16ℓ2) with ω = 3ℓ2,

(3ℓ2, 4ℓ2 | 10ℓ2, 15ℓ2) with ω = 2ℓ2,

(8ℓ2, 9ℓ2 | 15ℓ2, 20ℓ2) with ω = 2ℓ2.

4) For k = 60ℓ3, the normalized forms of the elements in O60 are

(3ℓ3, 4ℓ3 | 16ℓ3, 27ℓ3) with ω = 5ℓ3,

(5ℓ3, 6ℓ3 | 18ℓ3, 25ℓ3) with ω = 3ℓ3,

(8ℓ3, 9ℓ3 | 21ℓ3, 28ℓ3) with ω = 3ℓ3.

Notice that inside every expression in the above list at least one of the
exponents i, j, s, and t is odd when ℓ, ℓ1, ℓ2, or ℓ3, respectively, are odd.
We have

Theorem 5.2. If k is odd, only the trivial overlaps occurs.

Proof. Assume on the contrary that (i, j | s, t) ∈ O(C, k) is reduced with

k odd. Then o := (2i, 2j | 2s, 2t) ∈ O(C, 2k), where we refer to a 2k-th

root of unity ψ with ψ2 = ϕ. Normalizing o would require at most one
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transformation of the form κi : x 7→ 2k − x, which results in an even

entry. The same holds for permutations when applying to o. Thus, the

normalized form of o has four even entries.

By Theorem 5.1 we have 2k = 6ℓ. Since k is odd, ℓ is also odd. As we

have noted, in this case, the list in Theorem 5.1 shows no instance having

four even entries. Thus there cannot be such (i, j | s, t) in O(C, k).

6. The proof

The working of the case (1) in the Theorem 5.1 has already been
veriőed in Example 3.8. It is also in [5]. All others can be veriőed by
similar methods based on the corresponding cyclotomic polynomials. The
main part of this section is to prove that there are no more. We give some

6.1. Preparations

It will turn out to be convenient to make the following substitution

a :=
s+ j

2
, b :=

s− j
2

, c :=
t+ i

2
, d :=

t− i
2

,

therefore
i = c− d, j = a− b, s = a+ b, t = c+ d. (6.1)

We collect some easy consequences.

Lemma 6.1. Our assumptions on i, j, s, t give

1) 0 ⩽ b < a < c , 0 ⩽ b < d < c , and 0 ⩽ b < d <
k

4
;

2)
2π

k
b <

2π

k
d ⩽ π − 2π

k
c < π − 2π

k
a;

3) π − 2π

k
a+

2π

k
b < π − 2π

k
c+

2π

k
d.

Proof. (1) follows easily from 0 < i < j ⩽ s < t ⩽ k
2 and j + s < i + t.

See Lemma 4.3.

(2) Only 2π
k d ⩽ π − 2π

k c needs explanation. We have

(π − 2π

k
c)− 2π

k
d = π − 2π

k
(c+ d) = π − 2π

k
t ⩾ 0.

(3) π − 2π

k
a+

2π

k
b = π − 2π

k
j < π − 2π

k
i = π − 2π

k
c+

2π

k
d.
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By Lemma 4.1 the principle argument of (ϕs−1)−1(ϕt−1) is (t−s)π/k
while that of (ϕi − 1)−1(ϕj − 1) is (j − i)π/k. Thus, ϕω = exp

(
((t− s)−

(j − i))πi/k
)

and so

ω =
(t+ i)− (s+ j)

2
= c− a. (6.2)

Remark 6.2. It turns out that ω is an integer. If p ̸∈ Qk and F = GF(q),

where q is a power of p with k | (q − 1), we have O(F, k) = O(C, k).
Moreover, if φ ∈ F is a primitive k-th root of unity, and (i, j | s, t) ∈
O(F, k), then ω = (t+i)−(s+j)

2 satisőes φω 1−φj

1−φi = 1−φt

1−φs . Thus we know

exactly how to compute ω from i, j, s, t. This is not the case when p ∈ Qk.
Examples 3.13 and 3.14 show such situations.

