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Coarse selectors of groups

I. Protasov

Abstract. For a group G, FG denotes the set of all non-
empty őnite subsets of G. We extend the őnitary coarse structure of
G from G×G to FG ×FG and say that a macro-uniform mapping
f : FG → FG (resp. f : [G]2 → G) is a őnitary selector (resp. 2-
selector) of G if f(A) ∈ A for each A ∈ FG (resp. A ∈ [G]2). We
prove that a group G admits a őnitary selector if and only if G
admits a 2-selector and if and only if G is a őnite extension of an
inőnite cyclic subgroup or G is countable and locally őnite. We use
this result to characterize groups admitting linear orders compatible
with őnitary coarse structures.

1. Introduction and results

The notions of selectors came from Topology. Let X be a topological
space, expX denotes the set of all non-empty closed subsets of X endowed
with some (initially, the Vietoris) topology, F be a non-empty subset of
expX. A continuous mapping f : F → X is called an F-selector of X if
f(A) ∈ A for each A ∈ F . The question on selectors of topological spaces
was studied in a plenty of papers, we mention only [1], [4], [9], [10].

Formally, coarse spaces, introduced independently and simultaniously
in [17] and [13], can be considered as asymptotic counterparts of uniform
topological spaces. But actually, this notion is rooted in Geometry, Geo-
metric Group Theory and Combinatorics, see [17, Chapter 1], [6, Chapter 4]
and [13]. Every group G admits the natural őnitary coarse structure which,
in the case of őnitely generated G, can be viewed as the metric structure
of a Cayley graph of G. At this point, we need some basic deőnitions.
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Given a set X, a family E of subsets of X × X is called a coarse
structure on X if

• each E ∈ E contains the diagonal
a

X := {(x, x) : x ∈ X} of X;
• if E, E′ ∈ E then E ◦E′ ∈ E and E−1 ∈ E , where E ◦E′ = {(x, y) :
∃z ((x, z) ∈ E, (z, y) ∈ E′)}, E−1 = {(y, x) : (x, y) ∈ E};

• if E ∈ E and
a

X ⊆ E′ ⊆ E then E′ ∈ E .
Elements E ∈ E of the coarse structure are called entourages on X.
For x ∈ X and E ∈ E the set E[x] := {y ∈ X : (x, y) ∈ E} is called

the ball of radius E centered at x. Since E =
⋃

x∈X({x} × E[x]), the
entourage E is uniquely determined by the family of balls {E[x] : x ∈ X}.
A subfamily E ′ ⊆ E is called a base of the coarse structure E if each set
E ∈ E is contained in some E′ ∈ E ′.

The pair (X, E) is called a coarse space [17] or a ballean [13], [16].
A coarse space (X, E) is called connected if, for any x, y ∈ X, there

exists E ∈ E such that y ∈ E[x].
A subset Y ⊆ X is called bounded if Y ⊆ E[x] for some E ∈ E and

x ∈ X. If (X, E) is connected then the family BX of all bounded subsets
of X is a bornology on X. We recall that a family B of subsets of a set X
is a bornology if B contains the family [X]<ω of all őnite subsets of X and
B is closed under őnite unions and taking subsets. A bornology B on a
set X is called unbounded if X /∈ B. A subfamily B′ of B is called a base
for B if, for each B ∈ B, there exists B′ ∈ B′ such that B ⊆ B′.

Each subset Y ⊆ X deőnes a subspace (Y, E|Y ) of (X, E), where E|Y =
{E ∩ (Y × Y ) : E ∈ E}. A subspace (Y, E|Y ) is called large if there exists
E ∈ E such that X = E[Y ], where E[Y ] =

⋃
y∈Y E[y].

Let (X, E), (X ′, E ′) be coarse spaces. A mapping f : X → X ′ is
called macro-uniform if for every E ∈ E there exists E′ ∈ E ′ such that
f(E(x)) ⊆ E′(f(x)) for each x ∈ X. If f is a bijection such that f and
f−1 are macro-uniform, then f is called an asymorphism. If (X, E) and
(X ′, E ′) contain large asymorphic subspaces, then they are called coarsely
equivalent.

