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Implicit linear difference equation over
residue class rings

Mykola V. Heneralov and Aleksey L. Piven’

Communicated by V. Nekrashevych

Abstract. We investigate the first order implicit linear dif-
ference equation over residue class rings modulo m. We prove an
existence criterion and establish the number of solutions for this
equation. We obtain analogous results for the initial problem of
the considered equation. The examples which illustrate the develo-
ped theory are given.

1. Introduction

The theory of the linear difference equations is an important branch of
mathematics, having a series of different applications (see, for examp-
le, [1]–[4]). The theory of implicit linear difference equations in vector
spaces was developed in the 80s–90s of the 20 century (see, for example,
[4]–[6]). Unlike the classical theory, the non-invertible operators have an
important role in the new theory. Therefore, it appears to be interes-
ting to investigate the problem of solving an implicit linear difference
equation with non-invertible coefficients from an arbitrary commutative
ring. Recently, implicit difference equations over integral domains were
studied in [7], and more detailed over the ring of integers in [8]–[10].
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In [11] these equations in different classes of topological vector spaces we-
re investigated.

In this paper, the first order implicit linear difference equations over
residue classes rings is investigated. Let Zm = Z/mZ be the residue
class ring modulo m, where m ∈ N, m ≥ 2. Let A,B, Y0 ∈ Zm and let
{Fn}∞n=0 be a sequence of Zm. Consider the initial problem

BXn+1 = AXn + Fn, n ∈ Z+, (1.1)

X0 = Y0, (1.2)

where Z+ denotes the set of non-negative integers. A sequence {Xn}∞n=0

of elements of Zm is called a solution of the initial problem (1.1), (1.2), if
it satisfies Equation (1.1) and the initial condition (1.2). Equation (1.1)
is called implicit, if B is a non-invertible element of the ring Zm. If B is
an invertible element of Zm, then this equation is called explicit. Let a, b
are representatives of classes A,B respectively. In the Section 2 we prove
that if the greatest common divisor of numbers a, b,m is equal to 1, then
Equation (1.1) is decomposed into the explicit equation (2.5) and the
implicit equation (2.6), which has a unique solution (see lemmas 2.1, 2.2
and Theorem 2.1). Theorem 2.1 also gives the general solution for these
equations. The main results of this paper are presented in Section 3 (see
theorems 3.1 and 3.2). Theorem 3.1 describes necessary and sufficient
conditions for the solvability, a number of solutions and the general so-
lution for the initial problem (1.1), (1.2). This theorem gives the full
description of all possible situations for the initial problem (1.1), (1.2).
The analogous results for Equation (1.1) are established in Theorem 3.2.
This theorem leads to the criteria of the existence and uniqueness of a
solution for Equation (1.1) (see Corollaries 3.2, 3.3). As in the Fredholm
theory (see, for example, [12, Chapter 7]), Corollary 3.4 shows that if cor-
responding to (1.1) homogeneous equation has only trivial solution then
for any sequence {Fn}∞n=0 of Zm Equation (1.1) has a unique solution.
Section 4 of the present paper contains the examples, which illustrate
the constructed theory (see Examples 4.1–4.4).

Through this paper [t]s denotes the class of the element t ∈ Z of the
ring Zs, where s ∈ N. The ring Z1 denotes the null ring. For the numbers
n1, n2, . . . , nN ∈ Z such that |n1| + |n2| + . . . + |nN | ̸= 0 the symbol
gcd (n1, . . . , nN ) denotes their positive greatest common divisor. If T is
a nilpotent element of the ring Zs, then ind(T ) denotes the nilpotency
index of T .
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2. Preliminary

Throughout this paper m ≥ 2, m ∈ N. Let A,B and Fn (n ∈ Z+) be gi-
ven elements of the ring Zm. For each of elements A,B, Y0, Fn, Xn ∈ Zm

(n ∈ Z+) denote, respectively, their representatives a, b, y0, fn, xn.

By Fundamental Theorem of Arithmetic, there exist pairwise diffe-

rent primes p1, . . . , pr and numbers k1, . . . , kr ∈ N such that m =
r∏

j=1

p
kj
j .

Denote

m1 =
∏

j : pj ∤b

p
kj
j , m2 =

∏
j : pj |b

p
kj
j ,

where m1 = 1 in the case pj | b (j = 1, . . . , r) and m2 = 1 in the case
pj ∤ b (j = 1, . . . , r). Obviously, m1 ·m2 = m, and gcd (m1,m2) = 1.

Let us introduce the natural projections πi : Zm → Zmi , defined as
follows:

πi (T ) = [t]mi , ∀T = [t]m, i = 1, 2.

(see [13, p. 381–382]).

For each i = 1, 2, according to the [13, p. 381–382] the natural pro-
jections πi (i = 1, 2) are homomorphisms.

Denote

Ai = πi (A) , Bi = πi (B) , Yi,0 = πi (Y0) , Fi,n = πi (Fn) , i = 1, 2.