Now, we expand (2.3) to obtain (see also (3.1))

1 + ϕt+i − ϕt − ϕi = ϕω + ϕω+j+s − ϕω+s − ϕω+j . (6.3)

Using a, b, c, d and rearranging, we have

1 + ϕ2c + ϕc+b + ϕc−b = ϕc+d + ϕc−d + ϕc−a + ϕc+a. (6.4)

Multiply ϕ−c to (6.4) and rearrange again to get

ϕ−a + ϕa + ϕ−d + ϕd = ϕ−b + ϕb + ϕ−c + ϕc.

As ϕ−x is the complex conjugate of ϕx for all x, after dividing the last
equation by 2, we obtain

cos
2π

k
a+ cos

2π

k
d = cos

2π

k
b+ cos

2π

k
c. (6.5)

This suggests that we shall be able to apply the following theorem of
Conway and Jones.

Theorem 6.3 ([3, Theorem 7]). Suppose we have at most four distinct

rational multiples of π lying strictly between 0 and π
2 for which some

rational linear combination of their cosines is rational but no proper subset

has this property. Then the appropriate linear combination is proportional



154 Overlaps in circular planar nearrings

to one from the following list:

cos
π

3
=

1

2
, (6.6)

− cos θ + cos
(π
3
− θ
)
+ cos

(π
3
+ θ
)
= 0,

(
0 < θ <

π

6

)
, (6.7)

cos
π

5
− cos

2π

5
=

1

2
, (6.8)

cos
π

5
− cos

π

15
+ cos

4π

15
=

1

2
, (6.9)

− cos
2π

5
+ cos

2π

15
− cos

7π

15
=

1

2
, (6.10)

cos
π

7
− cos

2π

7
+ cos

3π

7
=

1

2
. (6.11)

All other sums with four cosines equal 1
2 .

Since (6.5) has exactly four terms, we listed only the relevant identities
in the above theorem. In order to match (6.5) with the equations in this
theorem, we will have to rearrange the equations so that all arguments to
the cosine are in the range [0, π/2], and all terms nonnegative. For (6.5),
there are three cases to consider.

Lemma 6.4. 1) If c ⩽ k
4 , we just keep terms in (6.5) as they are.

2) If a ⩾
k
4 and c ⩾ k

4 , then (6.5) must be transformed into

cos

(
π − 2π

k
c

)
+ cos

2π

k
d = cos

2π

k
b+ cos

(
π − 2π

k
a

)
. (6.12)

3) If a < k
4 ⩽ c, then (6.5) must be transformed into

cos
2π

k
a+ cos

2π

k
d+ cos

(
π − 2π

k
c

)
= cos

2π

k
b. (6.13)

Proof. By Lemma 6.1 (1), if c ⩽ k
4 , then all terms in (6.5) are nonnegative;

and, if c > k
4 , then according to a < k

4 and a ⩾
k
4 , the other two instances

follow.

With Lemma 6.4, we understand that we have to investigate an ex-
pression of the form

e1 cosα1 + e2 cosα2 + e3 cosα3 + e4 cosα4 = 0, (6.14)
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where ei ∈ {1,−1} and αi are rational multiples of π in the range [0, π/2].
By Theorem 6.3, equation (6.14) must have subsums matching with
equations (6.6)ś(6.11). Notice that besides these possibilities there are
always the trivial equations

cos 0 = 1 and cos
π

2
= 0,

which can be used to őll up to four terms. By Lemma 6.1(1), b is the
single smallest value, thus cos 0 can occure at most once in a sum.

We now go through the cases that can occur according to Theorem 6.3.

6.2. Cases (6.6) and (6.7)

We combine the őrst two equations of Theorem 6.3 to obtain

cos
(π
3
− θ
)
+ cos

(π
3
+ θ
)
= cos θ + cos

π

2
, where 0 ⩽ θ < π

6 , (6.15)

or

cos
π

2
+ cos

(π
3
− θ
)
+ cos

(π
3
+ θ
)
= cos θ, where 0 ⩽ θ < π

6 . (6.16)

Notice that (6.6) corresponds to the case θ = 0. Furthermore, we have
put in trivial terms to őll up to four. We also have

θ ⩽
π

3
− θ ⩽ π

3
+ θ <

π

2
.