Given a coarse spaces (X, E), we denote by expX the set of all non-
empty subsets of X and endow expX with the coarse structure exp E
with the base {expE : E ∈ E}, where

(A,B) ∈ expE ⇔ A ⊆ E[B], B ⊆ E[A].

The coarse space (expX, exp E) is called the hyperballean of (X, E), for
hyperballeans see [2], [3], [14], [15].

Now we are ready to the key deőnition. Let (X, E) be coarse space,F be
a non-empty subspace of expX. A macro-uniform mapping f : F −→ X
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is called an F-selector of (X, E) if f(A) ∈ A for each A ∈ F . In the case
F = expX, F = B \ {0}, F = [X]2 we get a global selector, a bornologous
selector and a 2-selector respectively. The investigation of selectors of
coarse spaces was initiated in [11], [12].

Every group G with the identity e can be considered as the coarse
spaces (G, E), where E is the (right) őnitary coarse structure with the base

{{(x, y) : x ∈ Fy} : F ∈ [G]<ω, e ∈ F}.

We note that the bornology of (G, E) coincides with FG and use the
name őnitary selector in place the bornologous selector.

Every metric d on a set X deőnes the coarse structure Ed on X with
the base {{(x, y) : d(x, y) ⩽ r} : r > 0}. Given a connected graph Γ,
Γ = Γ[V ], we denote by d the path metric on the set V of vertices of Γ
and consider Γ as the coarse space (V, Ed). We recall that Γ is locally őnite
if the set {y : d(x, y) ⩽ 1} if őnite for each x ∈ V .

Our goal is to prove the following theorem.

Theorem 1. For a group G, the following statements are equivalent:

(i) G admits a őnitary selector;

(ii) G admits a 2-selector;

(iii) G is a őnite extension of an inőnite cyclic subgroup or G is
countable and locally őnite (i.e. every őnite subset of G generates a őnite
subgroup).

In the proof of Theorem 1 we use the following characterization of
locally őnite graphs admitting selectors. By N and Z, we denote graphs
on the sets of natural and integer numbers in which two vertices a, b are
incident if and only if |a−b| = 1. We note also that two graphs are coarsely
equivalent if and only if they are quasi-isometric, see [6, Chapter 4] for
quasi-isometric spaces.

Theorem 2. For a locally őnite graph Γ, the following statements are
equivalent:

(i) Γ admits a őnitary selector;

(ii) Γ admits a 2-selector;

(iii) Γ is either őnite or coarsely equivalent to N and Z.

We prove Theorem 2 in Section 2 and Theorem 1 in Section 3. In
Section 4, we apply Theorem 1 to characterize groups admitting linear
orders compatible with őnitary coarse structures.
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2. Proof of Theorem 2

The implication (i) ⇒ (ii) is evident. To prove (ii) ⇒ (iii), we choose
a 2-selector f of Γ[V ] and get (iii) at the end of some chain of elementary
observations.

We deőne a binary relation ≺ on V as follows: a ≺ b if and only if
a ̸= b and f({a, b}) = a.

We use also the Hausdorff metric on the set of all non-empty őnite
subsets of V deőned by dH(A,B) = max{d(a,B), d(b, A) : a ∈ A, b ∈ B},
d(a,B) = min{d(a, b) : b ∈ B}. We note that the coarse structure
on [V ]2 is deőned by dH . Since f is macro-uniform, there exists the
minimal natural number r such that if A,B ∈ [V ]2 and dH(A,B) ⩽ 1
then d(f(A), f(B)) ⩽ r. We őx and use this r.

We recall that a sequence of vertices a0, . . . , am is a geodesic path if
d(a0, am) = m and d(ai, ai+1) = 1 for each i ∈ {0, . . . ,m− 1}.

Lemma 1. Let a0, . . . , am be a geodesic path in V and m ⩾ r. If a0 ≺ ar
(resp. ar ≺ a0) then ai ≺ aj (resp. aj ≺ ai) for all i, j such that j − i ⩾ r.

Let a0 ≺ ar. By the choice of r, we have a0 ≺ ar+1, . . . a0 ≺ aj and
a1 ≺ aj , . . . ai ≺ aj .