Let m1 ̸= 1, m2 ̸= 1. Let us introduce the isomorphism

ψ : Zm1 ⊕ Zm2 → Zm,

defined as follows (see, for example, [13, Section 7.6 and Exercise 5 to
the Section 7.6]):

ψ (T1, T2) = [t1e1m2 + t2e2m1]m, ∀T1 = [t1]m1 , ∀T2 = [t2]m2 , (2.1)

where

E1 = [e1]m1 = [m2]
−1
m1
, E2 = [e2]m2 = [m1]

−1
m2
. (2.2)

We see that since gcd (m1,m2) = 1, the inverse elements E1 and E2

are defined.

If T1 ∈ Zm1 , T2 ∈ Zm2 , then the definition of ψ implies

πi (ψ (T1, T2)) = Ti, i = 1, 2. (2.3)
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Also, π−1
1 (T1)∩π−1

2 (T2) is a one-element set, ψ (T1, T2) is an element
of this set. This means that

{ψ (T1, T2)} = π−1
1 (T1) ∩ π−1

2 (T2) . (2.4)

Consider the following equations over rings Zm1 and Zm2 respectively:

B1X1,n+1 = A1X1,n + F1,n, n ∈ Z+, (2.5)

B2X2,n+1 = A2X2,n + F2,n, n ∈ Z+. (2.6)

The following lemma describes the connection between solutions of
Equation (1.1) and equations (2.5), (2.6).

Lemma 2.1. Let m1 ̸= 1,m2 ̸= 1. The sequence

Xn = ψ (X1,n, X2,n) , n ∈ Z+, (2.7)

is a solution of Equation (1.1) if and only if the sequences {X1,n}∞n=0 and
{X2,n}∞n=0 are solutions of equations (2.5), (2.6), respectively. Moreover,
Xi,n = πi (Xn), i = 1, 2, n ∈ Z+.

Proof. The equalities (2.7) and (2.3) yield together the equality for Xi,n:
πi (Xn) = Xi,n, i = 1, 2.

Since πi (i = 1, 2) are homomorphisms, by the equality (2.7),

πi (BXn+1 −AXn − Fn) = BiXi,n+1−AiXi,n−Fi,n, i = 1, 2, n ∈ Z+.

By the equality (2.4), we obtain:

BXn+1 −AXn − Fn =

= ψ (B1X1,n+1 −A1X1,n − F1,n, B2X2,n+1 −A2X2,n − F2,n) , n ∈ Z+.
(2.8)

We note that
π1 (0) = 0 and π2 (0) = 0. (2.9)

Since (2.9), (2.8) hold, we obtain that the equality (1.1) is satisfied if
and only if equalities (2.5), (2.6) are satisfied. This ends the proof of the
lemma.

Let us introduce the notation:

d = gcd (a, b,m) .

Consider the equations (2.5) and (2.6). The following lemma estab-
lishes important properties for coefficients of these equations.
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Lemma 2.2. The following statements hold.

1. If m1 ̸= 1, then B1 is invertible.

2. If m2 ̸= 1, then B2 is nilpotent. If additionally d = 1, then A2 is
invertible.

3. B is nilpotent if and only if m1 = 1.

Proof. Proof the statement 1. The definition of m1 and B implies the
equality gcd (b,m1) = 1. Hence, the element B1 is an invertible element
of Zm1 .

Proof the statement 2. Firstly let us prove that B2 is nilpotent. It is
evident from the definition of m2: if k = max

j=1,...,r
{kj}, then Bk

2 = [bk]m2
= 0.

Let d = 1. We will prove that gcd (a,m2) = 1. Assuming the con-
trary, we obtain that there exists j ∈ {1, . . . , r} such that pj | a. This
condition yields pj | a, pj | b, pj | m. Hence pj | d. But it contradicts
d = 1. Therefore gcd (a,m2) = 1. This means that A2 is an invertible
element of Zm2 .

Proof the statement 3. The condition m1 = 1 is equivalent to the
assertion

∀j = 1, . . . , r : pj | b.

The last condition is equivalent to the nilpotency of the element B
in Zm.

Remark 2.1. Lemma 2.2 is an analogue of the spectral decomposition
of a regular operator pencil in Banach spaces (see [14, Lemma 2.1]). The
analogous to (2.5), (2.6) decomposition of an implicit difference equa-
tion in Banach spaces into two equations with regarded properties was
obtained in [6, 15].

The following theorem is a solvability theorem for Equation (2.5) and,
in the case d = 1, for Equation (2.6).

Theorem 2.1. The following statements hold.

1. Let m1 ̸= 1. The general solution of Equation (2.5) is defined by
the following formula:

X1,n = B−n
1 An

1X1,0 +
n−1∑
s=0

As
1B

−s−1
1 F1,n−s−1, n ∈ N, (2.10)

where X1,0 is an arbitrary element of Zm1.
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2. Let d = 1 and m2 ̸= 1. Then Equation (2.6) has a unique solution,
defined by the following formula:

X2,n = −
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,n+s, n ∈ Z+. (2.11)

Remark 2.2. The corresponding inverse elements exist by Lemma 2.2.

Proof. Let us prove firstly the statement 1. By the statement 1 of
Lemma 2.2, B1 is invertible. The equality (2.5) is equivalent to the
equality

X1,n+1 = B−1
1 A1X1,n +B−1

1 F1,n, n ∈ Z+. (2.12)

According to [3, p. 4], the general solution of Equation (2.12) has the
form (2.10).