By Lemma 6.1(b), 2π
k b is the smallest value in all three cases of

Lemma 6.4. Thus, θ = 2π
k b, or b = kθ

2π . For convenience, we deőne ℓ = k
6 .

This gives us 0 ⩽ b < k
12 = ℓ

2 . It will turn out that ℓ is actually an integer.

Suppose that c ⩽ k
4 . By Lemmas 6.1 (1), c is the largest value. There-

fore, 6.4 implies 2π
k c =

π
2 , and so c = k

4 . Hence we can assume that c ⩾ k
4 .

Now there are the following three possibilities:

b < a ⩽ d <
k

4
⩽ c, b < d < a <

k

4
⩽ c or b < d <

k

4
⩽ a < c.
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(1) b < a ⩽ d < k
4 ⩽ c. In this case, (6.13) applies, and we have

cos
2π

k
a+ cos

2π

k
d+ cos

2π

k

(
k

2
− c
)

= cos
2π

k
b.

Matching up the arguments of this with those in (6.16), we have

2π

k

(
k

2
− c
)

=
π

2
,

2π

k
d =

π

3
+ θ and

2π

k
a =

π

3
− θ.

Therefore, remembering that θ = 2π
k b, one gets

c =
k

4
=

3

2
ℓ, d =

k

6
+ b = ℓ+ b and a =

k

6
− b = ℓ− b.

By (6.1), we get

i = c− d =
1

2
ℓ− b, j = a− b = ℓ− 2b

and

s = a+ b = ℓ, t = c+ d =
5

2
ℓ+ b.

Put b′ = 1
2ℓ− b to get

(i, j | s, t) = (b′, 2b′ | ℓ, 3ℓ− b′) ∈ O, 0 < b′ ⩽
1

2
ℓ.

Now ω = c− a = 3ℓ−b′+b′−(ℓ+2b′)
2 = ℓ− b′, and so

ϕℓ−b
′ · ϕ

2b′ − 1

ϕb′ − 1
=
ϕ3ℓ−b

′ − 1

ϕℓ − 1
. (6.17)

(2) b < d < a < k
4 ⩽ c. Again, (6.13) is used to match up with (6.16),

and
2π

k

(
k

2
− c
)

=
π

2
,
2π

k
a =

π

3
+ θ and

2π

k
d =

π

3
− θ.

Therefore,

c =
k

4
=

3

2
ℓ, a =

k

6
+ b = ℓ+ b and d =

k

6
− b = ℓ− b.
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By (6.1), we get

i = c−d =
1

2
ℓ+b, j = a−b = ℓ, s = a+b = ℓ+2b and t = c+d =

5

2
ℓ−b.

Put b′′ = 1
2ℓ+ b to get

(i, j | s, t) = (b′′, ℓ | 2b′′, 3ℓ− b′′) ∈ O, 1

2
ℓ ⩽ b′′ < ℓ.

Notice that b′ = ℓ
2 in the previous case and b′′ = ℓ

2 here give the same
(i, j | s, t).

Now ω = c− a = 3ℓ−b′′+b′′−(ℓ+2b′′)
2 = ℓ− b′′ and

ϕℓ−b
′′ · ϕ

ℓ − 1

ϕb′′ − 1
=
ϕ3ℓ−b

′′ − 1

ϕ2b′′ − 1
. (6.18)

(3) b < d < k
4 ⩽ a < c. In this case, (6.12) applies, and we have

cos
2π

k
d+ cos

2π

k

(
k

2
− c
)

= cos
2π

k
b+ cos

2π

k

(
k

2
− a
)
.

Matching up the arguments of this with those in (6.15), we have

2π

k
d =

π

3
− θ, 2π

k

(
k

2
− c
)

=
π

3
+ θ and

2π

k

(
k

2
− a
)

=
π

2
.

Therefore,

d =
k

6
− kθ

2π
= ℓ− b, c = k

3
− kθ

2π
= 2ℓ− b and a =

k

4
=

3

2
ℓ.

By (6.1), we get

i = c− d = ℓ, j = a− b = 3

2
ℓ− b,

and

s = a+ b =
3

2
ℓ+ b, t = c+ d = 3ℓ− 2b.
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Put b′′′ = 3
2ℓ− b to obtain

(i, j | s, t) = (ℓ, b′′′ | 3ℓ− b′′′, 2b′′′) ∈ O, ℓ < b′′′ ⩽
3

2
ℓ.

