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An extension of the essential graph of a ring

Asma Ali and Bakhtiyar Ahmad

Communicated by R. Wisbauer

Abstract. Let A be a commutative ring with non-zero iden-
tity, and E(A) = {p ∈ A|annA(pq) ≤e A, for some q ∈ A∗}. The
extended essential graph, denoted by EgG(A) is a graph with the
vertex set E(A)∗ = E(A) \ {0}. Two distinct vertices r, s ∈ E(A)∗

are adjacent if and only if annA(rs) ≤e A. In this paper, we prove
that EgG(A) is connected with diam(EgG(A)) ≤ 3 and if EgG(A)
has a cycle, then gr(EgG(A)) ≤ 4. Furthermore, we establish
that if A is an Artinian commutative ring, then ω(EgG(A)) =
χ(EgG(A)) = |N(A)∗|+ |Max(A)|.

Introduction

Assignment of the graph to a commutative ring help us to study the pro-
perties of commutative ring from graph theoretical aspects. The study of
graph associated to a commutative ring was started by Beck [6] in which
he take the set Z(A) = {x ∈ A|xy = 0, for some y ∈ A∗} as the vertex set
and two distinct vertices are adjacent if their product is zero. He mainly
interested in colouring of the graph. Further, Anderson et al. [3] slight-
ly modified the definition of Beck by taking the set Z(A)∗ = {x ∈ A∗|
xy = 0, for some y ∈ A∗} to be vertex set and two distinct vertices are
adjacent if their product is zero. It is found that the definition given by
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Anderson et al. [3] is more suitable then that of Beck. So, many of authors
interested to study graph theoretical properties of ring by considering the
definition given by Anderson et al. [2, 4, 8, 9, 11, 12]. In 2017, Nikmehr
et al. [10] extend the zero-divisor graph by extending the edge set and
taking the vertex set same as taken by Anderson et al. (i.e, annA(pq)
essential ideal of A for some p, q ∈ Z(A)∗). So, the essential graph EG(A)
is an edge extended graph of Γ(A). Now, here question arises that, is
there exist any further extension of an zero-divisor graph, which contains
essential graph EG(A) of a commutative ring? To giving answer to this
question, we extend the zero-divisor graph by extending the vertex set
as well as edge set of the zero-divisor graph. We denote this graph by
EgG(A), in which vertex set to be E(A)∗ = {x ∈ A∗|annA(xy) ≤e A,
for some y ∈ A∗}. Two distinct vertices a, b ∈ E(A)∗ are adjacent if and
only if annA(ab) ≤e A. It is easily observe that EgG(A) is an extended
graph of Γ(A) as well as EG(A).

Throughout we take A be a commutative ring with unity. We denote
Z(A) be a set of zero-divisor elements, U(A) be a set of unit elements,
N(A) be a set of nilpotent elements, Max(A) set of maximal ideal of
A and if X is any non-empty set, then the set of non-zero element is
denoted by X∗ = X \ {0}. For any p ∈ A, ann(p) = {q ∈ A : pq = 0}
is the annihilator ideal of p in A. An ideal I of a ring A is said to
be essential, if it has non-empty intersection with every non-zero ideal
of A. We denote ≤e A to be an essential ideal of A. A ring is said to
be reduced if it has no nonzero nilpotent element. For more terminology
and definition of the ring one can see [5].

Let us define some basic definition of graph. A graph H = (V,E)
is defined us the set of vertices V and edges E. A graph H is said to
be connected, if every vertices of H is joined by a path, where path is
the length of the shortest distance between two distinct vertices and it
is denoted by d(x, y), x, y ∈ V (H). If there is no path between x and
y then d(x, y) = ∞. If S1 and S2 are the subgraph of H. Then the
join of S1 and S2, denoted by S1 ∨ S2, is a graph with the vertex set
V (S1 ∨S2) = V (S1)∪V (S2) and edge set E(S1 ∨S2) = E(S1)∪E(S2)∪
{xy|x ∈ V (S1), y ∈ V (S2)}. The diameter of a graph H is denoted
and given by diam(H) = max{d(x, y)|x, y ∈ V (H)}. A girth of a graph
H is the length of the shortest cycle. We denote girth of H by gr(H)
and gr(H) = ∞, if it has no cycle. A graph is said to be complete
if every vertices are adjacent to each other, we denote complete graph
with n-vertices by Kn and its complement graph by Kn. A clique of a
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graph H is defined as the maximal complete subgraph of a graph H and
length of the maximal complete subgraph is called clique number and it
is denoted by ω(H). We denote ∆(H), δ(H) and d(x), to be maximum
degree, minimum degree and the number of edges incident to x of H for
some x ∈ V (H), respectively. Assignment of colour to the vertices of
H in such a manner that two adjacent vertices have distinct colour is
defined as vertex colouring and minimum number of colour required to
colour all the vertices of graph H is called vertex chromatic number and
it is denoted by χ(H). Similarly, assignment of colour to the edges of
the graph such that two incident edges assign a different colour is known
to be edge colouring of the graph and the minimum number of colour
required to colour all the edges of a graph H is called edge chromatic
number, it is denoted by χ′(H). For more terminology and definition
regarding graph one can see [7, 13].