Lemma 2. Let v ∈ V , B(v, r) = {x ∈ V : d(x, v) ⩽ r} and U be a subset
of V \ B(v, r) such that the graph Γ[U ] is connected. Then either v ≺ u
for each u ∈ U or u ≺ v for each u ∈ U .

We take arbitrary u, u′ ∈ U and choose a0, . . . , ak in U such that
a0 = u, ak = u′ and d(ai, ai+1) = 1 for each i ∈ {0, . . . , k− 1}. Let a0 ≺ v.
By the choice of r, we have a1 ≺ v, . . . , ak ≺ v.

Lemma 3. Let u, v, v′ ∈ V , d(v, v′) = n and d(u, v) > n + r. If u ≺ v
(resp. v ≺ u) then u ≺ v′ (resp. v′ ≺ u).

We choose a geodesic path a0, . . . , am from v to v′. Let u ≺ v. By the
choice of r, u ≺ a0, u ≺ a1, . . . , u ≺ an.

Lemma 4. Let a0, . . . , am be a geodesic path in V, v ∈ V, d(v, {a0, . . . ,
am}) = d(v, ak), k > 2r + 1, m− k > 2r + 1. Then d(v, ak) ⩽ r.

We take the őrst alternative given by Claim 1, the second is analogical.
Then a0 ≺ ak, ak ≺ am. Assuming that d(v, ak) > r, we can replace v to
some point on a geodesic path from v to ak and get d(v, ak) = r + 1. We
take the őrst alternative given by Claim 2, the second is analogical. Then
v ≺ a0, v ≺ am. But v ≺ a0 and a0 ≺ ak contradict Claim 3.
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We recall that a sequence (an)n<ω in V is a ray if d(ai, aj) = j − i
for all i < j. Evidently, Γ[{an : n < ω}] is asymorphic to N.

Lemma 5. Let (an)n<ω, (cn)n<ω be rays in V, A = {an : n < ω},
C = {cn : n < ω} and A ∩ C = ∅. Let t0, . . . , tk be a geodesic path from
a0 to c0, T = {t0, . . . , tk}. Assume that T ∩ {A} = {a0}, T ∩ C = {c0}.
If there exists a őnite subset H of V such that every geodesic path from a
vertex a ∈ A to a vertex c ∈ C meets H then (A∪C ∪T, d) is asymorphic
to Z.

We deőne a bijection f : A ∪ C ∪ T → Z by

f(ci) = −i− 1, f(ti) = i, f(ai) = i+ k + 1

and show that f is an asymorphism.
If x, y ∈ A ∪C ∪ T then |f(x)− f(y)| ⩽ d(x, y). Hence, f−1 is macro-

uniform.
We denote by p = max{d(a0, h), d(b0, h) : h ∈ H}. Then the restriction

of f to C ∪ T ∪ {a0, . . . , ap} is an asymorphism and the restriction of f
to A ∪ T ∪ {c0, . . . , cp} is an asymorphism. Let n > p, m > p. Since a
geodesic path from cn to am meets H, we have

d(am, cn) ⩽ n− p+m− p = |f(am)− f(cn)| − k − 2p,

so f is macro-uniform and the claim is proven.
We suppose that V is inőnite. Since Γ[V ] is locally őnite, there exists

a ray (an)n<ω in V . We put A = {an : n < ω}. If V \ B(A, r) is őnite
then Γ[V ] is coarsely equivalent to N.

We suppose V \B(A, r) is inőnite, take u ∈ V \B(A, r) and show that
every path P from u to a point from B(A, r) meets B({a0, . . . , a2r+1}, r+
1). We take a point v ∈ P such that d(v,A) = r + 1 and take k such that
d(v, ak) = r+ 1. By Claim 4, k ⩽ 2r+ 1, so v ∈ B({a0, . . . , a2r+1}, r+ 1).
We choose a ray (cn)n<ω in V \B(A, r) and put C = (cn)n<ω. We delete
(if necessary) a őnite number of points from A so that A,C and T satisfy
the assumptions of Claim 5 with F = B({a0, . . . , a2r+1}, r + 1). Then
(B(A ∪ C ∪ T ), d) is coarsely equivalent to Z.