As ω = c− a = 2b′′′+ℓ−(b′′′+3ℓ−b′′′)
2 = b′′′ − ℓ, we őnd

ϕb
′′′−ℓ · ϕ

b′′′ − 1

ϕℓ − 1
=

ϕ2b
′′′ − 1

ϕ3ℓ−b′′′ − 1
,

or equivalently,

ϕℓ−b
′′′ · ϕ

ℓ − 1

ϕb′′′ − 1
=
ϕ3ℓ−b

′′′ − 1

ϕ2b′′′ − 1
. (6.19)

Note that b′, b′′, b′′′ must be integers, as they are equal to one of i or j.
Likewise, ℓ is an integer. Note also that the ranges őt. Putting (6.17),
(6.18), and (6.19) together, we therefore obtain

ϕℓ−u · ϕ
ℓ − 1

ϕu − 1
=
ϕ3ℓ−u − 1

ϕ2u − 1
, 1 ⩽ u ⩽

⌊
k

4

⌋
, u ̸= k

6
.

This is O1.

Remark 6.5. In (1) and (2), when ℓ is even,

(
1

2
ℓ+ b, ℓ

∣∣∣ ℓ+ 2b,
5

2
ℓ− b

)
=

(
1

2
ℓ− b, ℓ− 2b

∣∣∣ ℓ,
5

2
ℓ+ b

)

if and only if b = 0. Obviously, the expression in (3) cannot be equal to

one from (1) or (2).

6.3. Case (6.8)

We can use cos 0 = 1 or cos π2 = 0, to őll up (6.8) to four terms. By
Lemma 6.1 (1), b is the smallest values that appear among the arguments
of cos, if cos 0 is used, we have b = 0; otherwise, b ̸= 0.

In the case when b ̸= 0, (6.8) from Theorem 6.3 reads

cos
π

5
+ cos

π

2
= cos

2π

5
+ cos

π

3
. (6.20)

To simplify notation we let k = 60ℓ3.
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If c ⩽ k
4 = 15ℓ3, we can match (6.20) with (6.5). Using Lemma 6.1(1),

we obtain

b =
k

10
= 6ℓ3, c =

k

4
= 15ℓ3, and {a, d} = {10ℓ3, 12ℓ3}.

From this we get

(i, j | s, t) = (3ℓ3, 4ℓ3 | 16ℓ3, 27ℓ3) or (5ℓ3, 6ℓ3 | 18ℓ3, 25ℓ3).

If c > k
4 = 15ℓ3 we match (6.20) with (6.12). Using Lemma 6.1 (2), we

obtain

b = 6ℓ3, d = 10ℓ3,
k

2
− a =

k

4
=⇒ a = 15ℓ3 and c = 18ℓ3,

leading to (i, j | s, t) = (8ℓ3, 9ℓ3 | 21ℓ3, 28ℓ3).
We have all possibilities in O60. Notice that ℓ3 must be an integer, as

the entries inside our three quadruples are relatively prime.

Now we do the case b = 0. In this case cos 0 has to be added to (6.8)
from Theorem 6.3 to make it an equation with four terms, which then
reads

cos
π

5
+ cos

π

3
= cos

2π

5
+ cos 0. (6.21)

To simplify notation we let k = 30ℓ1.

If c ⩽
k
4 , we can match (6.21) with (6.5). Using Lemma 6.1(1), we

obtain
b = 0ℓ1, c = 6ℓ1 and {a, d} = {3ℓ1, 5ℓ1}.

From this we get (i, j | s, t) = (ℓ1, 3ℓ1 | 3ℓ1, 11ℓ1) or (3ℓ1, 5ℓ1 | 5ℓ1, 9ℓ1).
If c > k

4 we can match (6.21) with (6.12). Using Lemma 6.1(2) we
obtain

b = 0ℓ1, d = 3ℓ1, a = 9ℓ1 and c = 10ℓ1,

leading to (i, j | s, t) = (7ℓ1, 9ℓ1 | 9ℓ1, 13ℓ1).
We have obtained the őrst three possibilities in O30.