Let us prove now the statement 2. Since d = 1 and m2 ̸= 1, by
the statement 2 of Lemma 2.2, A2 is an invertible element and B2 is
nilpotent.

The equality (2.6) is equivalent to the following:

X2,n = −A−1
2 F2,n +A−1

2 B2X2,n+1, n ∈ Z+. (2.13)

Applying (2.13) recurrently few times, obtain the equality (2.11).

Now let {Xn}∞n=0 be defined by the formula (2.11). Denote k =
ind (B2). Substituting (2.11) to the left part of Equation (2.6), we obtain:

B2Xn+1 = −B2A
−1
2

k−1∑
s=0

A−s
2 Bs

2F2,n+1+s = −
k−1∑
s=0

A−s−1
2 Bs+1

2 F2,n+s+1 =

= −
k∑

t=1

A−t
2 Bt

2F2,n+t = −
k∑

t=0

A−t
2 Bt

2F2,n+t + F2,n =

= −A2 ·A−1
2

k−1∑
t=0

A−t
2 Bt

2F2,n+t + F2,n = A2X2,n + F2,n.

Therefore {X2,n}∞n=0, defined by the formula (2.11), is the unique solution
of Equation (2.6).

Corollary 2.1. The following statements hold.
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1. Let d = 1 and m1 = 1. Equation (1.1) has a unique solution
{Xn}∞n=0, defined by the following formula:

Xn = −
ind(B)−1∑

s=0

A−s−1BsFn+s, n ∈ Z+. (2.14)

2. Let m2 = 1. The general solution of Equation (1.1) is defined by
the following formula:

Xn = B−nAnX0 +

n−1∑
s=0

AsB−s−1Fn−s−1, n ∈ N, (2.15)

where X0 is an arbitrary element of Zm.

3. Main results

Here we obtain the solvability theorems over Zm for Equation (1.1) and
for the initial problem (1.1), (1.2).

Let us introduce the following notations:

m′ =
m

d
, Y ′

0 = [y0]m′ , A′ = [a/d]m′ , B′ = [b/d]m′ .

Also, when d | fn for all n ∈ Z+, denote

F ′
n = [fn/d]m′ , n ∈ Z+.

Each a prime divisor of the numberm′ is also a divisor ofm. Then by
Fundamental Theorem of Arithmetic, there exist non-negative integers

lj ≤ kj (j = 1, . . . , r) such that m′ =

r∏
j=1

p
lj
j .

Denote also

m′
1 =

∏
j : dpj ∤b

p
lj
j , m′

2 =
∏

j : dpj |b

p
lj
j ,

A′
i = [a/d]m′

i
, B′

i = [b/d]m′
i
, Y ′

i,0 = [y0]m′
i
, i = 1, 2.

As in the definition of m1,m2, we assume m′
1 = 1, in the case dpj | b

(j = 1, . . . , r) and m′
2 = 1, in the case dpj ∤ b (j = 1, . . . , r). Note that if

d = 1, then m′
i = mi, i = 1, 2.
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Let d | fn for all n ∈ Z+. Denote

F ′
i,n = [fn/d]m′

i
.

and consider the initial problem

B′X ′
n+1 = A′X ′

n + F ′
n, n ∈ Z+, (3.1)

X ′
0 = Y ′

0 (3.2)

over Zm′ .
The following statement is a helpful lemma, which shows a connection

between the equations (1.1) and (3.1).

Lemma 3.1. Let d ̸= 1, d | fn (n ∈ Z+). The sequence {Xn}∞n=0

is a solution of Equation (1.1) if and only if it admits the following
representation

Xn = [x′n + αnm
′]m, n ∈ Z+, (3.3)

where X ′
n = [x′n]m′ (n ∈ Z+) is a solution of Equation (3.1), and {αn}∞n=0

is a sequence of {0, 1, . . . , d − 1}. Moreover, the sequence {αn}∞n=0 and
the solution {X ′

n}∞n=0 of Equation (3.1) with x′n ∈ {0, . . . ,m′ − 1} are
uniquely determined by the solution {Xn}∞n=0 of Equation (1.1).

Proof. Obviously, Equation (1.1) is equivalent to the congruence

bxn+1 ≡ axn + fn (mod m), n ∈ Z+. (3.4)

The congruence (3.4) is equivalent to the following condition.

b

d
xn+1 ≡

a

d
xn +

fn
d

(mod m′), n ∈ Z+. (3.5)

The congruence (3.5) means that there exists a solution X ′
n = [x′n]m′

(n ∈ Z+) of Equation (3.1) such that xn ≡ x′n (mod m′). Therefore
{Xn}∞n=0 is a solution of (1.1) if and only ifXn = [x′n+αn·m′]m (n ∈ Z+),
where {αn}∞n=0 is an arbitrary sequence of {0, . . . , d− 1}.