We divide the results of this paper in two section (Section 2 and
Section 3). In Section 2, we study about the connectedness, diameter,
girth of the extended essential graph EgG(A), in this section, we also
establish affinity between essential graph and extended essential graph.
In the third section, we show that for Artinian ring, extended essential
graph is weakly perfect. We also study about the edge chromatic number
and show that for finite commutative ring with identity, χ′(EGg(A)) =
∆(EGg(A)).

1. Basic properties of extended essential graph

In this section, we study about the connectedness, diameter and girth
of EgG(A) of a commutative ring. Also, we study the affinity between
essential graph EG(A) and extended essential graph EgG(A).

Lemma 1. Let A be a non-reduced ring. Then the following statements
hold:

(i) For any x ∈ N(A), annA(x) ≤e A.

(ii) For every u ∈ N(A)∗, u is adjacent to all other vertices of EgG(A).

(iii) EgG(A)[N(A)∗] is a (induced) complete subgraph of EgG(A).

Proof. (i) Assume x ∈ N(A). Then, we show that annA(x) ≤e A. Let
I be ideal of A and y ∈ I \ {0}. Since x ∈ N(A), it is possible to find
n ≥ 1 such that yxn−1 ̸= 0 but yxn = 0. Hence yxn−1 ∈ ann(x) ∩ I ̸= 0
and hence ann(x) ∩ I ̸= 0.
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(ii) As annA(u) ⊆ annA(uy) for any y ∈ A∗ and uy ∈ N(A), we
deduce from part (i) u is adjacent to all other vertices of EgG(A).

(iii) Follows from part (ii).

Lemma 2. Let A be a reduced ring. Then rs = 0 if and only if annA(rs) ≤e A

for some r, s ∈ A∗.

Proof. If rs = 0, then clearly annA(rs) ≤e A. Conversely, suppose on
contrary that annA(rs) ≤e A but rs ̸= 0. Since A is reduced, annA(rs)∩
Ars = (0), a contradiction. Hence rs = 0.

In the view of Lemma 1(i) and Lemma 2, we have following observa-
tions.

Observation 1. If A is a non-reduced ring, then E(A)∗ = A∗.

Observation 2. If A is a reduced ring, then E(A)∗ = Z(A)∗.

Theorem 1. Let A be a reduced ring. Then EgG(A) = EG(A).

Proof. It follows from Observation 2.

Main results of this section

Theorem 2. Let A be a ring. Then the following hold:

(i) EgG(A) is connected and diam(EgG(A)) ≤ 3.

(ii) If EgG(A) contains a cycle, then gr(EgG(A)) ≤ 4. Moreover, if A
is non-reduced, then gr(EgG(A)) = 3.

Proof. (i) Let us take p, q ∈ E(A)∗, with p ̸= q. Then by the defini-
tion there exist p1, q1 ∈ E(A)∗ such that annA(pp1) and annA(q1q) are
essential ideals of A and hence pp1, qq1 ∈ E(A).

Case(a): If pq = 0, then annA(pq) ≤e A and hence d(p, q) = 1.
Case(b): Assume that pq ̸= 0. Now, if p1q1 ̸= 0 and p1q1 ∈

N(A)∗, then pp1q1 ∈ N(A) and p1q1q ∈ N(A). Thus, by Lemma 1(i),
annA(pp1q1) and annA(p1q1q) are essential ideals of A. Therefore, p −
p1q1 − p is a path from p to q. Hence d(p, q) = 2. If p1q1 = 0, then
p− p1 − q1 − q is a path from p to q and hence d(p, q) = 3.