6.4. Case (6.9)

Slightly rewriting the equation (6.9) from Theorem 6.3 reads

cos
π

5
+ cos

4π

15
= cos

π

15
+ cos

π

3
. (6.22)
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To simplify notation again we let k = 30ℓ1.

If c ⩽
k
4 , we can match (6.22) with (6.5). Using Lemma 6.1(1) we

obtain
b = ℓ1, c = 5ℓ1 and {a, d} = {3ℓ1, 4ℓ1}.

From this we get (i, j | s, t) = (ℓ1, 2ℓ1 | 4ℓ1, 9ℓ1) or (2ℓ1, 3ℓ1 | 5ℓ1, 8ℓ1).
If c > k

4 we can match (6.22) with (6.12). Using Lemma 6.1(2) we
obtain

b = ℓ1, d = 3ℓ1, a = 10ℓ1 and c = 11ℓ1,

leading to (i, j | s, t) = (8ℓ1, 9ℓ1 | 11ℓ1, 14ℓ1).
These make the second block of three in O30.

6.5. Case (6.10)

Slightly rewriting the equation (6.10) from Theorem 6.3 reads

cos
2π

15
= cos

5π

15
+ cos

6π

15
+ cos

7π

15
. (6.23)

For simple notation we stay with k = 30ℓ1.

Now, the equation (6.23) can only match with (6.13), thus c ⩾ k
4 and

a < k
4 .

First matching 2πb
k with 2π

15 , we get b = 2ℓ1. From Lemma 6.1 (2), we

have d ⩽
k
2 − c. Thus, there are three possibilities.

• If d ⩽
k
2 − c < a, then a = 7ℓ1, 15ℓ1 − c = 6ℓ1 and d = 5ℓ1. In this

case, the element in O30 (the third block) is (4ℓ1, 5ℓ1 | 9ℓ1, 14ℓ1).
• If d < a < k

2 − c, then 15ℓ1 − c = 7ℓ1, a = 6ℓ1 and d = 5ℓ1. In this
case, the element in O30 (the third block) is (3ℓ1, 4ℓ1 | 8ℓ1, 13ℓ1).

• If a < d ⩽
k
2 − c, then 15ℓ1 − c = 7ℓ1, d = 6ℓ1 and a = 5ℓ1. In this

case, the element in O30 (the third block) is (2ℓ1, 3ℓ1 | 7ℓ1, 14ℓ1).
As before we emphasize the point that the entries inside all nine

quadruples involving ℓ1 are relatively prime. Thus ℓ1 turns out to be an
integer.

6.6. Case (6.11)

Slightly rewriting the equation (6.11) in Theorem 6.3 we get

cos
π

7
+ cos

3π

7
= cos

2π

7
+ cos

π

3
. (6.24)

To simplify notation here, we let k = 42ℓ2.
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If c ⩽ k
4 , we can match the terms of (6.24) with (6.5) and obtain

b = 3ℓ2, c = 9ℓ2, {a, d} = {6ℓ2, 7ℓ2}.

From this we get

(i, j | s, t) = (2ℓ2, 3ℓ2 | 9ℓ2, 16ℓ2) or (3ℓ2, 4ℓ2 | 10ℓ2, 15ℓ2).

If c > k
4 , we can use Lemma 6.1(2) again to match (6.24) with (6.12)

and get

b = 3ℓ2, d =
1

7
k = 6ℓ2, c = 14ℓ2 and a = 12ℓ2.

Therefore we obtain one more solution (i, j | s, t) = (8ℓ2, 9ℓ2 | 15ℓ2, 20ℓ2)
to form O42.

Again, ℓ3 must be an integer.

We have now exhibited all possible nontrivial overlaps. There are no
more than those listed in the theorem as we have claimed.

7. Triple overlaps

We say that a nontrivial triple overlap occurs if for some si, ti ∈ k,
i = 1, 2, 3, (s1, t1 | s2, t2), (s2, t2 | s3, t3), and (s1, t1 | s3, t3) are in O. In
this case, we write (s1, t1 | s2, t2 | s3, t3) and call it a nontrivial triple
overlap.