Suppose that the two following representatives for the solution of
Equation (1.1) hold:

Xn = [x′n + αnm
′]m =

[
x̂′n + α̂nm

′
]
m
, n ∈ Z+,

where X ′
n = [x′n]m′ , X̂ ′

n =
[
x̂′n

]
m′

(n ∈ Z+) are solutions of Equa-

tion (3.1), αn, α̂n (n ∈ Z+) are numbers from {0, . . . , d − 1} and ad-

ditionally x′n, x̂
′
n ∈ {0, . . . ,m′ − 1}. It implies the following congruence

x′n + αnm
′ ≡ x̂′n + α̂nm

′ (mod m), n ∈ Z+. (3.6)
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Then x′n ≡ x̂′n (mod m′). By the assumption x̂′n, x
′
n ∈ {0, ...,m′ − 1},

we have x′n = x̂′n, n ∈ Z+. Now the congruence (3.6) means αn ≡ α̂n

(mod d). Since αn, α̂n ∈ {0, . . . , d− 1}, we have αn = α̂n, n ∈ Z+.

The following theorem is a solvability theorem for the initial prob-
lem (1.1), (1.2). This theorem also establishes the explicit form for the
general solution of the considered initial problem, when a solution exists.

Theorem 3.1. The following statements hold.

1. The initial problem (1.1), (1.2) has a unique solution if and only
if d = 1 and one of the following conditions holds:

(a) m2 = 1;

(b) m2 ̸= 1 and the equality

Y2,0 = −
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,s (3.7)

is satisfied.

Moreover, the unique solution of the initial problem (1.1), (1.2) is
defined by the formula

Xn =



B−nAnY0 +

n−1∑
s=0

AsB−s−1Fn−s−1, m2 = 1,

−
ind(B)−1∑

s=0

A−s−1BsFn+s, m1 = 1,

ψ(γn, δn), m1 ̸= 1,m2 ̸= 1,

(3.8)

where the isomorphism ψ is defined by the formula (2.1) and

γn = B−n
1 An

1Y1,0 +
n−1∑
s=0

As
1B

−s−1
1 F1,n−s−1,

δn = −
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,n+s.
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2. The initial problem (1.1), (1.2) has infinitely many solutions if and
only if d ̸= 1, d | fn for all n ∈ Z+ and one of the following
conditions holds:

(a) m′
2 = 1;

(b) m′
2 ̸= 1 and the equality

Y ′
2,0 = −

ind(B′
2)−1∑

s=0

(
A′

2

)−s−1 (
B′

2

)s
F ′
2,s (3.9)

is satisfied.

The general solution of the initial problem (1.1), (1.2) is defined by

Xn = [x′n + αn ·m′]m, n ∈ N, (3.10)

where X ′
n = [x′n]m′ (n ∈ Z+) is a solution of the initial prob-

lem (3.1), (3.2) (this solution exists and is unique), and {αn}∞n=1

is an arbitrary sequence of {0, 1, . . . , d−1}. Moreover, the sequence
{αn}∞n=1 is uniquely determined by the solution {Xn}∞n=0 of the ini-
tial problem (1.1), (1.2).

3. The initial problem (1.1), (1.2) has no solutions if and only if one
of the following conditions holds:

(a) d ∤ fn for some n ∈ Z+;

(b) d | fn (n ∈ Z+), m
′
2 ̸= 1 and the equality (3.9) is not satisfied.

Remark 3.1. In the statement 2 of Theorem 3.1 the sequence {X ′
n}∞n=0,

when m ̸= d, may be defined by the formula, analogous to the for-
mula (3.8), applied to the initial problem (3.1), (3.2). When m = d,
then evidently X ′

n = 0 for all n ∈ Z+.

Proof. The sufficient conditions of all three statements of Theorem 3.1
are mutually exclusive and they exhaust all possibilities. Therefore, it is
enough to prove the sufficiency for all of three statements of this theorem.

Let us prove the sufficiency of the statement 1. Let d = 1. If either
m1 = 1, or m2 = 1, then the claimed statement follows from Corol-
lary 2.1. Let us assume now that m1 ̸= 1 and m2 ̸= 1.

Set the initial conditions:

X1,0 = Y1,0 ∈ Zm1 , (3.11)
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X2,0 = Y2,0 ∈ Zm2 (3.12)

for equations (2.5) and (2.6) respectively.
According to Lemma 2.1, the sequence {Xn}∞n=0 is a solution of the

initial problem (1.1), (1.2) if and only if the sequence {X1,n}∞n=0 is a so-
lution of the initial problem (2.5), (3.11) and the sequence {X2,n}∞n=0 is a
solution of the initial problem (2.6), (3.12). By the statement 1 of Theo-
rem 2.1, the initial problem (2.5), (3.11) has a solution for any Y1,0 ∈ Zm1 .
According to the statement 2 of Theorem 2.1, the initial problem (2.6),
(3.12) has a solution if and only if Y2,0 satisfies (3.7). Hence, the initial
problem (1.1), (1.2) has a solution if and only if the condition (3.7) is
satisfied, moreover this solution is unique and has the form (2.7), where
X1,n and X2,n are defined by the formulas (2.10) and (2.11) respectively.