(ii) Assume that EgG(A) contains a cycle. Now, consider the follo-
wing cases:

Case(a): If A is reduced ring, then by Theorem 1, EgG(A) =
EG(A). Therefore, by [10, Theorem 2.1], gr(EgG(A)) ≤ 4.
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Case(b): If A is non-reduced ring, then there exists z ∈ N(A)∗. By
the assumption there exists a cycle in EgG(A), that contains an edge
x1 − y1, where x1, y1 ∈ A \ {0, z}. Then by Lemma 1(ii), z − x1 − y1 − z
has a cycle of length 3. Thus, gr(EgG(A)) = 3.

Theorem 3. Let A be a non-reduced ring. Then EgG(A) is connected
and diam(EgG(A)) = 2.

Proof. As A is a non-reduced ring, there exists c ∈ N(A)∗. We known
from Lemma 1(ii), that c is adjacent to all the vertices of EgG(A).
Hence, we obtain that, EgG(A) is connected and diam(EgG(A)) ≤ 2.
As c ∈ N(A)∗, it follows that 1 + c ∈ A× and 1 + c ̸= 1. Let w = 1 and
z = 1 + c. It is clear that wz = 1 + c and so, (0) = annA(wz) is not
an essential ideal of A. Therefore, w and z are not adjacent in EgG(A).
Hence, diam(EgG(A)) ≥ 2 and so, diam(EgG(A)) = 2.

Theorem 4. Let A be a finite non-reduced ring. Then the followings are
equivalent:

(i) EgG(A) is a star graph.

(ii) EgG(A) is a tree.

(iii) A ∼= Z4 or Z2[x]/
〈
x2

〉
.

(iv) gr(EgG(A)) = ∞.

Proof. (i) =⇒ (ii) and (iii) =⇒ (i), (ii), (iv) is clear, we have only to
show that (ii) =⇒ (iii). Now, let EgG(A) is a tree. Then EgG(A) has
no cycle. Let A ∼= A1 × A2 × · · · × An, where each Ai is a local ring,
1 ≤ n < ∞, but not a field. Now, if we take n ≥ 2 and a = (x, y, ..., 0),
b = (0, 1, ..., 0), c = (1, x, 0, ..., 0) ∈ E(A)∗, for some x, y ∈ N(Ai)

∗, then
we have a cycle a−b−c−a, a contradiction. Thus n = 1. Let |N(A)∗| ≥ 2,
then there exist w, z ∈ N(A)∗ and u ∈ U(A). Therefore, w− z−u−w is
a cycle in EgG(A), again a contradiction occur. Hence |N(A)∗| = 1 and
so A ∼= Z4 or Z2[x]/

〈
x2

〉
.

Corollary 1. Let A be a finite non-reduced ring and EgG(A) is a star
graph. Then the following are equivalents:

(i) EgG(A) ̸= EG(A).

(ii) A ∼= Z4 or Z2[x]/
〈
x2

〉
.
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(iii) gr(EgG(A)) = ∞.

Proof. (i) =⇒ (ii). Assume that EgG(A) ̸= EG(A). If A is a reduced
ring, then by Theorem 1, EgG(A) = EG(A), a contradiction. Now, if
we consider A is a nonreduced ring and |N(A)∗| ≥ 2, then there exist
x, y ∈ N(A)∗ and u ∈ U(A) such that x − y − u − x forms a cycle, a
contradiction. Thus |N(A)∗| = 1. Hence either A ∼= Z4 or Z2[x]/

〈
x2

〉
.

(ii) =⇒ (iii) and (iii) =⇒ (i) are follows from Theorem 4 and Obser-
vation 2.

Theorem 5. If A is a finite reduced ring, R is a ring which is not an
integral domain and EgG(A) ∼= EgG(R), then A ∼= R, unless A ∼= Z2×Z3

or Z6 and R is isomorphic to either Z4 or Z2[x]/
〈
x2

〉
.