We collect all nontrivial triple overlaps in the set T , i.e.,

(s1, t1 | s2, t2 | s3, t3) ∈ T
⇐⇒ (s1, t1 | s2, t2), (s2, t2 | s3, t3), (s1, t1 | s3, t3) ∈ O.

We are interested in nontrivial overlaps only. So if (s1, t1 | s2, t2 | s3, t3) is
in T , we simply use the phrase “there is a triple overlap (s1, t1 | s2, t2 |
s3, t3),ž or “(s1, t1 | s2, t2 | s3, t3) is a triple overlapž, and the like to refer
to a nontrivial triple overlap.

Recall that when k is odd, no nontrivial overlaps can occur by The-
orem 5.2. We are only dealing with even k. Thus, we may assume that
si ⩽

k
2 and ti ⩽

k
2 for all i.
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For a triple overlap (s1, t1 | s2, t2 | s3, t3) ∈ T , we denote

o1 = (s1, t1 | s2, t2), o2 = (s2, t2 | s3, t3), o3 = (s1, t1 | s3, t3),

and call them the constituents of the triple overlap.

The following are easy consequences from the deőnition.

Lemma 7.1. It holds that

(s1, t1 | s2, t2 | s3, t3) ∈ T ⇐⇒ (s2, t2 | s1, t1 | s3, t3) ∈ T
⇐⇒ (s3, t3 | s2, t2 | s1, t1) ∈ T .

Lemma 7.2. It holds that

(s1, t1 | s2, t2 | s3, t3) ∈ T ⇐⇒ (t1, s1 | t2, s2 | t3, s3) ∈ T .

To obtain all the triple overlaps in T , we can therefore restrict to
the case when s1 < s2 < s3 and s1 < t1. More precisely, if there is a
triple overlap (s′1, t

′
1 | s′2, t′2 | s′3, t′3), then there is also a triple overlap

(s1, t1 | s2, t2 | s3, t3) with s1 < s2 < s3 and s1 < t1, and this one is
referred to as normalized.

Lemma 7.3. Let (s1, t1 | s2, t2 | s3, t3) ∈ T be a normalized triple overlap.

Then si < ti and t1 < t2 < t3.

Proof. Lemma 4.2 implies si < ti for all i and t1 < t2 < t3.

Theorem 7.4. Let T = (s1, t1 | s2, t2 | s3, t3) ∈ T be a normalized triple

overlap. Then k is divisible by 30, i.e., k = 30ℓ, and T is one of the

following

T1 :(3ℓ, 5ℓ | 5ℓ, 9ℓ | 6ℓ, 12ℓ), T4 :(2ℓ, 5ℓ | 3ℓ, 8ℓ | 4ℓ, 13ℓ),
T2 :(ℓ, 2ℓ | 4ℓ, 9ℓ | 5ℓ, 14ℓ), T5 :(4ℓ, 5ℓ | 8ℓ, 11ℓ | 9ℓ, 14ℓ).
T3 :(2ℓ, 3ℓ | 5ℓ, 8ℓ | 7ℓ, 14ℓ),

Any other triple overlap in T can be obtained from these by applying the

operations from Lemmas 7.1 and 7.2.
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By inspection, we derive from this an immediate consequence.

Corollary 7.5. There do not exist nontrivial “quadruplež overlaps.

8. Proof of Theorem 7.4

By Lemmas 7.1, 7.2 and 7.3 every triple overlap (s′1, t
′
1 | s′2, t′2 | s′3, t′3)

in T can be normalized into a triple overlap (s1, t1 | s2, t2 | s3, t3) with
s1 < s2 < s3, t1 < t2 < t3, and si < ti for i = 1, 2, 3. This accounts for
the last statement.

Throughout this proof, overlaps and triple overlaps are not necessarily
normalized. Thus, when doing inspection below, this fact has to be taken
into account. Let (s1, t1 | s2, t2 | s3, t3) ∈ T . Whenever we are dealing
with overlaps from O30, or O42, or O60, we assume that k = 30ℓ1, k = 42ℓ2,
k = 60ℓ3, respectively.

The cases are organized by the number of constituents inside O1.

8.1. Triple overlaps with no constituents in O1

(1) Assume that there is a constituent, o1 say, in O60. Then using
Theorem 5.1 one easily sees that the others are not in O60.