Let us prove the sufficiency of the statement 2. Let d ̸= 1, d | fn
for all n ∈ Z+. Additionally, let either m′

2 = 1, or m′
2 ̸= 1 and (3.9)

be satisfied. Since gcd (a/d, b/d,m′) = 1, we can apply the sufficiency of
the statement 1 (which is already proved) to the initial problem (3.1),
(3.2). Due to that statement, the initial problem (3.1), (3.2) has a unique
solutionX ′

n = [x′n]m′ (n ∈ Z+). By Lemma 3.1, for any sequence {αn}∞n=0

of {0, . . . , d− 1} the formula (3.3) defines the solution of Equation (1.1).
We choose α0 such that (1.2) is satisfied, i.e., [x′0 + α0m

′]m = [y0]m.
The initial condition (3.2) implies [x′0]m′ = [y0]m′ , and the following

congruence holds x′0 ≡ y0 (mod m′). Then β =
y0−x′

0
m′ ∈ Z. Divide β on

d with remainder. Then there exist q ∈ Z and α0 ∈ {0, . . . , d − 1} such
that β = qd+ α0. Therefore,

[x′0 + α0m
′]m = [x′0 + (β − qd)m′]m = [x′0 + y0 − x′0 − qm]m = [y0]m.

Therefore for the chosen α0 and any sequence {αn}∞n=1 of {0, . . . , d− 1}
the formula (3.10) defines a solution of the initial problem (1.1), (1.2).
By Lemma 3.1, the expression (3.10) gives infinitely many solutions of
this initial problem (see also (3.3)).

We prove that the general solution of the initial problem (1.1), (1.2)
is defined by the formula (3.10). Let {Xn}∞n=0 be an arbitrary solution of
this initial problem. Then by Lemma 3.1, this solution has the form (3.3),
where {X ′

n}∞n=0 is a solution of Equation (3.1). Moreover, {X ′
n}∞n=0 must

satisfy the initial condition (3.2). We have proved that the initial prob-
lem (3.1), (3.2) has a unique solution. Hence, the general solution of the
initial problem (1.1), (1.2) has the form (3.10).

Let us prove now the sufficiency of the statement 3. Assume d ∤ fn
for some n ∈ Z+. The equality (1.1) for this n is equivalent to the
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congruence bxn+1 − axn ≡ fn (mod m). Hence,

fn ≡ d ·
(
b

d
xn+1 −

a

d
xn

)
(mod m). (3.13)

Since d | m, the condition (3.13) means that d | fn, which contradicts the
assumption. Therefore, if d ∤ fn for some n ∈ Z+, then Equation (1.1) has
no solutions. Now suppose that d | fn, n ∈ Z+, m

′
2 ̸= 1 and the equali-

ty (3.9) is not satisfied. Assume the contrary, that the initial problem
(1.1), (1.2) has a solution Xn = [xn]m (n ∈ Z+). Then the congruence
(3.13) is satisfied for all n ∈ Z+ and the sequenceX ′

n = [xn]m′ (n ∈ Z+) is
a solution of the initial problem (3.1), (3.2). Since gcd (a/d, b/d,m′) = 1,
we can apply Lemma 2.1 and the statement 2 of Theorem 2.1 to this
initial problem. Therefore, if m′

2 ̸= 1 and {X ′
n}∞n=0 is a solution of the

initial problem (3.1), (3.2), then Y ′
2,0 = [y0]m′

2
must satisfy (3.9). This

contradicts the assumption.

The following theorem is a solvability theorem for Equation (1.1).
This theorem also yields an explicit form for the general solution of Equa-
tion (1.1).

Theorem 3.2. The following statements hold.

1. Equation (1.1) has a finite number of solutions if and only if d = 1.
Moreover, the number of these solutions is equal to m1 and in this
case

(a) If m2 = 1, then the general solution of Equation (1.1) has the
form

Xn = B−nAnX0 +

n−1∑
s=0

AsB−s−1Fn−s−1, n ∈ N, (3.14)

where X0 is an arbitrary element of Zm.

(b) If m1 = 1, then the unique solution of Equation (1.1) has the
form

Xn = −
ind(B)−1∑

s=0

A−s−1BsFn+s, n ∈ Z+. (3.15)
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(c) If m1 ̸= 1 and m2 ̸= 1, then the general solution of Equa-
tion (1.1) has the form

X0 = ψ

X1,0,−
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,s

 ,

Xn = ψ(γn, δn), n ∈ N, (3.16)

where X1,0 is an arbitrary element of Zm1, the isomorphism
ψ is defined by the formula (2.1) and

γn = B−n
1 An

1X1,0 +
n−1∑
s=0

As
1B

−s−1
1 F1,n−s−1,

δn = −
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,n+s.

2. Equation (1.1) has infinitely many solutions if and only if d ̸= 1
and d | fn for all n ∈ Z+. The general solution in this case has the
form (3.3), where X ′

n = [x′n]m′ (n ∈ Z+) is the general solution of
Equation (3.1), and {αn}∞n=0 is an arbitrary sequence of {0, . . . , d−
1}. Moreover, the sequence {αn}∞n=0 and the solution {X ′

n}∞n=0 of
Equation (3.1) with x′n ∈ {0, . . . ,m′ − 1} are uniquely determined
by the solution {Xn}∞n=0 of Equation (1.1).

3. Equation (1.1) has no solutions if and only if d ∤ fn for some
n ∈ Z+.

Remark 3.2. Since gcd (a/d, b/d,m′) = 1, in the statement 2 of Theo-
rem 3.2 the general solution of Equation {X ′

n}∞n=0 may be defined by the
formula, analogous to formulas (3.14)–(3.16), applied to Equation (3.1).