We show that V \B(A ∪C, r) is őnite, so Γ[V ] is coasly equivalent to
Z. We suppose the contrary and choose a ray (xn)n<ω in V \B(A ∪C, r).
Applying arguments from above paragraph, we can construct a subset
X of V such that (X, d) is coarsely equivalent to a tree T which is a
union of three rays with common beginning. Since (X, d) has a 2-selector,
by Proposition 5 from [12], T also admits a 2-selector. On the other
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hand, Claim 4 states that T does not admit a 2-selector and we get a
contradiction.

It remains to prove (iii) ⇒ (i). This is evident if Γ is őnite. By
[12, Proposition 5], it suffices to show that N and Z admit őnitary selectors.
In both cases, a mapping f deőned by f(A) = maxA is őnitary selector.

3. Proof of Theorem 1

Let G be a group with the őnite system S of generators, S = S−1. We
recall that the Cayley graph Cay(G,S) is a graph with the set of vertices
G and the set of edges {(x, y) : x ̸= y, xy−1 ∈ S}. We note that the
őnitary coarse space of G is asymorphic to the coarse space of Cay(G,S).

Now let G be an arbitrary group. The implication (i) ⇒ (ii) is evident.

We prove (ii) ⇒ (iii). By [12, Theorem 4], G is countable. Let f be a
2-selector of G. We use the binary relation ≺ on G, deőned in Section 2,
and consider two cases.

Case 1. G has an element a of inőnite order. We denote by A the
subgroup of G, generated by a, and show that |G : A| is őnite.

On the contrary, let |G : A| is inőnite. We put S = {e, a, a−1}, denote
by Γ[A] the graph Cay(A,S) and choose a natural number r such that
if B,C ∈ [A]2 and dH(B,C) ⩽ 1 then d(f(A), f(B)) ⩽ r. By Claim 1,
either am ≺ an for all m,n ∈ Z such that n−m ⩾ r or an ≺ am for all
m,n ∈ Z such that n−m ⩾ r.

Since f : [G]2 → G is macro-uniform, there exists a őnite subset F of
G such that F = F−1, e ∈ F and if B,C ∈ [G]2 and A ⊆ SB, B ⊆ SA
then f(A) ∈ Ff(B). Since |G : A| is inőnite, we can choose h ∈ G \ FA,
so Fh ∩ A = ∅. Then either an ≺ h for each n ∈ Z or h ≺ an for each
n ∈ Z. We consider the őrst alternative, the second is analogical.

Since f is macro-uniform, we can choose m ∈ N, m ⩾ r such that
e ≺ am and h ≺ am, but h ≺ am contradicts above paragraph.

Case 2. G is a torsion group. We suppose that G is not locally őnite,
choose a őnite subset S of G such that the subgroup H, generated by S,
is inőnite. We denote Γ[H ] = Cay(H,S). By Theorem 2, Γ[H ] is coarsely
equivalent to N or Z.

We take v ∈ Γ[H] and denote S(v, n) = {u ∈ H : d(v, u) = n}, n ∈ N.
By [8, Theorem 1] or [16, Theorem 5.4.1], there exists a natural number
k such that |S(v, n)| ⩽ k for each n ∈ N. Hence, H is of linear growth.
Applying either [5] or [7], we conclude that H has an element of inőnite
order, a contradiction with the choice of G.
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It remains to verify (iii) ⇒ (i). If G is a őnite extension of an inőnite
cyclic subgroup then we apply Theorem 2. If G is countable and locally
őnite, one can refer to Theorem 5 in [12], but we give the following direct
proof to use in the proof of Theorem 3.

We write G as the union of an increasing chain {Gn : n < ω}, G0 = {e}
of őnite subgroup. For each n, we choose some system Rn, e ∈ Rn of
representatives of right cosets of Gn+1 by Gn, so Gn+1 = GnRn. We
denote

X = {(xn)n<ω : xn ∈ Rn and xn = e for all but finitery many n}

and deőne a bijection h : G → X as follows.
We put h(e) = (xn)n<ω, xn = e. Let g ∈ G, g ̸= e. We choose n0 such

that g ∈ Gn0+1 \Gn0
and write g = g0rn0

, g0 ∈ Gg0 , rn0
∈ Rn0

. If g0 ≠ e
then we őnd n1, g1 ∈ Gn1

, rn1
∈ Rn1

such that g0 = g1rn1
. After a őnite

number k of steps, we get g = rnk
. . . rn1

rn0
. We put h(g) = (yn), where

yn = rn if n ∈ {nk, . . . , n0}, otherwise, yn = e.
Now we deőne a linear order ⩽ on X. For each n < ω, we choose some

linear order ⩽n on Rn with the minimal element e. If (xn)n<ω ̸= (yn)n<ω

then we choose the minimal k such that xn = yn for each n > k. If
xk <k yk then we put (xn)n<ω < (yn)n<ω.