If another constituent is to be in O30, then ℓ1 = 2ℓ3 and o1 must have
one instance of the form (2m, 2m′ | . , . ). However, this is not the case
according to Theorem 5.1. Similarly, if another constituent is to be in O42,
then ℓ2 is a multiple of 10 and so two entries of o1 must be multiples of
10, which is not the case either.

Therefore, no constituents can be in O60.
(2) Assume that there is a constituent, o1 say, in O42. Then from the

list in Theorem 5.1 one easily sees that the others are not in O42. Hence,
other constituents o2 and o3 have to be in O30. But then ℓ1 is a multiple
of 7 and so two entries of o2, say, must be multiples of 7, which does not
happen.

Therefore, no constituents can be in O42.
(3) We are left with the case that there are two constituents in O30.

A tedious inspection (see the Remark 8.1 below) reveals two normalized
triple overlaps:

(ℓ1, 2ℓ1 | 4ℓ1, 9ℓ1 | 5ℓ1, 14ℓ1) and (2ℓ1, 5ℓ1 | 3ℓ1, 8ℓ1 | 4ℓ1, 13ℓ1), (8.1)

as well as one not normalized: (4ℓ1, 5ℓ1 | 9ℓ1, 14ℓ1 | 8ℓ1, 11ℓ1). Here
k = 30ℓ1.
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In each of the three triple overlaps found, there is one constituent (in
fact o3) from O1. Thus, these triple overlaps do not meet the condition of
the present case, and will show up again in the sequel.

Remark 8.1. Here we describe an efficient strategy to őnd normalized

triple overlaps from the list of overlaps.

• Start with a normalized overlap (s1, t1 | s2, t2).
• Look for normalized overlaps (s2, v | s, t) and check

if t2 = v, then (s1, t1 | s2, t2 | s, t) ∈ T , and

if t2 = s, then (s1, t1 | s2, t2 | v, t) ∈ T .

Notice that the last of the triple overlaps given above cannot be found

this way. Yet, it is spotted during the inspection. A normalized one for it

will be found later.

8.2. Triple overlaps with exactly one constituent in O1

Putting k = 6ℓ, we can assume that o1 = (i, ℓ | 2i, 3ℓ− i). This means
that o2 or o3 must contain ℓ. Furthermore, we have o2, o3 ∈ O30∪O42∪O60.

In the cases k = 60ℓ3 and k = 42ℓ2 this implies that 10ℓ3 or 7ℓ2,
respectively, must occur as an entry of an overlap. Yet there is no such
overlap in the list of Theorem 5.1.

In the case k = 30ℓ1, the entry 5ℓ1 must occur in an overlap inside
O30. There are three normalized candidates:

(3ℓ1, 5ℓ1 | 5ℓ1, 9ℓ1), (2ℓ1, 3ℓ1 | 5ℓ1, 8ℓ1), (4ℓ1, 5ℓ1 | 9ℓ1, 14ℓ1). (8.2)

If we assume that the őrst entry is smaller than the second, then three
pairs of this form (i, 5ℓ1), (5ℓ1, i), (5ℓ1, 15ℓ1 − i) can be found in the
overlaps in O1. Note that 5ℓ1 < 15ℓ1 − i, as i ⩽ 15ℓ1/2.

From the őrst quadruple of (8.2), we get i = 3ℓ1, or i = 9ℓ1 (too large),
or 15ℓ1 − i = 9ℓ1, hence i = 3ℓ1 or 6ℓ1. Both yield

(3ℓ1, 5ℓ1 | 5ℓ1, 9ℓ1 | 6ℓ1, 12ℓ1).

Since this triple overlap has two constituents inside O1, it does not őt the
condition we are considering, and will show up again in the next case.

From the second quadruple of (8.2), we get i = 2ℓ1, or i = 8ℓ1 (too
large), or 15ℓ1 − i = 8ℓ1, hence (already normalized)

i = 2ℓ1, giving (2ℓ1, 5ℓ1 | 3ℓ1, 8ℓ1 | 4ℓ1, 13ℓ1),
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and
i = 7ℓ1, giving (2ℓ1, 3ℓ1 | 5ℓ1, 8ℓ1 | 7ℓ1, 14ℓ1).