Proof. The sufficient conditions of all three statements of Theorem 3.2
are mutually exclusive and they exhaust all possibilities. Therefore, it is
enough to prove the sufficiency for all of three statements of this theorem.

We prove the sufficiency of the statement 1 of Theorem 3.2. Let
d = 1. If either m1 = 1 or m2 = 1, then the claimed statement follows
from Corollary 2.1. Let m1 ̸= 1 and m2 ̸= 1. The statement 1 of Theo-
rem 3.1 implies that if there exists a solution of the initial problem (1.1),
(1.2), then it is defined uniquely by the given Y1,0, where Y1,0 is an ar-
bitrary element of the ring Zm1 . Therefore, the number of solutions of
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Equation (1.1) is equal to m1. The form (3.16) of the general solution
of Equation (1.1) is obtained by using the general solution (3.8) of the
initial problem (1.1), (1.2).

Let us prove the sufficiency of the statement 2 of Theorem 3.2. Let
d ̸= 1 and d | fn for all n ∈ Z+. Since gcd

(
a
d ,

b
d ,m

′) = 1, we can
apply the sufficiency of the statement 1 (which is already proved) to
Equation (3.1). Due to that statement, Equation (3.1) has m′

1 solutions.
Let X ′

n = [x′n]m′ (n ∈ Z+) be the general solution of this equation. By
Lemma 3.1, the general solution of Equation (1.1) has the form (3.3),
where {αn}∞n=0 is an arbitrary sequence of {0, . . . , d− 1}. Moreover, by
Lemma 3.1, Equation (1.1) has infinitely many solutions.

Let us prove the sufficiency of the statement 3 of Theorem 3.2. Let
d ̸= 1 and d ∤ fn for some n ∈ Z+. By the statement 3 of Theorem 3.1,
for any Y0 ∈ Zm the initial problem (1.1), (1.2) has no solutions. Hence,
Equation (1.1) has no solutions.

The following corollary of Theorem 3.2 yields the solvability of Equa-
tion (1.1) in the case of an invertible element A.

Corollary 3.1. If A is an invertible element of Zm, then Equation (1.1)
always has a solution. Moreover, the number of solutions for Equa-
tion (1.1) is equal to m1.

Theorem 3.2 also implies the following criteria of the existence and
uniqueness of a solution for Equation (1.1).

Corollary 3.2. Equation (1.1) has a unique solution if and only if d = 1
and m1 = 1. In particular, the homogeneous equation

BXn+1 = AXn, n ∈ Z+ (3.17)

has only trivial solution if and only if d = 1 and m1 = 1.

Corollary 3.3. Equation (1.1) has a unique solution if and only if A is
invertible and B is nilpotent. Moreover, this solution has the form (3.15).

Proof. According to Corollary 3.2, Equation (1.1) has a unique solution
if and only if d = 1 and m1 = 1.

Hence, it suffices to prove that the conditions that B is nilpotent and
A is invertible are equivalent to the conditions d = 1 and m1 = 1.

At first, let us prove the sufficiency of the mentioned statement. Let
B be nilpotent and A be invertible. We prove that d = 1, m1 = 1. By
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the statement 3 of Lemma 2.2, the nilpotency of B implies m1 = 1. If A
is invertible, then gcd(a,m) = 1, and hence d = 1.

Let us prove now the converse statement. Let d = 1 and m1 = 1. By
the statement 3 of Lemma 2.2, the conditionm1 = 1 yields B is nilpotent.
By Lemma 2.2, if d = 1, then A2 is an invertible element of Zm2 . Since
m1 = 1, this implies that A2 = A is invertible. The representation (3.15)
for the unique solution of Equation (1.1) follows from Theorem 3.2.

Corollary 3.4. If the homogeneous equation (3.17) has only trivial so-
lution, then for any sequence {Fn}∞n=0 Equation (1.1) has a unique solu-
tion. Moreover, the unique solution of Equation (1.1) has the form (3.15).

Proof. Let Equation (3.17) has only trivial solution. Then Corollary 3.2
implies d = 1, m1 = 1 and, therefore, for any sequence {Fn}∞n=0 of Zm

Equation (1.1) has a unique solution. The form (3.15) for the unique
solution of Equation (1.1) follows from Corollary 3.3.

4. Examples

Example 4.1. Consider the following equation over Z6:

[3]6Xn+1 = [2]6Xn + Fn, n ∈ Z+. (4.1)

Here A = [2]6, B = [3]6, m = 6. Let b = 3, a = 2, hence d = 1. We
have m1 = 2 and m2 = 3. Therefore A2 = [2]3, B2 = [3]3, ind(B2) = 1.
Let Y0 = [y0]6, Fn = [fn]6. By the statement 1 of Theorem 3.1, the initial
problem (4.1), (1.2) has a solution if and only if

[y0]3 = −
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,s = −[2]−1
3 [f0]3 = [f0]3,

i.e.,
[y0]3 = [f0]3. (4.2)

Further assume that the solution of the initial problem (4.1), (1.2)
exists, i.e., the equality (4.2) is satisfied. This solution is unique.