Proof. Assume A is a reduced ring. If R is also reduced, then by [1, Theo-
rem 5], we are done. Now, let us consider R to be non-reduced ring. As
R is non-reduced, from Lemma 1(ii), there exists x ∈ N(R)∗ such that
x is adjacent to all the vertices of EgG(R), and so does in EgG(A) (as
EgG(A) ∼= EgG(R)). Also, from Theorem 1 and [10, Theorem 2.2], we
have EgG(A) ∼= Γ(A). Therefore, by [3, Corollary 2.7], A ∼= Z2×F , where
F is a finite field. From Observation 1 and 2, we have E(A)∗ = Z(A)∗ and
E(R)∗ = R∗. As EgG(A) ∼= EgG(R), we must have |E(A)∗| = |E(R)∗|,
i.e, |Z(A)∗| = |R∗|. Also, from Theorem 4, EgG(R) is to be star graph, if
R ∼= Z4 or Z2[x]/

〈
x2

〉
. It is clear that Γ(Z6) is a star graph and Γ(Z2×F )

to be a star graph such that |Z(A)∗| = |R∗| is possible if |F ∗| = 3. Hence
the result.

2. The extended essential graph of an Artinian ring is
weakly perfect

The main motive of this section is to study the vertex colouring of ex-
tented essential graph of Artinian commutative ring and to study the
edge colouring for a finite commutative ring. We show that the graph
EgG(A) is weakly perfect if A is Artinian ring.

Main results of this section

Theorem 6. Let A be an Artinian ring. Then

ω(EgG(A)) = χ(EgG(A)) = |N(A)∗|+ |Max(A)|.

Proof. To prove this we have the following cases:
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Case(a): If A is Artinian local ring, then one can easily see that
vertex set of EgG(A) is a partition of N(A) and U(A). By Lemma 1(iii),
we have EgG(A)[N(A)∗] is a complete subgraph of EgG(A). From Lem-
ma 1(ii), for all a ∈ N(A)∗, a is adjacent to all other vertices of A∗ and
the fact that there is no adjacency between two vertices of U(A). Which
implies that

EgG(A) = EgG(A)[N(A)∗] ∨ EgG(A)[U(A)]

and so

ω(EgG(A)) = χ(EgG(A)) =

= ω(EgG(A)[N(A)∗]) + ω(EgG(A)[U(A)]) = N(A)∗ + 1.

Case(b): If A is an Artinian non-local ring, then from [5, Theo-
rem 8.7], A can be written as A = A1 ×A2 × · · · ×An, where each Ai is
Artinian local ring, for every 1 ≤ i ≤ n. Now one can seprate the vertex
of EgG(A) as follow:

T = {{(a1, ..., an)|ai ∈ N(A) for all 1 ≤ i ≤ n} \ {(0, 0, 0, 0)}},

S = {(a1, ..., an)| ai /∈ N(A), for some i},

U(A) = {(ai, ..., an)|ai ∈ U(A), for all 1 ≤ i ≤ n}.

It is clear that there is no adjacency between W and U(A) and the
V (EgG(A)) = T∪S∪U(A). Observe that T∩S∩U(A) = ∅, T∩U(A) = ∅,
S ∩ U(A) = ∅ and therefore the set T, S, U(A) is a partition of vertex
set of EgG(A). Also it is clear that EgG(A)[U(A)] is the complement of
complete subgraph of EgG(A). Now we have only show that

EgG(A)[T ∪ S] = EgG(A)[T ] ∨ EgG(A)[S],

EgG(A)[T ∪ U(A)] = EgG(A)[T ] ∨ EgG(A)[U(A)].

It is clear from Lemma 1(iii) EgG(A)[T ] is a complete subgraph of
EgG(A), we have only show that EgG(A)[S] is an n-partite subgraph of
EgG(A), which is not an (n-1)-partite subgraph of EgG(A). Now, for eve-
ry 1 ≤ i ≤ n, let Si = {(a1, a2, ..., an) ∈ S|ai ∈ U(Ai) and aj ∈ N(A)
for every 1 ≤ j ≤ i}. It can be easily seen that for 1 ≤ i ≤ n,
there is no adjacency between two distinct vertices of Si and the set
(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1) is a clique of EgG(A)[S] and
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hence EgG(A)[S] is n-partite subgraph which is not an (n-1)-partite sub-
graph of EgG(A). Therefore, we can write

EgG(A)[T ∪ S] = EgG(A)[T ] ∨ EgG(A)[S]

EgG(A)[T ∪ U(A)] = EgG(A)[T ] ∨ EgG(A)[U(A)],

and hence
ω(EgG(A)) = χ(EgG(A)) =

= ω(EgG(A)[T ]) + ω(EgG(A)[S]) = |N(A)∗|+ |Max(A)|.