Notice that the őrst one here is the second in (8.1), and both triple overlaps
here have one constituent in O1 and two constituents in O30.

From the third quadruple of (8.2), we have i = 4ℓ1, or i = 14ℓ1 (too
large), or 15ℓ1 − i = 14ℓ1, hence

i = 1ℓ1, giving (ℓ1, 2ℓ1 | 4ℓ1, 9ℓ1 | 5ℓ1, 14ℓ1),
and

i = 4ℓ1, giving (4ℓ1, 5ℓ1 | 8ℓ1, 11ℓ1 | 9ℓ1, 14ℓ1).
The őrst one here is the őrst one in (8.1) while the second one is the
nonnormalized triple overlap we had after (8.1). Both of them have one
constituent in O1 and two constituents in O30.

Note that we have now found all the triple overlaps listed in the
theorem, including (3ℓ1, 5ℓ1 | 5ℓ1, 9ℓ1 | 6ℓ1, 12ℓ1) which did not őt the
current case condition. The following discussions will only show this one,
but not any new ones.

8.3. Triple overlaps with at least two constituents in O1

Assume k = 6ℓ and start out with a triple overlap o ∈ T with at least
two constituents from O1 (may not be normalized nor reduced, and the
numbering may not be the actual order):

o1 = (i, ℓ | 2i, 3ℓ− i) and o2 = (j, ℓ | 2j, 3ℓ− j),

where 1 ⩽ i ⩽
⌊
k
4

⌋
=
⌊
3ℓ
2

⌋
< 2ℓ, 1 ⩽ j ⩽

⌊
3ℓ
2

⌋
, i ̸= ℓ, j ≠ ℓ, and i ≠ j.

Thus, we have 2i ⩽ 3ℓ, 2j ⩽ 3ℓ, and i + j ⩽ 3ℓ. There is no loss of
generality in assuming that i < j. Then from i < j ⩽

3ℓ
2 , we infer that

i+ j < 3ℓ. Summarizing, we obtain the following four inequalities:

i < j, i < 3ℓ− i, ℓ < 3ℓ− i, and i < 3ℓ− j.

From these, we see that either i or ℓ is the smallest among all entries
involved in the triple overlap.

In both cases, 3ℓ − i is the largest entry in o1, and must appear in
o2. That is, 3ℓ − i must be one of j, ℓ, 2j and 3ℓ − j. The őrst, second
and fourth cases lead to contradictions i + j = 3ℓ, i = 2ℓ and i = j,
respectively. The third case makes 3ℓ− i = 2j. Also, since i < j, we have
3ℓ = i+ 2j < 3j, and so ℓ < j. Consequently, i < ℓ.
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Either (i, ℓ | 2i, 3ℓ− i) = (i, ℓ | 2i, 2j) or (i, ℓ | 2i, 3ℓ− i) ∼ (i, 2i | ℓ, 2j)
is the normalized form of o1. Assume the later is normalized. In order
to match it, we have to rearrange o2 = (j, ℓ | 2j, 3ℓ − j) into the form
(j, 2j | ℓ, 3ℓ − j) or (3ℓ − j, 2j | ℓ, j). Then either ℓ = j or ℓ = 3ℓ − j,
contradicting the fact that ℓ < j ⩽ ⌊3ℓ2 ⌋.

Therefore, o1 = (i, ℓ | 2i, 2j) is in normalized form. And again, one of
the rearrangements (j, 2j | ℓ, 3ℓ−j) or (3ℓ−j, 2j | ℓ, j) of o2 matches o1. If
2i = 3ℓ− j, then, together with 3ℓ− i = 2j, we arrive at the contradiction
i = j. Thus we are left with 2i = j. This yields i = 3

5ℓ and j = 6
5ℓ. Putting

k = 30ℓ1, we obtain the triple overlap (3ℓ1, 5ℓ1 | 6ℓ1, 12ℓ1 | 5ℓ1, 9ℓ1), which
already showed up earlier.

After rearranging into normalized form we obtain o1 ∈ O30, o2 ∈ O1

and o3 ∈ O1.
Finally, there are no triple overlaps with all three constituents inside

O1. We are done with the proof.
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