The representation of this solution may be found by the formula (3.8).
We obtain A1 = [2]2, B1 = [3]2, E1 = [3]−1

2 = [1]2, E2 = [2]−1
3 = [2]3

(see also the formulas (2.2)). Choose e1 = 1, e2 = 2. According to the
formula (2.1), the isomorphism ψ : Z2 ⊕ Z3 → Z6 is defined as follows:

ψ(T1, T2) = [3t1 + 4t2]6, ∀T1 = [t1]2, ∀T2 = [t2]3. (4.3)
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Let us evaluate:

B−n
1 An

1X1,0 +

n−1∑
s=0

As
1B

−s−1
1 F1,n−s−1 =

= [3]−n
2 [2]n2X1,0 +

n−1∑
s=0

[2]s2[3]
−s−1
2 F1,n−s−1 = F1,n−1, n ∈ N, (4.4)

−
ind(B2)−1∑

s=0

A−s−1
2 Bs

2F2,n+s = −[2]−1
3 F2,n = F2,n, n ∈ Z+. (4.5)

Substituting (4.3), (4.4) and (4.5) into (3.8), we obtain the following
form for the unique solution of the initial problem (4.1), (1.2):

X0 = Y0, Xn = ψ([fn−1]2, [fn]3) =

= [3fn−1 + 4fn]6 = 3Fn−1 + 4Fn, n ∈ N. (4.6)

By Theorem 3.2, Equation (4.1) hasm1 = 2 solutions, and the general
solution of this equation has the form:

X0 = ψ ([β]2, [f0]3) = [3β + 4f0]6,

Xn = ψ ([fn−1]2, [fn]3) = [3fn−1 + 4fn]6 = 3Fn−1 + 4Fn, n ∈ N,

where β may be equal to 0 or 1.

Example 4.2. Consider the following equation over Z9:

[3]9Xn+1 = [2]9Xn + Fn, n ∈ Z+. (4.7)

Here A = [2]9, B = [3]9, m = 9. Let b = 3, a = 2, hence d = 1.
We have m1 = 1 and m2 = 9. Here B is nilpotent and A is invertible
elements of Z9. We obtain ind(B) = 2. Let Y0 = [y0]9, Fn = [fn]9. By
Corollary 3.3, Equation (4.2) has a unique solution. This solution has
the form

Xn = −
ind(B)−1∑

s=0

[2]−s−1
9 [3]s9Fn+s = −[5]9Fn − [25]9[3]9Fn+1

= 4Fn + 6Fn+1, n ∈ Z+. (4.8)

The initial problem (4.7), (1.2) has a solution if and only if Y0 = 4F0+
6F1. This solution is unique and has the form (4.8).
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Example 4.3. Consider the following equation over Z12:

[6]12Xn+1 = [2]12Xn + Fn, n ∈ Z+. (4.9)

Here A = [2]12, B = [6]12, m = 12, a = 2, b = 6. That implies that
d = 2. Let Fn = [fn]12. If fn is odd for some n ∈ Z+, then by the
statement 3 of Theorem 3.2 Equation (4.9) has no solutions.

Further let fn be even for all n ∈ Z+.

We obtain m′ = 6, m′
1 = 2, m′

2 = 3, B′ = [3]6, A
′ = [1]6, F

′
n =

[
fn
2

]
6
.

Let Y0 = [y0]12. Also, Y ′
0 = [y0]6, B

′
1 = [3]2, A

′
1 = [1]2, B

′
2 = [3]3,

A′
2 = [2]3, F

′
1,n =

[
fn
2

]
2
, F ′

2,n =
[
fn
2

]
3
. Here ind(B′

2) = 1.

By the statement 2 of Theorem 3.1, the initial problem (4.9), (1.2)
has a solution if and only if

[y0]3 = −
ind(B′

2)−1∑
s=0

(A′
2)

−s−1(B′
2)

sF ′
2,s = −F ′

2,0 = 2

[
f0
2

]
3

= [f0]3,

i.e.,

[y0]3 = [f0]3. (4.10)

The corresponding equation (3.1) over Z6 has the form

[3]6X
′
n+1 = X ′

n + F ′
n, n ∈ Z+. (4.11)

Further let (4.10) be satisfied.

By the statement 1 of Theorem 3.1, the initial problem (4.11), (3.2)
has a unique solution, which may be obtained by the formula (3.8).

Let us evaluate:

(
B′

1

)−n (
A′

1

)n
Y ′
1,0 +

n−1∑
s=0

(
A′

1

)s (
B′

1

)−s−1
F ′
1,n−s−1 =

= ([3]2)
−n Y ′

1,0 +

n−1∑
s=0

([3]2)
−s−1 F ′

1,n−s−1 = Y ′
1,0 +

n−1∑
s=0

F ′
1,n−s−1, (4.12)

−
ind(B′

2)−1∑
s=0

(
A′

2

)−s−1 (
B′

2

)s
F ′
2,n+s = −

[
fn
2

]
3

. (4.13)
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As in Example 4.1, the isomorphism ψ : Z2 ⊕ Z3 → Z6 is defined by the
formula (4.3). Substituting (4.3), (4.12) and (4.13) into (3.8), we obtain
the unique solution of the initial problem (4.11), (3.2):

X ′
0 = Y ′

0 , X ′
n = ψ

(
Y ′
1,0 +

n−1∑
s=0

F ′
1,n−s−1,−

[
fn
2

]
2

)
=

=

[
3

(
y0 +

n−1∑
s=0

fs
2

)
+ 4

(
−fn

2

)]
6

=

=

[
3y0 + 3

n−1∑
s=0

fs
2

+ 4fn

]
6

, n ∈ N. (4.14)

Hence, if fn (n ∈ Z+) is even and (4.10) is satisfied, then by the
statement 2 of Theorem 3.1 the initial problem (4.9), (1.2) has infinitely
many solutions. Moreover, the general solution of this initial problem
has the following form (see formulas (3.10) and (4.14)).