We note that (X,⩽) is well-ordered, so every non-empty subset of X
has the minimal element. To deőne a őnitary selector f : FG → G, we
take an arbitrary A ∈ FG and put f(A) = min h(A).

4. Linear orders

Let (X, E) be a coarse space. We say that a linear order ⩽ on X is
compatible with the coarse structure E if, for every E ∈ E , there exists F ∈ E
such that E ⊆ F and if {x, y} ∈ [X]2, x < y (y < x) and y ∈ X \ F [x]
then x′ < y (y < x′) for each x′ ∈ E[x].

Let (X, E) be a coarse space, ⩽ be a linear order on X. We say that
an entourage E ∈ E is interval (with respect to ⩽) if, for each x ∈ X,
there exist ax, bx ∈ X such that ax ⩽ x ⩽ bx and E[x] = [ax, bx]. We say
that E is an interval coarse structure if there is a base of E consisting of
interval entourages. Clearly, if E is interval then ⩽ is compatible with E .

Theorem 3. Let G be a group, E denotes the őnitary coarse structure
on G. Then the following statements are equivalent:

(i) there exists a linear order ⩽ on G such that E is interval with
respect to E;
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(ii) there exists a linear order ⩽ on G compatible with E;
(iii) G admits a 2-selector.

Proof. The implication (i) ⇒ (ii) is evident, (ii) ⇒ (iii) follows from
Proposition 2 in [12]. To prove (iii) ⇒ (i), we use Theorem 1 and consider
two cases.

Case 1. G is a őnite extension of an inőnite cyclic group A. We can
suppose that A is a normal subgroup. Let A = {an : n ∈ Z}, {f0, . . . , fm}
be a set of representatives of cosets of G by A, f0 = e, F = {f0, . . . , fm}.
We set Fn = F{a−n, . . . , an}, En = {(x, y) : xy−1 ∈ Fn} and note that
{En : n ∈ ω} is a base for E .

We endow G with a linear order ⩽ deőned by the rule: fia
k < fja

n if
and only if either k < n or k = n and i < j.

We choose the minimal natural number d such that fjfj ∈ F{a−d, . . . ,
ad} for all i, j ∈ {0, . . . ,m}. Since f−1

i afj ∈ {a, a−1}, we have

En[fia
k] ⊆ [f0a

k−n−d, fmak+n+d].

On the other hand, [f0 ak−n, fm ak+n] ⊆ Fn ak ⊆ Fn f−1

i (fi a
k).

Hence, E has an interval base with respect to ⩽.
Case 2. G is countable and locally őnite. Then E is interval with

respect to the linear order ⩽ deőned in the proof of Theorem 1.

Let ⩽ be a linear order on G compatible with E . Does there exist a
global selector of G? The following theorem gives the negative answer.

Theorem 4. The group Z does not admit a global selector.

Proof. We suppose the contrary and let f be a global selector. Since f
is macro-uniform, there exists a natural number n such that if X,Y ∈
expG and

X ⊆ [−1, 1] + Y, Y ⊆ [−1, 1] +X

then f(Y ) ∈ [f(X)− n, f(x) + n].
We put A = (n+ 1)Z, a = f(A), A′ = A \ {a}. Then

f(A′ ∪ {a− 1}) ∈ {a− 1, a− (n+ 1)},

f(A′ ∪ {a− 2}) ∈ {a− 2, a− (n+ 1)}, . . . ,

f(A′) = a− (n+ 1),

f(A′ ∪ {a+ 1}) ∈ {a+ 1, a+ n+ 1},

f(A′ ∪ {a+ 2}) ∈ {a+ 2, a+ n+ 1}, . . . ,

f(A′) = a+ n+ 1,

and we get a contradiction.
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