Theorem 7. Let A be a non-reduced ring. Then the following are equiva-
lent:

(i) χ(EgG(A)) = 2;

(ii) ω(EgG(A)) = 2;

(iii) either EgG(A) ∼= K1,2 or EgG(A) ∼= K1 ∨K∞.

Proof. (i) =⇒ (iii) and (iii) =⇒ (i), (ii) is clear, we only show (ii) =⇒
(iii). Now, let us assume that ω(EgG(A)) = 2, then we need to show that
EgG(A) ∼= K1,2 or EgG(A) ∼= K1 ∨K∞, we first claim that |N(A)∗| = 1.
To prove this, take |N(A)∗| ≥ 2, then there exist a, b ∈ N(A)∗, from
Lemma 1(ii), for any u ∈ A×, we have a− b− u− a, a cycle in EgG(A),
a contradiction occur. Hence N(A)∗ = 1. Now, we have following cases:

Case(a): If Z(A) = N(A), then |Z(A)∗| = 1. If A is an Artinian
ring, then from [5, Theorem 8.7], we have A ∼= A1 × A2 × · · · × An for
some positive integer n, 1 ≤ i ≤ n. Where each Ai is an Artinian local
ring. Now, if n ≥ 2, then Z(A)∗ ≥ 2, which is a contradiction. Thus
n = 1 and A is an Artinian local ring also from Theorem 4, A ∼= Z4 or
Z2[x]/

〈
x2

〉
. Therefore, EgG(A) ∼= K1,2.

Case(b): If Z(A) ̸= N(A), then we show that EgG(A) ∼= K1 ∨K∞.
Since ω(EgG(A)) = 2 and from Lemma 1(ii), for every a ∈ N(A)∗, a is
adjacent to all vertices of A∗. To show that EgG(A) ∼= K1∨K∞, we only
show that |Z(A)∗| = ∞. On contrary suppose that |Z(A)∗| < ∞. From
[5, Theorem 8.7], we can write A as A ∼= A1×A2×···×An for some posi-
tive integer n, 1 ≤ i ≤ n. Since Z(A) ̸= N(A), we have n ≥ 2. As A is
a non-reduced ring, there exists k ∈ N(A1)

∗. Now, let z = (k, 0, ..., 0),
b = (1, 0, ..., 0), c = (0, 1, ..., 0) ∈ A∗. Then from Lemma 1(ii), z − b −
c − z is a cycle, therefore induced subgraph of EgG(A) has a cycle, a
contradiction. Thus, |Z(A)∗| = ∞. Hence EgG(A) ∼= K1 ∨K∞.
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Lemma 3 ([7, Collorary 5.4]). Let H be a simple graph. If for every
vertex w of maximum degree there exists an edge w−z such that ∆(H)−
d(z)+2 is more than the number of vertices with maximum degree in H,
then χ′(H) = ∆(H).

Theorem 8. Let A be a finite non-reduced ring. Then χ′(EgG(A)) =
∆(EgG(A)).

Proof. Since A is ring with unity, A ̸= N(A) is clear. For any x ∈ N(A)∗,
x is adjacent to all the vertices of EgG(A). Now, assume a ∈ A \N(A).
As a /∈ N(A)∗, their is no adjacency between a and a + N(A)∗. So,
d(a) ≤ |A∗| − |N(A)∗| − 1. It is clear that each vertices in N(A)∗ has
a maximal degree in EgG(A). Therefore, for any vertex in N(A)∗ has
a maximum degree, now for any x ∈ A \ N(A), a is adjacent to x with
d(a) ≤ |A∗| − |N(A)∗| < |A∗| − |N(A)∗| + 2. Thus from Lemma 3,
χ′(EgG(A)) = ∆(EgG(A)).

Since Akbari et al. [1] proved that χ′(Γ(A)) = ∆(Γ(A)) for a finite
commutative ring, unless A is a complete graph. Also, if A is reduced
ring, then from [10, Theorem 2.3], χ′(EG(A)) = ∆(EG(A)) and therefore
from Theorem 1, χ′(EgG(A)) = ∆(EgG(A)). So, we end this section by
stating the result.

Corollary 2. Let A be a finite ring. Then χ′(EgG(A)) = ∆(EgG(A)).
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