X0 = Y0, Xn =

[
3y0 + 3

n−1∑
s=0

fs
2

+ 4fn + 6αn

]
12

, n ∈ N, (4.15)

where {αn}∞n=1 is an arbitrary sequence of the elements 0 and 1.
By the statement 2 of Theorem 3.2, Equation (4.9) has infinitely

many solutions. Moreover, the general solution of Equation (4.9) has the
form (see formulas (3.3) and (4.15)):

X0 = [3β + 4f0 + 6α0]12 ,

Xn =

[
3β + 3

n−1∑
s=0

fs
2

+ 4fn + 6αn

]
12

, n ∈ N,

where β and αn (n ∈ Z+) are arbitrary elements of {0, 1}.

Remark 4.1. We note that the explicit equation (1.1) over the ring Zm

always has exactly m solutions.

Example 4.4. Consider the following equation over Z12:

[9]12Xn+1 = [6]12Xn + Fn, n ∈ Z+. (4.16)

Here A = [6]12, B = [9]12, m = 12. Let a = 6, b = 9. This
implies that d = 3. Let Y0 = [y0]12, Fn = [fn]12. By the statement 2
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of Theorem 3.1, if 3 ∤ fn for some n ∈ Z+, then by the statement 3 of
Theorem 3.2 Equation (4.16) has no solutions.

Further let 3 | fn for all n ∈ Z+. We obtain B′ = [3]4, A
′ = [2]4,

m′ = 4, m′
1 = 4, m′

2 = 1. The corresponding equation (3.1) over Z4 has
the form:

[3]4X
′
n+1 = [2]4X

′
n + F ′

n, n ∈ Z+, (4.17)

where F ′
n =

[
fn
3

]
4
.

By the first statement of Theorem 3.1, for any Y ′
0 ∈ Z4 the initial

problem (4.17), (3.2) has a unique solution and this solution is defined
by the formula:

X ′
0 = Y ′

0 , X ′
n =

(
B′)−n (

A′)n Y ′
0 +

n−1∑
s=0

(
A′)s (B′)−s−1

F ′
n−s−1 =

= [3]−n
4 [2]n4Y

′
0 +

n−1∑
s=0

[2]s4[3]
−s−1
4 F ′

n−s−1 =

= [2]n4Y
′
0 +

n−1∑
s=0

[2]s4[3]
−s−1
4 F ′

n−s−1, n ∈ N. (4.18)

More precise,

X ′
0 = Y ′

0 , X ′
1 = 2Y ′

0 + 3F ′
0, X ′

n = 3F ′
n−1 + 2F ′

n−2, n = 2, 3, . . . .

If 3 | fn, n ∈ Z+, then by the second statement of Theorem 3.1,
for any Y0 ∈ Z12 the initial problem (4.16), (1.2) has infinitely many
solutions. Moreover, the general solution of this initial problem has the
following form (see the formula (3.10)):

X0 = Y0, Xn = [x′n + 4αn]12, n ∈ N,

i.e.,
X0 = Y0, X1 = [2y0 + f0 + 4α1]12,

Xn =

[
fn−1 + 2

fn−2

3
+ 4αn

]
12

, n = 2, 3, . . . . (4.19)

Here {αn}∞n=1 is an arbitrary sequence of {0, 1, 2}.
If 3 | fn, n ∈ Z+, then by the statement 2 of Theorem 3.2, Equa-

tion (4.16) has infinitely many solutions. Moreover, the general solution
of this equation has the following form (see the formula (3.3)).

Xn = [x′n + 4αn]12, n ∈ Z+, (4.20)



104 Implicit difference equations

where {αn}∞n=0 is an arbitrary sequence of {0, 1, 2} and the sequence
X ′

n = [x′n]4 (n ∈ Z+) is the general solution of Equation (4.17) which is
defined as follows:

X ′
0 = [x′0]4, X ′

1 = 2X ′
0 + 3F ′

0, X ′
n = 3F ′

n−1 + 2F ′
n−2, n = 2, 3, . . . .

Now the general solution (4.20) of Equation (4.16) can be written in a
more convenient form, which is similar to (4.19):

X0 = [x0]12, X1 = [2x0 + f0 + 4α1]12,

Xn =

[
fn−1 + 2

fn−2

3
+ 4αn

]
12

, n = 2, 3, . . . ,

where x0 is an arbitrary integer and {αn}∞n=1 is an arbitrary sequence of
{0, 1, 2}.
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